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Abstract—Advances in the development of colorless and
nondirectional reconfigurable optical add–drop multi-
plexers (ROADMs) enable flexible predeployment of
optoelectronic regenerators (reshaping, retiming, and
reamplifying known as 3R) in future optical networks.
Compared to the current practice of installing a regenera-
tor only when a circuit needs them, predeployment of
regenerators in specific sites will allow service providers
to achieve rapid provisioning such as bandwidth-on-
demand service and fast restoration. Concentrating the
predeployment of regenerators in a subset of ROADM sites
will achieve high utilization and reduces the network
operational costs. We prove the resulting optimization
problem is NP-hard and provide the proof. We present an
efficient heuristic for this problem that takes into account
both the cost of individual circuits (regenerator cost and
transmission line system cost) and the number of regener-
ator sites. We validate our heuristic approach with integer
linear programming (ILP) formulations for a small net-
work. Using specific network examples, we show that our
heuristic has near-optimal performance under most
studied scenarios and cost models. We further enhance
the heuristic to incorporate the probability of demand for
each circuit. This enables a reduction in the number of
regenerator sites by allowing circuits to use costlier paths
if they have lower probability of being needed. We also
evaluate the heuristic to determine the extra regenerator
sites required to support diverse routing. In this paper,
we provide detailed analysis, pseudocodes, and proofs
for the models presented in our previous work [Nat. Fiber
Optic Engineers Conf., 2012, NW3F.6; 9th Int. Conf. on
Design of Reliable Communication Networks (DRCN),
2013, 139] and compare the heuristic results with ILP for
a small-scale network topology.

IndexTerms—All-optical networks; Network optimization;
Reconfigurable optical-add–drop multiplexer (ROADM);
Regenerator placement.

I. INTRODUCTION

T raffic on backbone networks has increased by four
orders of magnitude over the past 12 years and esti-

mates on the growth rate going forward vary from 30% to
40% per year [1]. Though there has been rapid growth in

traffic, the revenues of the telecommunication carrier
are not keeping pace with this explosive growth. In order
to bridge the gap and to sustain this traffic growth, the
cost-effectiveness of optical networks must continue to im-
prove. To date, advances in optical networks have mainly
been in three areas: 1) improvements in fiber capacity, 2)
improvements in optical reach (the distance over which
a wavelength signal can be transmitted with adequate
fidelity), and 3) the development and widespread adop-
tion of reconfigurable optical add–drop multiplexers
(ROADMs). If a circuit’s path is longer than the system’s
optical reach (typically 1500–2800 km for modern long-
haul systems), then one or more optoelectronic regenera-
tors must be used to restore the signal, and each
regenerator adds a cost comparable to a pair of endpoint
transceivers. ROADMs enable any wavelength to bypass
a node, terminate at the node, or be regenerated to main-
tain signal quality. Optical bypass allows operators to
deploy far fewer transponders and regenerators, yielding
significant cost savings [2–4]. At junction nodes where
more than two fiber pairs meet, ROADMs also allow wave-
length routing from any link to any other link, forming an
optical mesh network.

The next generation of backbone networks will be de-
ployed with ROADMs that are both colorless (any add/drop
port can serve any wavelength) and nondirectional (any
add/drop port can be routed to any internode path) [4].
Without these capabilities, each regenerator connected to
the ROADM would be tied to a specific internode fiber pair
and to a predetermined wavelength. In contrast, colorless
and nondirectional ROADMs shown in Fig. 1 make it
economically feasible to predeploy regenerators, enabling
recovery from network failures without the need for manual
intervention and dramatically reducing mean time to repair
(MTTR) [5]. Regenerator predeployment also supports more
rapid provisioning [6] and improved network efficiency
through traffic grooming at the optical layer [7]. Finally,
it is a necessary step on the path to more dynamic optical
networks [8]. However, considering regenerator cost, it
behooves system operators to predeploy them as efficiently
as possible. Reducing the number of sites (we use “site” and
“location” interchangeably) at which regenerators are
predeployed can be an effective means of accomplishing
this, provided one picks the regenerator sites wisely [9].

During the network design and planning process,
selected network nodes (typically ROADMs) are designated
as regenerator sites. The regenerator sites subset is chosenhttp://dx.doi.org/10.1364/JOCN.5.001202
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to ensure that regenerators can be placed among the set
to satisfy the optical reach constraint for every possible
demand. In some cases, additional requirements may also
be placed on the routes allowed for a demand. The problem
of picking a minimum set of regenerator sites RS is defined
as the regenerator location or placement problem (RLP)
[10,11]. The problem has been studied in two flavors:
1) the unconstrained-routing regenerator location problem
(URLP) and 2) the explicit-routing regenerator location
problem (ERLP). URLP does not limit circuit routing in
any way. While the solution may be optimal in a number
of regenerator locations, individual circuits may incur
high cost as a result of using longer routes or using more
regenerators. ERLP constrains each route to a specified
(typically min-distance) path, but individual circuits may
use more regenerators than necessary. Reference [12]
proves that URLP is NP-hard. The authors of [12] also pro-
pose and compare three heuristics for URLP. Reference [13]
uses a biased random-key genetic algorithm to solve the
URLP with improved results. Reference [14] proves the
hardness of several different variants of the regenerator
placement problem and gives approximation algorithms
with worst-case performance guarantees.

Most previous RLPs have focused on minimizing the
number of regenerator sites while still being able to route
a circuit between any node pair [15,16]. While minimizing
the number of sites is an important consideration, it should
be balanced with the sum of the cost of individual circuits.
So there are two additional major considerations to the
overall network cost: 1) the cost of an individual circuit de-
pends on the number of regenerators used as well as its
transmission distance and 2) traffic demands in production
networks tend to be highly nonuniform, meaning that the
probability of a demand varies greatly among node pairs.

We take a holistic view of minimizing overall network
cost by considering all three factors. We have proposed a
new routing-constrained regenerator location problem
[17] that constrains the connections to use least-cost paths
(including the cost of regeneration). The cost model can be
extended to include the transmission distance (which
affects the cost of fiber, buildings, and amplifiers), as well
as the regenerator count. For some customers with strict
latency requirements, shorter transmission paths are

needed, above and beyond the cost of the optical path. We
build upon the routing-constrained regenerator location
problem in [17] to take into account these additional prac-
tical considerations. The heuristics also incorporate [18] a
projected traffic matrix to explore the trade-off between
the cost of each circuit and the number of jRSj. For exam-
ple, if a node pair is unlikely to have significant traffic, its
path could be slightly more costly than the minimum cost
path—if that enables jRSj to be further reduced. In our
heuristic, the allowable path cost deviation for each node
pair is roughly inversely proportional to the probability
of a connection between that node pair. The overall goal
remains to minimize the total network cost, defined as the
sum of a per-site cost and the total cost of active circuits.
This paper goes beyond that presented in [18] by providing
more detailed proofs, pseudocodes, integer linear program-
ming (ILP) formulation for the problem, and comparison of
the heuristic solution with ILP on a small-scale network
topology.

The rest of the paper is organized as follows. In
Section II, we start by defining a simple version of the prob-
lem where the cost of a circuit is given solely by the number
of regenerators being used. We illustrate the problem with
a small example network and provide a proof of NP-
hardness. In Section III, we explain the proposed heuristic
approach for reducing the regenerator sites and network
costs and describe several variations. A lower bound on
the optimal solution is provided. In Section IV, we propose
a trade-off for reducing the number of regenerator sites by
allowing a small increase in the cost of low-probability
circuits. We determine the extra regenerator sites needed
for link-disjoint paths in Section V. Section VI contains
the experimental evaluation results of our algorithms on
large-scale network topologies. Finally, in Section VII, we
summarize the work and outline possible extensions.

II. PROBLEM DEFINITION

We start by defining a version of the problem where the
cost of a circuit is given only by the number of regenerators
being used (in most cases, this is the dominant variable
component of the circuit cost). The goal is to minimize
the number of regenerator sites subject to the constraint
that each circuit uses a minimum possible number of
regenerators. This allows us to present the main ideas of
the heuristic in a simple setting. Then as we add more
parameters to the problem, we outline the necessary
changes to the heuristic.

Let minregen�u; v� be the minimum number of regener-
ators needed on any route between nodes u and v assuming
that regenerators are available at all nodes. A route Puv

between nodes u and v is called a constrained route if it
uses minregen�u; v� regenerators. The constrained-routing
regenerator location problem (CRLP) can be formally
defined as follows: given network topology with link distan-
ces, and maximal optical reach distance, find a minimum
set of RS such that between each node pair, at least one
constrained route is reachable using a subset of regenera-
tors in RS.

Fig. 1. Colorless and nondirectional ROADM.
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Figure 2 shows an example network with 10 nodes and
11 links. For simplicity, we assume that the link lengths are
equal and the optical reach is 2.5 times the link length. For
URLP, we need to place regenerators at only three loca-
tions: RS � fA;E; Ig. Using just these three regenerator
sites, every node pair has a valid path, but some of these
paths (e.g., A–D) use more regenerators and more distance
than they would if regenerator sites were unrestricted. For
ERLP, we require shortest-distance routing between any
two nodes and find that five locations are needed: RS �
fA;C;E;G; Ig. For CRLP using min-regeneration routes,
where we have a little bit more freedom to select routes,
the RS set is reduced to four locations: RS � fA; J;D; Fg.
In this example, we found that URLP, with the most free-
dom to select routes, has the fewest regenerator locations
in the solution, but involves more costly circuits, while
ERLP, with no freedom to select routes, requires more re-
generator locations, and CRLP lies in between.

We next formally prove the hardness of the CRLP prob-
lem. We define a decision version of the CRLP problem
(DCRLP) as follows: given network topology with link
distances and the optical reach distance, is there a set of
K or fewer regenerator sites, RS, such that between each
node pair, at least one constrained route is reachable using
regenerators in RS.

Theorem 1. DCRLP is NP-hard.

Proof: Our proof uses a reduction from the vertex cover
problem (VCP) [19] to DCRLP. The VCP is defined as fol-
lows: given an undirected graph G � �N;E�, where N and E
represent a set of vertices and a set of edges, respectively,
and a positive integer K ≤ jNj, the VCP asks if there is a
subset N0 ⊂ N of cardinality at most K such that N0 con-
tains at least one of the two endpoints of each edge in E.

Given an instance I1 of VCP �N;E;K�, we construct the
corresponding instance I2 of DCRLP �N′; E′; K� by the fol-
lowing transformation. (An example is shown in Fig. 3.)
1) For any ni ∈ N, create a network node ni ∈ N′; 2) for
any ei ∈ E, create one node ei ∈ N′, and add the following
links in E′: �ei; nk� and �ei; nl�, where nk and nl are two
end nodes of ei; 3) add two extra nodes s and t to N′,
and add the following links to E′: �s; ei� for any node ei

and �t; nj� for any node nj; 4) add two nodes S and T in
N′, and links �s; S� and �t; T� to E′; 5) for any node
ei ∈ E, we create another node Ei in N′, and add links
�ei; Ei� to E′. Now we have graph G′ � �N′; E′�. Clearly,
I2 can be constructed from I1 in polynomial time.

If we assume the optical reach to be one hop, we have the
following observations on I2:

• If d�x; y� denotes the minimum hop distance between
nodes x and y, we have d�s; ei� � 1, d�t; nj� � 1,
d�s; nj� � 2, d�t; ei� � 2, and d�s; t� � 3. If nj is an end
node of ei, then d�ei; nj� � 1; else d�ei; nj� � 3. Moreover,
d�ei; ej� � 2 and d�ni; nj� � 2.

• It is straightforward to see that S, T, and Ei will not be
selected as regeneration sites. On the other hand, s, t,
and ei must be in RS because S, T, and Ei have to use
s, t, and ei, respectively, as regeneration sites for their
traffic.

• To find a feasible solution of I2, we need to examine
possible regenerator sites (from nodes ni) for node pairs
between t and ei, Ei, s, or S.

Based on the observation above, the reduction follows
from

• If I2 has a feasible solution, say set R of regenerator sites,
then node set R∪ fs; t; eig is a feasible solution for I1.

• Conversely, suppose the instance I1 of VCP has a feasible
solution of node set R′; then node set R′∪ fs; t; eig is a
feasible solution of I2.

• Since VCP is NP-hard, we conclude that DCRLP is also
NP-hard.

An algorithm for finding an optimal solution for CRLP
can solve DCRLP by checking whether its solution has
cardinality at most K . Thus we get the following:

Corollary 1. If P ≠ NP, then no polynomial-time algo-
rithm can find an optimal solution to CRLP.

Proof. We start the proof with an assumption that there
exists a polynomial-time optimal solution for CRLP when
P ≠ NP. Then it is easy to see that the optimal solution can
answer the feasibility of DCRLP. If the cardinality of the
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Fig. 2. Example network consisting of 10 nodes and 11 links.
Solid lines represent original edges, and dotted lines represent
augmented edges for reach equal to 2.5 times the link length.
Filled circles represent regenerator locations obtained for min-
regeneration CRLP.
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Fig. 3. VCP to DCRLP transformation: (a) G and (b) G′.
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optimal solution is ≤K, then there exists a feasible solution
for the corresponding DCRLP; otherwise there is no solu-
tion. Thus, if there is a polynomial-time optimal solution
to CRLP, there is a polynomial-time solution to DCRLP.
However, we have proved that DCRLP is NP-hard. There-
fore, our assumption is invalid, and hence there is no poly-
nomial-time optimal solution for CRLP when P ≠ NP.

III. GREEDY CRLP HEURISTIC

We first transform the CRLP problem into a graph prob-
lem of finding a set of nodes covering min-hop paths. Many
other papers [20] and [21] have considered similar trans-
formations. We augment the network graph by adding
edges �i; j� whenever nodes i and j are within the reach dis-
tance. Now all node pairs within the reach distance have a
direct edge between them. An example transformation is
shown in Fig. 2. Let us call the resulting graph GA; then
we claim a 1∶1 correspondence between min-regeneration
paths in the network and min-hop paths in GA.

Lemma 1. If P is a min-hop path in GA, then placing a
regenerator on each internal node of P results in a valid
min-regeneration path in the network. Moreover for every
valid min-regeneration path in the network, we have a
min-hop path in GA with direct links between adjacent pairs
of regenerator sites.

Proof. The proof follows from the following two observa-
tions showing a 1∶1 correspondence between paths in GA

and regenerator placements.

Observation 1: Consider a path in GA. We know that
any two adjacent nodes are within the reach distance, so
by placing a regenerator on each internal node and by
replacing any edges not in the network by a path of dis-
tance less than the reach distance, we get a valid path
in the network.

Observation 2: Suppose we start with a valid path in
the network. Consider the sequence of nodes where regen-
erators have been placed and we know that any adjacent
pair must be within the reach distance and hence should
have a direct link in the augmented graph GA. So we
can map the path in the network to a path in GA where
the internal nodes are precisely the set of nodes receiving
regenerators placements.

In order to prove the claim on min-regeneration versus
min-hop paths, consider a min-hop path P with k� 1 hops
(and k internal nodes). By Observation 1, we know that this
maps to ak-regenerator valid path. We next show that this is
indeed a min-regeneration path. Suppose not, and we have a
path between these pairs of nodes with k − 1 or fewer regen-
erators; then, by Observation 2, we get a path with k − 1 or
fewer internal nodes, contradicting thatP is a min-hop path.

To prove the other direction, consider a min-regeneration
path with k regenerators. By Observation 2, this maps to a
path in P in GA with k internal nodes. Suppose P is not a
min-hop path; then there is a path P′ of fewer than k inter-
mediate nodes. By Observation 1, P′ can be transformed
into a valid path with fewer than k regenerators, thus lead-
ing to a contradiction.

So we have reduced the CRLP problem to picking a
subset of nodes, RS, such that each pair of nodes has
a min-hop path in GA with all internal nodes in RS.
We describe the generic heuristic also called the barebone
heuristic, and the pseudocode is given in Algorithm 1.
The greedy heuristic maintains the following data
structures:

• A set C of candidate regenerator sites (for future place-
ment). Initialized to set N (line 1).

• A binary path matrix P [initialized to the adjacency
matrix of GA (line 4)] such that Pij is 1, if and only if
we have a valid min-hop path between nodes i and j using
the reach distance and regenerator site selected so far.
The heuristic stops when all entries in P are 1.

• Min-hop matrix D such that Dij gives the min-hop dis-
tance in G between i and j. Using the all-pairs shortest
path (APSP), we compute the min-hop distance for all
node pairs in GA (line 5). The matrix D lets us check
whether a node v belongs to the min-hop path from
i to j:

Div �Dvj � Dij;

where Div �Dvj is the length of the min-hop path from
i to j that includes node v. By definition it is at least
the length of the min-hop path, and the equality will
happen when there is indeed a min-hop path going
through node v.

This generic greedy heuristic picks what appears to be
the next best (line 8) site from among nodes in C (to be
elaborated shortly), updates its data structures, and
repeats these steps until all source-destination pairs
have valid min-hop paths (in GA) using existing regener-
ator sites. In the next few subsections, we give a
number of customized enhancements to this heuristic,
including a way of estimating how far it is from the
optimal.

We use the O�jEj � jNj� breadth-first search to compute
the single-source shortest min-hop path and the O�jNj3�
Floyd–Warshall algorithm for computing the APSP.

Algorithm 1 Barebone CRLP Heuristic
Input: G � �N;E�, Reach (in kms)

1 begin
2 Initialize: C←N;
3 Construct an augmented graph GA � �N;EA�, such

that EA � f�i; j�jdmin
i−j ≤ Reachg;

4 Assign the cost of edges in GA to be 1;
5 Initialize P←AA, where AA is the adjacency matrix

of GA;
6 D≡ APSP�GA�;
7 RS←∅;
8 While P ≠ Pfinal do
9 Select the best node ∈ C;
10 RS←RS∪ cbest, where cbest ∈ C is the best node;
11 cbest is a regenerator location and update P;
12 C←C∖cbest;
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A. Seeding the Greedy Algorithm

For any node pair �a; z�, we have to place a regenerator
on all intermediate nodes in a min-hop path. A priori, we
do not know which min-hop path will be used. However,
if node v is in all min-hop paths between a and z, then a
regenerator must be placed on node v. Let us call this set
of nodes R�. Seed the algorithm by placing a regenerator
on all nodes in R�.

Conversely, if node u is not in any min-hop path,
then an optimal regenerator assignment will not place
a regenerator on node u. Let us call this set of
nodes R−.

We start by placing a regenerator at every node v
in R�. If this regenerator placement creates a valid
�i; j� path, then we update Pij � 1. Finally, we initialize
the set of candidate regenerator sites C � N∖�R� ∪R−�.
The set R� can be computed in O�jEj × jNj2� time by iter-
ating over all nodes v and checking if deleting v changes
the min-hop distance for at least one pair. The set
R− can be computed in O�jNj3� time by iterating over
all nodes v and checking that for each pair �a; z�, the
shortest a-z path through v is longer than the shortest
a-z path.

B. Rank Function for Selecting Best Candidate

We use two different rank functions for picking the
“best” candidate in C. One reasonable choice is to select
the node that belongs to min-hop paths of the highest num-
ber of pairs from those that do not already have a valid
path. Mathematically, we can define this rank of a candi-
date node as

rank1�v� � jf�i; j�j�Pij � 0�∧ �Div �Dvj � Dij�gj: (1)

The first term in the Boolean AND expression says that
�i; j� does not already have a path, and the second term says
that v is in a min-hop path between i and j.

Another possibility is to only count source-destination
pairs, which obtain a valid path as a result of placing a
regenerator on node v:

ramp�v� � jf�i; j�j�Pij � 0�∧ �Piv � 1�∧ �Pvj

� 1�∧ �Div �Dvj � Dij�gj: (2)

While Eq. (2) results in a rapid convergence, it has a
problem. During the initial phase of the heuristic, no
single regenerator placement may result in a valid path,
thereby assigning the rank of zero to all candidate nodes.
We get around this by considering a weighted combina-
tion of the two rank rules, with a large weight assigned
to the ramp as

rank2�v� � rank1�v� � �jNj − 1� × ramp�v�: (3)

The overall effect of using Eq. (3) is that the ramp�v�
has the dominant effect in picking the “best” candidate,
but if it cannot distinguish among multiple candidates,
then the rank1�v� acts as a tiebreaker.

C. Postprocessing to Improve the Solution

The greedy algorithm never deletes a site after it
gets selected. So it is possible that it may select node v1,
but then a set of nodes selected later covers all source-
destination pairs that v1 was originally covering, rendering
v1 superfluous.

We add a simple postprocessing (PP) step. For each
regenerator site v in the output, we check whether deleting
v still enables all source-destination pairs to have valid
paths. If yes, we delete v and then repeat the check for
the next node. We stop if we cycle through all nodes without
being able to delete any of them.

Checking whether v can be deleted is similar to checking
its membership in R� and takes O�jEj × jNj� time. In
the worst case, each deletion may require checking all
nodes in the output, so altogether it can take time
O�# of RS × �# of deletions in PP� × jEj × jNj�.

Algorithm 2 depicts the CRLP heuristic with seeding
R�, R−, and PP. The procedure for computing the set
R� is described in lines 7–10. Line 11 assigns R� to re-
generator sites RS and updates the data structure (line
12). After computing R− (line 13), the candidate set C is
determined (line 14). The rank rules given in Eqs. (1) and
(3) are used to determine the best candidate node, and
the data structures are updated accordingly, until all
node pairs have a reachable path using the given RS
(lines 15–19). Finally, PP is used to eliminate redundant
RS (line 20).

D. Time and Space Complexity

The running time is given by

O
��jRSj × �# of deletions in PP�

da
� da

�
× jNj3

�
;

where da is the average degree in G. The space complexity
is the size of data structures, O�jNj2�.

It is possible to improve these running times by use
of more sophisticated dynamic graph algorithms and
(for computing R�) by adapting algorithms for the
related problem of “most vital nodes.” We chose the
simplest algorithms for ease of implementation and
because the running times (less than 2 s, on a generic
PC with 2.3 GHz CPU, for our 75 node topology) suffice
for our purpose. We will show later that we get near-
optimal results with this heuristic. In contrast, our
attempt at ILP-based solutions (without any special cus-
tomization) ran out of memory even with commercial
packages.
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Algorithm 2 CRLP Heuristic: Seeding R�, R−, and PP
Input: G � �N;E�, Reach (in kms)

1 Begin
2 Construct an augmented graph GA � �N;EA�, such

that EA � f�i; j�jdmin
i−j ≤ Reachg;

3 Assign the cost of edges in GA to be 1;
4 Initialize P←AA, where AA is the adjacency matrix

of GA;
5 D � APSP�GA�;
6 Initialize RS←∅, R�←∅;
7 for v ∈ N do
8 Compute: GA′ � �N;E∖E′�, where E′ is the set of

edges incident on node v;
9 D′ � APSP�GA′�;
10 v∉R�; if D′�i; j� � D�i; j�, ∀ �i; j� ∈ N, i ≠ j ≠ v,

o.w R�←R� ∪ v;
11 RS←R�;
12 Update P for all-node pairs that are reachable by plac-

ing a regenerator ∀ r� ∈ R�;
13 ∀ v ∈ N, v ∈ R− if and only if ∀ �i; j� ∈ N, i ≠ j ≠ v,

D�i; v� �D�v; j� > D�i; j�;
14 C←N∖�R� ∪R−�;
15 While P ≠ Pfinal do
16 Select node ∈ C with high rank, using Eq. (1)

or Eq. (3)
17 RS←RS∪ cbest, cbest ∈ C is the best node;
18 cbest is a regenerator location and update P;
19 C←C∖cbest;
20 RSfinal←PP�RS�;

E. Comment on R�, R−, and Lower Bound

The heuristic can be implemented without R� and R−

and will still yield a solution in which all node pairs have
valid paths. They serve different purposes.

Any reasonable ranking algorithm would leave out
nodes from R−, so not having R− does not change the
behavior of the algorithm. The usefulness of R− is that,
rather than computing the rank of the nodes in R− in each
iteration, we exclude them after a one-time computation
of O�jNj3�.

R� serves a more critical role. By seeding the algorithm
with this set, it can hopefully lead to a better-quality sol-
ution. Moreover, as the following theorem shows, it can also
be used to get a bound on how far the heuristic is from the
optimal solution.

Theorem 2. If the heuristic gives a solution of cardinal-
ity jR�j, then it is optimal. Otherwise, 1� jR�j is a lower
bound on the cardinality of any solution.

Proof. By definition of R�, any solution must contain
all nodes in R�, so a heuristic solution of R� is certainly
optimal. To see the claim on jR�j � 1, notice that the only
way the heuristic does not stop at R� is if those regenera-
tors are not sufficient, so that we need at least one more
regenerator.

For the networks we have tested so far, the solution pro-
duced by the heuristic turns out to be within at most 1 or 2

of the lower bound. There are many advantages to deriving
a lower bound: It allows us to assess how far we are from
the optimal without having to compute the optimal. It also
gives us an efficient way to compute the optimal. For exam-
ple, if we know that the heuristic solution is (say) within 3
of jR�j, we can try a brute-force approach of adding one site
(all jNj possibilities) to R� and then checking whether any
of them cover all node pairs. If not, we try all possible pairs
of sites and finally all possible triplets of sites. Because of
the upper bound given by the heuristic, we know that at
least one of these O�jNj3� possibilities would succeed and
give us the optimal set of regenerator sites.

It is also possible to improve this lower bound by treating
the path matrix as the adjacency matrix of a graph and
realizing that the resulting graph’s diameter decreases by
at most 50% as a result of a single regenerator placement.
This will give a lower bound �LB�:

LB � log�dp�;

where dp represents the diameter of the path matrix.

F. Minimum Cost Paths

A min-regeneration path is not necessarily min-distance
and vice versa. As an example, consider nodes a and z
connected by two disjoint paths R1 � a − v1 − v2 − v3 − z
and R2 � a − v4 − v5 − z. If the reach distance is 2000 km,
the length of each link in R1 is 1050 km, and the length
of each link in R2 is 1950 km, then R1 is the shortest
(� min-distance) path. But note that R1 requires three
regenerators, whereas R2 requires only two and so is the
min-regeneration path. Thus, we see that min-regenera-
tion paths may incur distance penalty, also described as
excess wavelength-kilometer penalty, and min-distance
(shortest) paths may incur a regeneration penalty. By
incorporating wavelength-kilometer as well as the number
of regenerators in the cost model of the path (circuit), one
can achieve the required trade-offs. We can define the cost
of a path R as

cr × number of regenerations inR� cm × length of R; (4)

where cr (cm) is the unit regeneration (wavelength-
kilometer) cost. The two extreme cases are the following:
setting cr � 1 and cm � 0 reduces to the CRLP problem,
whereas setting cr � 0 and cm � 1 becomes the ERLP
problem with min-distance paths.

We modify the heuristic to find min-cost paths instead of
min-regeneration paths as follows:

1) Change the definition of R� to the set consisting of
nodes that belong to all min-cost paths between a
and z. A similar change applies to the definition of R−.

2) Change the definition of the path matrix; P: Pij is 1 if
we have a valid min-cost path between nodes i and j
using the given regenerator placement.

3) The condition Div �Dvj � Dij now applies to min-cost
paths.
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IV. NUMBER OF REGENERATOR SITES VERSUS

COST OF PATHS

So far, we have applied a rigid constraint to min-cost
paths only. However, the number of regenerator sites can
be further reduced if we allow the heuristic to pick paths
that are slightly more costly for rarely used routes. We ex-
tend the heuristic to use a latitude matrix, L, such that for
node pair �i; j�, we are allowed to pick any path that is of
cost within 1� Lij of the min-cost �i; j� path. If we have
a traffic projection, we will typically assign small or zero
latitude to node pairs with heavy traffic demand and larger
latitude to node pairs with low traffic demand. The neces-
sary changes to the heuristic are as follows:

1) Change the definition of R� to the set consisting of
nodes that belong to all paths between i and j of cost
less than 1� Lij of the min-cost �i; j� path. To test the
membership of node v in R�, we check whether deleting
v changes the min-cost path for at least one pair �i; j� by
more than a multiplicative factor of 1� Lij. A similar
change applies to the definition of R−.

2) Change the definition of the path matrix; P: Pij is 1 if we
have a valid path between nodes i and j using the given
regenerator placement such that the cost of the path is
within 1� Lij of the min-cost �i; j� path.

3) In PP, for each node v in the output, we check whether
deleting v still enables all source-destination pairs �i; j�
to have valid paths of cost within 1� Lij of the min-cost
�i; j� path. We would like to point out a subtlety here
with an example. If latitude is 5% and say the path with
the original output is within 102% of the min-cost and
deleting node v raises the cost to 104% of min-cost, then
we still delete node v as the cost is within the threshold
of latitude. So this is unlike the case without any
latitude, where any increase suggests that node v
cannot be deleted from the output.

We present simulation results for several possible
choices of the latitude matrix in Section VI.

V. REGENERATOR SITES FOR DIVERSE ROUTES

Survivable optical networks can reconfigure and set up a
connection upon failure, as discussed in prior work [22].
Fast reconfiguration for survivability can be achieved using
link-disjoint primary and backup (secondary) paths that
are precomputed for each request. For a given request,
we use the path from CRLP as the primary path, which
carries the traffic under normal operation, while the
backup path is used upon link failure. Backup paths are
usually unconstrained; here we assume that they can share
nodes with primary paths, as long as there are no shared
links (in our experience, complete ROADM failures are
extremely rare events).

In this section we evaluate the proposed CRLP heuristic
described in Section III for survivable optical networks. We
determine the set of additional regenerator sites �ΔRS�
required for the node pairs to have a valid reachable

secondary path (if a disjoint path exists). We define
RSD � RSCRLP ∪ΔRS, where RSCRLP refers to the set of
regenerator sites obtained using the CRLP heuristic.

First, let us return to the example network shown in
Fig. 2. Note that for this topology, all node pairs have a dis-
joint path for the primary CRLP path. We have a CRLP
solution for min-regeneration paths as shown in Fig. 2.
For every node pair there exists a min-regeneration pri-
mary path, which we denote as �R�. We designate the dis-
joint path �R′� as valid if and only if it is reachable using
the existing set of regenerator sites. For instance the min-
regeneration path for node pair (B, E) is RBE � B–C–D–E,
and the disjoint path, RBE′ � B–A–I–J–E, is valid via re-
generation at locations A and J. As an example of a node
pair without a valid disjoint path, consider (A, D) with
RAD � A–I–J–E–D and RAD′ � A–B–C–D. We define the
diverse percentage �pd� as the percentage of node pairs
with a valid disjoint path. For the network in Fig. 2, using
RSCRLP � fA;D; J; Fg, there are 10 × 9∕2 � 45 node pairs
(np), and only 26 node pairs have valid R′, so pd ≈ 58%.
If we require pd � 100% for the Fig. 2 network, then we
must add sites in addition to the set RSCRLP.

An iterative process is used to choose these extra sites
from candidate set CD, defined as the set of intermediate
nodes present in all the invalid disjoint paths (ID), but
∉RSCRLP. In each iteration, we select a node cd ∈ CD that
belongs to the largest number of invalid disjoint paths
F �cd�. For the network in Fig. 2, we have F �B� � 14.
Adding node B as a regenerator site increases pd to 84.4%.
Finally, including node H (or node G) as well enables
all node pairs to have a valid disjoint path, so that
�pd � 100%�. Thus we select ΔRS � fB;Hg. For cost rea-
sons, operators usually design optical networks to provide
disjoint backup paths for most, but not all, possible node
pairs. The few node pairs without valid disjoint paths
might have backup paths transported over a disjoint path
on an alternate or preexisting optical layer.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the
proposed CRLP heuristic for various backbone network
topologies. We have studied two networks: 1) a US mesh
network (USMESH) with 24 nodes and 43 bidirectional
links [20] with modified link distances shown in Fig. 4
and 2) a continental US topology (CONUS) with 75 nodes
and 99 bidirectional links shown in Fig. 6. CONUS is a
fiber-optic backbone network developed for use in the re-
search of large-scale DWDM networks [23].

We have compared the CRLP heuristic with an optimal
ILP1 solution for min-regeneration on the USMESH
topology. For reach distances of 1400, 1800, 2000, 2400,
and 2500 km, the numbers of regenerator sites were 17,
12, 11, 8, and 9, respectively, for both the CRLP heuristic
and the ILP solution. From Fig. 5(b), we observe that re-
generator sites increase for a reach distance of 2500 km.

1ILP formulation is detailed in Appendix A.
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By placing a regenerator at node 11 (not a regenerator
location for reach 2400 km), we have a min-regeneration
path for node pair (2, 15). For reach distance of 2400 km,
the node pair (2, 15) requires two regenerators along the
shortest-path (2–6–11–15). However, the algorithm picks
the min-regeneration path 2–6–9–12–11–15, with regener-
ations at 9 and 12, as these cover more node pairs than 6
and 11. From Fig. 5(b), we see the solutions from both
methods also include exactly the same individual regener-
ation locations. We did not evaluate (optimal) ILP solutions
for the CONUS topology because of the very long time to
run on a regular desktop (it also ran out of memory in
several instances), but the lower bound discussed in
Subsection III.E allows us to assess how far our heuristic
is from the optimal.

For the rest of paper, we have evaluated the CONUS net-
work because of its close resemblance to carrier backbone
networks. In Fig. 6 we show the RS for min-regeneration
(cr � 1, cm � 0) CRLP.

A. Effect of Seeding With R�

For all reach distances we considered, the heuristic solu-
tion for min-regeneration (cr � 1, cm � 0) was within 2 of

R�, meaning that it was at most 1 off from optimal. For a
reach distance of 2000 km, we found that R� (without any
other sites) turned out to be a solution. We were interested
in seeing if not seeding with R� still leads to a good solution
(albeit at slower convergence), so we ran some simulations
with a generic greedy algorithm (without R�) and found
the solutions to be inferior in general. The reason may be
that a greedy algorithm does local optimization, which may
not lead to global optimization. Starting with an empty set
of sites, there is a greater likelihood of it deviating farther
from the global optimum. When the algorithm is seeded
withR�, it only has to pick a few additional sites, so its scope
of making wrong decisions is minimized. This suggests that
our customized enhancement of seeding with R� leads to a
better-quality solution and speeds up convergence.

If the variables in Eq. (4) are set to cr � 0 and cm � 1,
then CRLP reduces to a min-distance (or min-delay) rout-
ing. For the third scenario, min-cost routing, we set the
parameters as cr � 1000 and cm � 1, which is the most
representative of the network cost. In other words, the
cost of one regeneration is equivalent to 1000 km of
fiber distance. We have compared the number of jRSj
obtained by our heuristic to the lower bound discussed
in Subsection III.E. We have observed [17] that the heuris-
tic solution is close to the lower bound in min-regeneration
and min-cost cases at all reach distances.

In Fig. 7(a) we compare the number of regenerator sites
obtained for all three scenarios, which were also presented
in [17]. We observe that the jRSj is lowest for the min-
distance case and highest for the min-cost case. A smaller
number of regenerator sites (jRSj) for min-distance routing
causes more regenerations along the path, thereby increas-
ing the overall network cost. We have also computed the
sum of the costs of all circuits (assuming a uniform traffic
matrix, where each node pair has the same number of
circuits) for each case, and observed that, as expected, this
cost is lowest for the min-cost case.

In Fig. 7(b) we plot the percentage increase in the total
network cost (compared to the min-cost case) for the min-
distance and min-regeneration constraints. The plotted
cost does not include the cost of spare regenerators, which
will depend on the individual network operator’s practices.
Overall, although we see the min-distance case achieves

Fig. 6. CONUS network topology. Circles indicate regenerator
sites appearing in the solution set for reach distance of 1800 km;
cr � 1 and cm � 0 (min-regeneration).

Fig. 5. Comparison for number of regenerator sites on USMESH
for min-regeneration CRLP.

Fig. 4. US mesh topology used for heuristic evaluation with ILP.
Link weights are the distance in km. Node numbers are used in the
y axis of Fig. 5.
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the smallest number of regenerator sites, its total network
cost (neglecting spares) is higher (about 5% for reach �
1800 km). For the min-regeneration case, the RS set
expands, but the network cost is only moderately higher
than for the min-cost case. For a more complete solution
to a real network, one will have to specify the traffic matrix,
the spare equipment policy, and other operating practices.

As explained in Subsection III.F, a min-regeneration
path is not necessarily a min-distance (shortest) path and
vice versa. We have evaluated the excess wavelength-
kilometer penalty incurred by min-regeneration paths
compared to the min-distance paths. Note that these excess
wavelength-kilometer penalties translate to longer laten-
cies for circuits using these paths. In Fig. 8(a) we observed
that for approximately 85% of the node pairs, the min-
regeneration path coincides with the min-distance path,
so there is no wavelength-kilometer penalty. We also verify
from Fig. 8(a) that min-cost paths (because they are trying
to minimize a combination of the number of regenerators
and distance) consistently show lower excess wavelength-
kilometer penalty than min-regeneration CRLP [17]. For
the rest of the discussion we consider min-cost CRLP.

Figure 8(b) shows the highest excess wavelength-
kilometer penalty for each percentile of node pairs for
min-cost CRLP. That is, we computed the wavelength-
kilometer penalty for each node pair and then computed
the highest penalty for each percentile of node pairs. For
example, the 99% value at a reach distance of 2000 km
is approximately 100 wavelength-kilometers, meaning
that when we pick the circuit routes so as to minimize
their overall cost, 99% of the routes incur a distance
penalty of less than 100 km (which translates into a latency
penalty of less than 0.5 ms).

In describing the algorithm (Section III), we suggested
two reasonable ranking rules [Eqs. (1) and (3)] and a PP
step as an added optimization. We have evaluated the
performance of our heuristic with different ranking
rules, both with and without PP for all three scenarios:
min-regeneration, min-distance, and min-cost. For min-
distance CRLP, the PP step reduces the jRSj especially
for the lower reach distances (1500, 1800, and 2000 km).
However, for the min-regeneration CRLP, the PP does
not reduce the jRSj for any reach distance and network
topology. In the min-cost CRLP, PP improves the solution
by one regenerator site for reach distances of 2400 and
2500 km. As explained earlier, we have two different
rank rules, and neither was consistently better than the
other. Therefore we have reported the minimum of the
two solutions. (We can think of the final heuristic as
invoking two heuristics in serial order and then picking
the better one; this doubles the running time.) The jRSj
obtained using the two rank rules and the effects of PP
are summarized in Table I.

B. Trade-Off Between Circuit Cost and jRSj

As explained in Section IV, allowing the heuristic to
pick paths that are more costly than min-cost paths can
potentially reduce jRSj. Figure 9(a) shows the effect of
such latitude for min-cost CRLP, where we define latitude
as a parameter indicating the percentage by which a node
pair’s route is allowed to exceed the minimum cost for
that pair.

1) Fixed latitude: We first consider the same latitude for
all network node pairs. The leftmost values in Fig. 9(a)
indicate jRSj for strict min-cost, i.e., zero latitude for all
node pairs. From Fig. 9(a) we observe that allowing a
certain percentage of increase in the cost will reduce
the jRSj for most of the reach distances. For instance,
by allowing 5% (0.05) latitude, we observe a reduction
from 28 to 25 in the number of sites for a reach distance
of 2000 km.

2) Variable latitude: We next consider applying a different
latitude to different node pairs. The basic concept is
that, if we have a demand matrix, then the latitude
for a node pair should be inversely proportional to
the amount of demand. Our techniques apply to any
general demand matrix, but for the results in this
section, we assume that the amount of demand between
a node pair is proportional to the product of their

Fig. 8. (a) Percentage of node-pair paths with excess length, com-
pared to the shortest-distance path. (b) Highest excess wavelength
penalty among certain % node pairs for min-cost CRLP.

Fig. 7. (a) Number of regeneration sites for different CRLP.
(b) Percentage increase in total cost with one circuit on each route.
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300 km (≈1.5 ms) at a reach distance of 2000 km, which is
higher than L0 in Fig. 8(b).

Similar to the percentile calculations, we compute the
highest wavelength-kilometer for various probabilities
(pr) 1.00, 0.99, and 0.98 for both L0 and L3 as shown in
Figs. 10(b) and 10(c). From Figs. 10(b) and Fig. 10(c), we
observe that 99% of demands will have excess wavelength
penalty of less than 50 km in the case of L0 and 300 km for
L3 at an optical reach of 2000 km.

Each latitude rule presents a different point in the
trade-off between minimizing the cost of circuits and
jRSj. (Minimizing jRSj can provide savings in shared infra-
structure, operations, and predeployment of idle regenera-
tors.) For instance, latitude rule L3 reduces the jRSj, but
there is a comparatively higher wavelength-kilometer
penalty. From Table II we see that L4 and L5 have a num-
ber of regenerator sites slightly higher than L3, but lower
than L0. In Fig. 11(a) we compare the percentage of node
pairs that have excess wavelength-kilometer penalty for
latitudes L0, L3, L4, and L5. We observe in Fig. 11(a) that
the percentage node pairs for L5 are near those of L0.

We next consider expected deviation D̄ defined as
D̄ � P

∀�i;j�;i≠j Pr�i; j�δ�i; j�, where δ�i; j� is the wavelength-
kilometer penalty for node pair �i; j�. In Fig. 11(b) we plot
the expected deviation for latitudes L0, L3, L4, and L5. We
conclude that D̄ for L5 is almost the same as for L0 for most
of the reach distances. Thus L5 seems to provide a very
attractive trade-off given the reduction in the jRSj and
minimal excess wavelength-kilometer penalty.

We define the network cost for a given latitude Lk,
where k ∈ f1;2;3;4; 5g as Costk � P

∀�i; j�; i ≠ j Pr�i; j�×
Costp�i; j�, where Costp�i; j� is the cost of the circuit for a
given node pair �i; j� calculated using Eq. (4), with cr �
1000 and cm � 1. We define the expected cost deviation of
various latitude rules from the min-cost CRLP (i.e., latitude
is set to zeros and the paths are strictly min-cost) as

D̄c �
Costk − Cost0

Cost0
× 100; k ∈ f1; 2; 3; 4; 5g: (8)

From Fig. 12, we observe that L2, L4, and L5 have low
percentages of cost deviation compared to L0.

Finally, we evaluate the ΔRS as defined in Section V for
supporting backup paths on the CONUS topology shown in
Fig. 6. In Table III, pd is the percentage of node pairs with
a valid disjoint path using RSCRLP, and ΔRS is the number
of additional regenerators required to provide backup
paths to all node pairs. In the min-distance CRLP (cr � 0

Fig. 10. (a) Highest excess wavelength penalty among certain %
node pairs for min-cost CRLP with latitude L3. (b) Highest
deviation using probability of a node pair for min-cost CRLP with
zero latitude. (c) Highest deviation using probability of a node pair
for min-cost CRLP with latitude L3.

Fig. 11. (a) Percentage of node pairs with wavelength-kilometer
penalty for zero latitude, L3, L4, and L5. (b) Expected deviation (D̄)
for zero latitude, L3, L4, and L5.

Fig. 12. Expected cost deviation (D̄c) for Lk, where
k ∈ f1; 2;3; 4; 5g.

TABLE III
EVALUATION OF ΔRS FOR DIVERSE ROUTES ON CONUS

TOPOLOGY

Reach (km)

Routing Parameter 1500 1800 2000 2500

Min-distance RSCRLP 24 18 17 12
pd 100 100 97.55 100
ΔRS 0 0 1 0

Min-regeneration RSCRLP 37 29 22 14
pd 88 87.96 87.56 83.27
ΔRS 3 4 4 4

Min-cost RSCRLP 41 32 28 23
pd 97.37 96.61 95.06 97.55
ΔRS 2 2 2 1
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and cm � 1), we find that using RSCRLP, all node pairs have
a valid disjoint path, i.e., pd � 100%, and hence ΔRS � 0 for
most of the reach distances. For min-regeneration (cr � 1
and cm � 0) and min-cost (cr � 1000 and cm � 0) CRLP,
ΔRS ≠ 0.

VII. CONCLUSION

To plan predeployment of regenerators effectively in
practical networks, we have introduced a constrained rout-
ing regenerator location problem and presented a heuristic
approach to address it. Unlike previous research work on
regenerator placement, we pursue a holistic approach of
minimizing overall network cost by considering a
combination of the number of regenerators used and the
wavelength-kilometer of individual circuits, as well as the
probability of demand between each node pair and the num-
ber of sites. We start with a basic heuristic and then present
various enhancements that refine the trade-off between the
number of sites and the cost of individual circuits. The heu-
ristic also constructs a lower bound, thus letting us evaluate
how closely we approach the optimal. Extensive simulations
on large topologies show that the heuristic achieves near-
optimal results. Our heuristic algorithm can be easily tuned
for practical ROADM networks where instead of a fixed
reach distance, a reach table is used to specify all reachable
paths in the network (such tables are generated by a ven-
dor’s planning tools using detailed network information).
Finally our experiments indicate that a small additional
number of regenerator sites allow survivable connections
between most node pairs. We further plan to extend this
work to evaluate 1) the usage of regenerators at each se-
lected site for dynamic traffic and 2) complex requirements
of disjointness on connection between multiple node pairs.

APPENDIX A

In this appendix, we present the ILP formulations for
the proposed CRLP. Given the original graph G � �N;E�
with a set of N vertices and a set of E edges, we construct
an augmented graph GA � �N;EA�, such that we add an
edge between two nodes if they are within the reach dis-
tance, where EA represents the set of augmented edges.

A. Notations

• role�u� � 1 if regenerators are placed in u, 0 otherwise.
• K: the set of connection requests in the traffic matrix.
• src�k�: the source node of the kth request.
• tgt�k�: the destination node of the kth request.
• f ku;v: if the link �u; v� is used for the kth request, the value

is 1. Otherwise, the value is 0.
• out�u�: the outgoing adjacent node set of node u.
• in�u�: the incoming adjacent node set of node u.
• jNj: the number of nodes in the network graph, where N

is the set of nodes.
• Hk: given hops on request k.

B. CRLP Formulation

Objective

min
X
u∈V

role�u�: (A1)

Constraints

X
�u;v�∈E

f ku;v � Hk; ∀ k ∈ K; (A2)

X
v∈out�s�

f ks;v −
X

v∈in�s�
f kv;s � 1; ∀ k ∈ K; s � src�k�; (A3)

X
v∈in�t�

f kv;t −
X

v∈out�t�
f kt;v � 1; ∀ k ∈ K; t � tgt�k�; (A4)

X
v∈out�u�

f ku;v �
X

v∈in�u�
f kv;u;

∀ k ∈ K; ∀ u ∈ V�≠ src�k� or tgt�k��; (A5)

role�u� ≥
P

v∈out�u�f
k
u;v

N
;

∀ k ∈ K; ∀ u ∈ V�≠ src�k� or tgt�k��;
f ku;v; role�u� ∈ f0;1g: (A6)

In the CRLP problem, we can select a path from all the
routes that use the minimum number of regenerations. The
paths that use the minimum number of regenerations are
the shortest paths (in terms of path hops) in our newly gen-
erated graph GA. In Eq. (A5), Hk is the number of hops of
the shortest path for connection k in GA. Equation (A2)
makes sure that the number of links used on the connection
equals the number of hops of the shortest path. By doing
this, we guarantee that a path with minimum regeneration
will be selected.

Constraints (A3)–(A5) are the flow conservation con-
straints for all connection requests. In constraint (A6),
for a node u, which is used as the intermediate node for
some connection, it will be a regeneration node.
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