High Throughput Optical Algorithms for the FFT and Sorting via Data Packing

Keren Bergman§
Harry F. Jordan} Rajgopal Kannanq
Paul R. Prucnal§

Geoffrey L. Burdgex
Kyungsook Y. Leeq
Coke S. Reedt,§

David A. Carlsont Neil B. Colettit
Phillip R. Merkeyx

Douglas E. Straub}

tCenter for Computing Sciences iElectrical and Computer §Electrical Engineering Dept.
17100 Science Drive Engineering Dept. Princeton University
Bowie, MD 20715 University of Colorado Princeton, NJ 08544
Boulder, CO 80309
Y Computer Science Dept. xLaboratory for Physical Sciences *USRA CESDIS
University of Denver University of Maryland Goddard Space Flight Center
Denver, CO 80208 College Park, MD 20742 Greenbelt, MD 20771

Abstract

This paper demonstrates that the potential for very high
speed computation provided by optical technology can be
achieved for important computational problems including
the fast Fourier transform and sorting. First a program-
ming model that captures the ‘time-of-flight’ characteris-
tics of optical fibers and switching elements is presented.
Then it is shown that the FFT and the radix sort algorithms
can both be reduced to the computational kernel of ‘pack-
ing’ intermediate data results that are continuously moving
through an optical fiber. New algorithms are developed for
the general packing problem, and the details of how to im-
plement them in optics are presented. The resulting systems
have the potential for operating at clock rates that are two
or more orders of magnitude higher than conventional com-
puters.

1. Introduction

Optical technology promises a substantial increase in
raw clock speed over conventional computing devices.
However, the programming model imposed by these de-
vices is not necessarily suited to algorithms that have been
designed and tuned to run well on existing machines. The
high latency for memory access (relative to clock speed),
the necessity to stream data, and the high cost of individual
logic gates is reminiscent of early electro-mechanical de-
vices. The fact that the entire optical computer must adhere
to time-of-flight scheduling constraints [7] offers a difficult
programming challenge.

This paper presents an optical implementation of a new

0-8186-7591-8/96 $5.00 © 1996 IEEE
Proceedings of MPPOI ’96

algorithm that packs data in an optical stream. Furthermore,
it is shown that the computation in optics of both the fast
Fourier transform (FFT) and the radix sort contain packing
as a kernel operation. Thus, the packing algorithm solves
the time-of-flight problem for the FFT and the radix sort,
i.e. it reduces the problem of implementing these algo-
rithms using optical hardware to standard computer science
techniques.

The paper is organized as follows. Section 2 gives an
introduction to optical devices and shows how their charac-
teristics determine the programming model. Sections 3 and
4 review FFT algorithms and the radix sort, showing that
they share a similar data movement pattern which reduces
to the data packing problem when time-of-flight constraints
are imposed. Sections 5 and 6 give a detailed description of
the implementation of the algorithms including the use of
the packer.

2. Optical Technology Overview

Recent advances in optical technology have produced
data channels and switching elements both with incredibly
high throughput rates. An interesting question is whether
a high speed computational device can be built using this
technology. That is, can an algorithm be mapped onto an
architecture comprised solely of optical or opto-electronic
parts. In this section, the characteristics of the devices are
examined along with the programming model that they im-
ply.

The first important consideration when designing an op-
tical algorithm is the time-of-flight nature of data movement
in the fibers. The data processed by the algorithms here is
photonic, having been injected into an optical fiber using

a laser. Once the data has been injected into a fiber, it re-
mains moving continuously, through both the fiber and any
switching elements it may encounter along the way. Thus
the programming model must be RAMless - the only mem-
ory in the system is the delay-line memory of an optical
fiber. It must also ensure that the desired data is accessed
and switched as it flies by, hence the term time-of-flight.
Furthermore, when there is a choice of fibers to switch the
data onto, the fiber not receiving the data will have a logical
blank inserted onto it. At certain points in the computation,
these blanks may have to be removed in order to keep the
data size manageable.

The second important consideration is the expense of the
optical switching elements along with their limited func-
tionality and fan-in, fan-out capabilities. The production
of integrated optical devices is in its infancy stage. Only a
few switches can be integrated on a common substrate and
substantial costs are expended in doing so (an integrated
device containing only five to ten lithium niobate optoelec-
tronic switches can cost up to ten thousand dollars). Thus
algorithms must be designed that minimize the number of
switching elements and that take into account their restric-
tions.

One commonly used opto-electronic switching element
is the lithium niobate gate. It has two fiber optic data in-
puts, two fiber optic data outputs, and an electronic control
input [11, 15]. In an all optical system, the control input
is converted from optics to electronics just before being fed
to the gate. The functionality of the gate is a 2x2 crossbar
switch. If there is no electronic input at the control port then
the switch is in the cross position, if there is an electronic
input, then the switch is in the straight through position.’

Data can pass through a lithium niobate gate at the terabit
rate and the gate can switch at below a nanosecond (hero ex-
periments have been performed where these devices switch
at rates up to 40 GHz [11]). Therefore the optical algo-
rithms presented here will be designed to use switching ele-
ments whose throughput is much higher than the switching
rate. That is, the data passes through the gates at the bit
rate but is switched at the word rate, and a blank space is
required between words to allow the switches to transition
from one state to the other. Furthermore, when an opti-
cal signal passes through the gate there is a certain amount
of loss. The optical implementations given here are de-
signed to minimize the number of the gates and pass signals
through each gate only once so that only a small number of
amplifiers and regenerators are required during the course
of the computation.

All of the optical algorithms and implementations pre-
sented in this paper will be based on these lithium niobate
switching elements. For the optical sorting algorithm, a sec~
ond optical component that extracts a bit from each word in
the data stream is required. One component that has this ca-

169

pability is the TOAD (Terabit Optical Demultiplexing De-
vice) developed at Princeton University [12, 13]. The key
property of the device is that it is capable of removing a
single bit from a high data rate stream. However once it
has removed a bit, it must remain inactive for a time until it
relaxes and is ready to remove another bit,

A second component with the capability to demultiplex
a high data rate signal is the NOLM (nonlinear optical loop
mirror) or Sagnac loop [6, 9]. It also operates as a switch,
but in contrast to the lithium niobate gate, it is all optical
and has a much higher switching rate. NOLMs have been
fabricated that switch at the rate of 100 GHz [9], and are be-
lieved to have the potential for switching at a rate approach-
ing 1000 GHz. Hence they can easily operate at the bit
rate of the photonic data flowing through them. Data enters
the NOLM and is split into signals that counter propagate
around a loop. A control signal causes either the signals to
add back together so that the original signal is output, or to
cancel in which case the control signal is output. There is
a latency of about five microseconds between paired inputs
and outputs due to the length of the fiber loop. For latency
tolerant algorithms such as the FFT and radix sort, this does
not affect the overall throughput of the system. In fact, the
TOAD is a particular type of NOLM.

3. FFT Overview

In this section, an algorithm for the FFT is described and
an overview of how it can be implemented using optical
technology is given. However, the details of the implemen-
tation are deferred until later in the paper so that the rela-
tionship between the optical FFT algorithm and the optical
sorting algorithm can first be established.

The dataflow graph for the well known ‘out-of-place’
FFT algorithm is illustrated in Figure 1 for eight inputs.
Notice that the interconnection pattern for the out-of-place
FFT is the same at each stage. This makes it a good can-
didate for implementation in hardware [14], since a savings
can be made by using the same hardware to perform suc-
cessive stages. However, the memory requirement is twice
the width of a stage, since outputs of a stage cannot directly
overwrite inputs without producing incorrect results. As a
contrast, the in-place FFT algorithm [4] has a different in-
terconnection pattern at each stage, but its memory require-
ment is only the width of a stage. Also, since the Fourier
transform is its own inverse, the out-of-place network can be
reversed (start the computation at the outputs of the graph
and proceed towards inputs) and a Fourier transform will
still be performed. This dataflow graph for eight data points
is also illustrated in Figure 1.

As a precursor to an optical FFT algorithm, an algorithm
for computing the FFT that uses four tapes and the reversed
out-of-place dataflow graph is now discussed. It is similar

out-of-place

reversed out-of-place

Figure 1. The dataflow graph for the out-of-
place FFT

to the balanced tape merge discussed in [10], and can be
used when the number of inputs to the FFT is much larger
than the size of the memory (while no longer true, this was
typically the case in the early days of computing).

The four tape FFT algorithm works as follows. To com-
pute a stage of the FFT, start with the first half of the inputs
on tape one and the second half of the inputs on tape two
(assume the previous stage has produced-its outputs in this
format). Now, read the first two inputs from tape one, com-
pute the two outputs of a butterfly, then write the left output
to tape three and the right output to tape four. Continue this
until the middle of tape three (four also) is reached. At this
point, switch reading the inputs of the butterflies from tape
one to tape two. When the end of tape two is encountered,
the computation of a stage is complete, and the next stage
simply begins with its inputs on tapes three and four, Refer
to Figure 2 for an illustration of this process.

tape one tape two

tape three tape four

Figure 2. A stage of the four tape FFT algo-
rithm : «

The placement and movement of data on a tape is
roughly analogous to what happens in an optical fiber with
one major exception. When programming for a tape, the
algorithm designer has control over starting and stopping
the movement of the data. However, once data has been in-

170

jected into an optical fiber, it remains moving continuously.
This is equivalent to a tape that must advance one position
at each time step. Algorithms designed with this restriction
in mind are referred to as time of-flight [7].
~An overview of an FFT algorithm suitable for implemen-
tation on a special purpose optical computer will now be
given. The algorithm carries out the FFT dataflow graph in
a manner similar to the four tape FFT algorithm. Consider
how the four tape FFT algorithm must be modified if the
tapes are required to move one position during each time
step.- A problem occurs when both inputs of a butterfly are
read from the same tape - the output tapes continue to move
while waiting for the next pair of inputs to be read, which
causes a blank to appear between consecutive outputs. Note
that reading the inputs in parallel does not solve this prob-
lem. But it can be overcome if, after the output tapes are
produced, a separate computation is done that removes the
blanks between the outputs in preparation for the next stage.
The optical FFT algorithm explained in detail later in
this paper has the same data movement pattern as the four
tape FFT algorithm, along with a subsystem referred to as
the: ‘packer’ for removing blanks between data that is con-
stantly moving along optical fibers. It will be shown that
this packer can be designed using a linear number of optical
fiber loops and only a logarithmic number of optical switch-
ing elements. Recall that minimizing the number of optical
switching elements is important due to their expense.

4. Sorting Overview

The second problem that optical implementations are de-
veloped for in this paper is sorting. Similar problems in-
volving network applications and time slot interchangers
have been previously studied in [2, 7, 8]. »

It is well known that a dataflow graph for the bitonic sort-
ing algorithm can be constructed recursively using the FFT
dataflow graph [1, 5]. Having just presented a sketch of how
the FFT algorithm can be implemented using optical fibers
and switching elements, it is straightforward to extend this
to yield an optical sorting device. However, since the basic
operation in a bitonic sort is a comparison of an entire data
word, the optical implementation turns out to be expensive
to build due to the large number of optical switching ele-
ments required by a comparator. See [3] for details.

Other sorting algorithms, while just as efficient as bitonic
sort, are at first glance not as easy to map into hardware
in general (optics in particular) since their corresponding
dataflow graphs are not regular. Here, it is show that the
radix sort-can be implemented efficiently in optics even
though it has an irregular dataflow graph. The main reason
for choosing radix sort is that comparisons are done on the
bit level rather than the word level, which greatly reduces
the number of optical switching elements required.

A radix sort proceeds in stages as does the FFT algo-
rithm. Each stage operates on a different bit position within
aword, beginning with the low order bit position and ending
with. the high order bit position. A stage simply separates
the current partially ordered list of data words into sublists,
one with zeroes and the other with ones in bit position j,
then concatenates them. Each sublist must maintain the or-
dering of data in the input list.

An overview of the radix sort implementation using opti-
cal fibers and switching elements is as follows. To compute
a stage, first assume that there is an input fiber and two out-
put fibers, and that the input fiber is densely packed. Each
data word will be placed on output fiber zero or output fiber
one depending on the value of the jth bit (an optical com-
ponent will examine the jth bit and make this decision). At
the end of this process each output fiber will contain a sub-
list of the inputs with variable numbers of blanks between
each data word. The blanks arise from the fact that while
a data word is being written to one output fiber, nothing is
being written to the other fiber and the data on it continues
in motion. In order to start the next stage, these blanks must
be extracted and the lists must be concatenated. A subsys-
tem referred to as the ‘packer’ will be designed to perform
this computation, again using a only small number of opti-
cal switching elements.

There is a fundamental point to be noted here. Both the
optical FFT and the optical radix sort share the kernel op-
eration of packing data that is in continuous motion along
an optical fiber. The only significant difference is that in
the FFT the blanks form a regular pattern, whereas in the
radix sort the blanks are irregular. The major contribution
of this paper is to give a new algorithm that solves the pack-
ing problem in its full generality, and to show how it can be
implemented using optical fiber loops and a small number
of optical switching elements.

5. Optical Implementation of an FFT

This section presents the details of an implementation of
the FFT algorithm using optical fibers and lithium niobate
gates. The datafiow is the main emphasis here, i.e. the alge-
bra on the elements of the data can essentially be ignored.
Start with a mathematical description of the data as it ap-
pears on an optical fiber.

Let X(0) = z0(0),21(0),...,zn-1(0) denote the orig-
inal data sequence to be transformed. Suppose that there
is an integer k such that n = 2*. The FFT algorithm pro-
duces the n long sequences X (1), X (2),..., X (k) so that
X (k) is the Fourier transform [4]. Although in practice
each data word z;(j) may be composed of multiple signals
in the fiber, it will be regarded as a single entity occupying
a unit amount of length. Thus for simplicity, assume that at
time zero, x;(0) is at position £ in the fiber, and that the data

171

moves through the fiber one unit per time step, i.e. if a data
item z is at position p at time ¢, then z is at position p + 7
at time ¢ + 7. :

The optical implementation of the FFT algorithm must
contain hardware that forms the outputs of a butterfly. The
only constraint on this hardware is that it be fast enough
or parallel enough to keep up with the dataflow, since the
butterfly operation is latency tolerant. Thus, this component
is not required to be optical. But if the optical signal is at
a high data rate, and the butterfly unit is electronic, it may
need to be pipelined.

Assume that the butterfly hardware reads from position
0 of an input fiber and after a delay A writes the butter-
fly outputs to positions O and n of an output fiber. These
writing positions can be physically close together by plac-
ing a coil in the fiber. At times 0 and 1, z0(0) and z,(0)
are read from the input fiber. The butterfly computation is
performed, which takes time A to produce two intermediate
results that need to be placed on the output fiber. So at time
A, zo(1) is inserted into position O of the output fiber and
z1 (1) is inserted into position n of the output fiber. Next at
times 2 and 3, z2(0) and x3(0) are at the reading stations.
Attime A + 2, z5(1) is inserted into position 2 and z3(1) is
inserted into position n + 2 of the output fiber. Continuing
to times n — 2 and n — 1, 2,—2(0) and x,,—; (0) are read,
and at time A +n — 2, z,_2(1) and z,,_1(1) are inserted
into positions n — 2 and 2n — 2 respectively. This finishes
the production of the sequence X (1).

Notice that the absence of writes at time A+1, A+3,...
has produced blanks at positions 1,3,...and n + 1,n +
3,.... It is not possible to directly produce the output fiber
without blanks because the data is flowing into each half at
a rate that is half as much as the data flow from the input
fiber. Thus, before this data can be fed back through the
logic to produce X (2), it must be fed through a subsystem
that removes the blanks.

5.1. The Packer

At this time it would be convenient if there were no
blanks between the data items z;(1) and ;1 (1); then this
stream could be fed back through the computational units to
produce X (2). A subsystem that receives the unpacked data
and produces data in the same order except with no blanks
between adjacent data items will now be described. This
subsystem is referred to as the packer.

The initial state of the data can be viewed as n words in
even positions and n blanks in odd positions. The first stage
of the packer will produce a sequence that has the format:
pairs of words separated by pairs of blanks. Thus the out-
put is equivalent to the input except that the word size (and
blank size) has doubled. This will also be true for subse-
quent stages, so that the only difference between stages is

the word size that must be handled.

A stage of the packer is composed of an optical switching
device (e.g. alithium niobate gate) and an optical fiber loop.
The loop is used to delay some of the data elements entering
the stage, and the switch is used to determine which ones to
delay. The size of the loop is determined by the data element
size - the loop in stage j holds 27 words.

The data elements flow through a stage of the packer as
follows. Denote the data elements as dg, dy, . .. If 7 is even,
then d; will be delayed one time unit so that it appears con-
secutively with d;+; in the output stream. This is done by
switching d; onto the loop when it enters the stage. It stays
there for one time unit after which it takes the place of the
blank between d; and d;; in the output stream. Then d; 1
is switched straight through so that d;;, immediately fol-
lows d; in the output stream. Notice that two blanks will
appear in the output stream between d; 11 and d;y, , one
when the blank in the input stream between d;1; and d; 2
is switched straight through, and the second is ‘produced’
when d;,.5 is switched onto the loop. Figure 3 shows the
dataflow through a stage of the packer.

Input stream Output stream
L_JLduL_HﬁoJ—"—DgA»

L
Lfﬂulﬁljl_lq—:&—’ L
L__Jlﬂz_ll_ll_dl_l—‘—:ijg—r Ll L
&Ju@u;‘:&—» L 1) L

@uu&u—"—[&»

Figure 3. The datafiow through a stage of the
packer

L L] 1%l ot L

The switching element in a stage of the packer simply
controls the data elements being placed on the loop. It is in
the cross state only when a d;, ¢ even appears in the input

172

stream, i.e. it switches at the rate that even data elements
appear. Note that the control for a stage is straightforward
because the data elements and blanks have a regular format.
A stage simply delays all the even elements, and the packer
iterates this over successive stages that double the word size.
In the forthcoming discussion of sorting, the blanks will be
irregularly placed amongst the data elements. This will lead
to a packer with the same overall fiber optic loop structure,
but with more complicated circuitry for deciding which data
elements are fed through which loops.

From the preceding discussion, it should be obvious that
after passing through a stage, the data has the format of
two packed elements, two blanks, two packed elements,
two blanks, etc. The order of the data is preserved and
k stages are required to produce an output stream that is
densely packed (no blanks between words). The last stage
actually produces n packed words followed by n blanks, but
the blanks are just ignored by the computations that follow.
Also, to pack a data set of size 2%, only k switches are re-
quired, which is logarithmic in the data size. The number of
unit length optical fiber loops required is 142+ . .4+-2¥"1 =
2% — 1, The packer is illustrated in Figure 4 for a data set of
size eight.

e 20 Q000

Figure 4. The packer component of the FFT

There are a few things worth noting here about this op-
tical implementation of the FFT. First, the beginning of the
stream can enter the second stage as soon as it emerges from
the first stage so that the beginning of the data is entering
the second stage just as the second word of data is entering
the first stage. In this way, the computational units can be-
gin producing X (2) from X (1) as soon as they are finished
producing X (1) from X (0). Also, because lithium niobate
gates have a certain amount of loss and introduce a certain
amount of noise, it is necessary to amplify and regenerate
the signal at certain points in the process. The details of the
amplifiers and regenerators are not covered in this paper, ex-
cept to say that only a small number are required. There is
another slightly more complicated design that requires only
k gates for a data set of size 3* and has the same through-
put. A drawback of this design is that the data must make
more than one pass through some of the gates and loops.
This introduces additional signal degradation and thus re-
quires more amplification/regeneration. Finally, an optical
FFT based on the forward out-of-place algorithm would be
very similar to the one presented here. Instead of a packer
subsystem, it would produce a data stream in dense format
that required unpacking. The details are left to the reader.

6. Optical Implementation of a Radix Sort

This section continues the presentation of optical algo-
rithms with the details of an implementation of the radix
sort using optical fibers and lithium niobate gates. The radix
sort is a deterministic algorithm that sorts L = 2', m-bit
data items in m passes. In the jth pass, 0 < j < m — 1, the
list is partitioned into two sublists according to the value of
the jth bit of each number. Without changing their relative
order all the numbers with a zero in the jth bit are assem-
bled into a sublist (the ‘zero’ sublist) as are all the numbers
with a one in the jth bit (the ‘one’ sublist). Then these two
sublists are concatenated, the zero sublist is followed by the
one sublist, to complete this jth pass. After m such passes
the list will be in ascending order.

In what preceded, all of the devices switched at the word
rate. For the sort, there are two devices that must switch at
the bit rate. Either the TOAD (Terabit Optical Demultiplex-
ing Device) or the NOLM (nonlinear optical loop mirror)
can be used. Recall that the TOAD is capable of remov-
ing a single bit from a high data rate stream, but after it
has removed a bit it must remain inactive for a time until
it relaxes and is ready to remove another bit. This is not a
problem for this application because only one bit (the radix
bit) is removed per word per pass. The NOLM is a classical
Sagnac device [6, 9]. It would also work in this application
because the algorithm is latency tolerant and therefore, the
long Sagnac loop would not cause a degradation of through-
put performance. g

Corresponding to the two operations in each pass, the op-
tical sorter has two main components: 1) the ‘splitter’ and
2) the ‘packer’. The splitter is the component that separates
the zero sublist from the one sublist. The packer is respon-
sible for concatenating and assembling the sublists into the
new list for the next pass.

To form an optical sorting system, one splitter and two
packers are connected as shown in Figure 5. Two packers
are used so that all components can be kept busy at all times.
The data stream enters the splitter on the input line. The
data moves from the splitter to the ‘even packer’ and its
delay line. The data flows from the even packer back to the
splitter, thus completing an even pass of the algorithm. In an
odd pass of the algorithm, the data flows through the splitter
to the odd packer and back to the splitter. This completes
two passes of the algorithm and one cycle of the system. A
more complete description of the flow of data throughout
the system will be given after the discussion of each of the
components,

6.1. The Splitter

The splitter performs the following operation on the jth
pass. The data stream runs through a coupler so that there

173

Splitter

0dd Packer

Figure 5. The splitter and packer components
of the optical radix sorter

are two copies of the stream. One of the copies is sent
through a TOAD/NOLM that picks off the jth bit and sends
this bit ahead to be converted to electronics. After the one
bit is read, this copy of the data is discarded. The extracted
bit drives the control port of a lithium niobate gate. The
other copy of the data is sent to one of the data input ports
of the gate.

One output of the gate is connected directly to the packer,
the other is connected to a delay line. If the jth bit of the
word in question is a zero, then the switch is set to the
straight through position. The word is sent directly to the
packer and a blank word is sent to the delay line. Con-
versely, if the jth bit is a one, the switch is set to the cross
position. A blank word is sent to packer and the data word
is sent to the delay line. The delay line is exactly L words
long so that it can hold the entire unpacked ‘ones’ sublist.
As the last word leaves the splitter exchange switch, the first
word put into the delay line is being output from the delay
line. At this time the input to the packer is switched from
the splitter to the delay line. This implements the step of
concatenating the ‘zero’ sublist to the ‘one’ sublist. The re-
sult is a string of length 2L that contains L words and L
blanks. This is similar to the situation that occurred in the
FFT. However the sort presents a more difficult problem in
that the blanks in the data are not in any regular order.

6.2. The General Packer

The packer will take the 2L long stream of data and
blanks as input and output a stream consisting of L blanks
followed by L words. Adopt the convention that at time
zero, the first word or blank enters the packer from the split-
ter. Then at time L — 1 the last output (word or blank)
from the splitter enters the packer. At time L the first word

or blank leaving the delay line is switched into the packer.
Also at time L, the first word leaves the packer. For the
next L — 1 time steps, the rest of the delay line is fed into
the packer and the rest of the L — 1 packed words leave the
packer. Thus the packer must provide each word a path that
is 0 to L words long. The challenge is to do this without
a global view of the data stream and to do it with minimal
logic. ,

Each data word has one header bit indicating whether
the word is full or empty. As the data stream enters the
packer it passes through a second TOAD/NOLM that sends
forward the bit indicating whether each data slot is full or
empty. There are a total of [+ 1 lithium niobate gates in
sequence that either pass data straight through or send it
through delay loops, see Figure 6. This is almost the same in
structure as the FFT packer, except now the first two loops
will have a length of one word (this is necessary so that the
entire packer can provide a delay of L units), and after the
second loop, each subsequent loop will be twice the length
of its predecessor. As is the case of the FFT packer, each
data word will go through a subset of the delay loops and
no data word will go through any delay loop twice, It will
be the case that if there is a full data word at position zero
at time zero (this would be the case if first word entering
the splitter had a zero in the jth bit) then this word will go
through all of the data loops so that it would be shifted back
atotal of 1 4+ 1+ 2+ 4 + - -+ 4+ 2:-1 slots which is a total
of 2 slots. It would therefore leave the packer in slot L.
Notice that the total amount thata word should be shifted
back depends only on the number of empty slots that pass
in front of it in the original stream.

R R Q Q0009

Figure 6. Delay loop structure of the packer

Figure 7 tracks a sequence containing eight full and eight
empty slots as the data enters stages 1,2,3 and 4 and also il-
lustrates the data as it leaves stage four. In fact, one could
spread out the stages of the packer so that the strings were
produced between them. The figure depicts the stream mov-
ing from left to right, so that position 0 is the right most slot
and position 2% — 1 is the left most slot. The example illus-
trates the fact that the first delay loop insures that there is
a blank in position zero, the second delay loop insures that
all the empty slots are in groups of length divisible by 2, the
next loop produces empty groups of length divisible by 4
and so on. As before, the number of consecutive data words
in a cluster may be arbitrary.

The logic that drives the gates is shown in Figure 8 and
operates as follows. Each gate has an associated logic unit,

174

T 3 || 1 |] [T
[T | | /| T T |
CTT 1 | 1 |) FTT |
CTT T | | | CT T T | | | |

Figure 7. Sequence of data movements in the
optical sort

which may be optical or electronic. The gates and their
associated logic units are numbered from 1 to [+ 1. The
TOAD/NOLM sends a signal forward to logic unit one each
time an empty slot passes. Note that this is the only device
in the packer that looks at the data stream. The first gate
starts off in the cross position (the position that sends data
through its one long loop). It remains in that position until
its logic unit receives a signal from the control line indicat-
ing that a blank has passed. It then moves to the straight
through state and remains in that state until the entire data
stream has passed. It then resets to the cross position for
the next pass of the data on the next radix bit. The timing
is such that it transits from the cross state to the straight
through state in the middle of the first blank slot. - When the
first logic unit receives its second signal indicating that an
empty slot has passed, it sends a signal to the second logic
unit. The second gate starts out in the cross position (the
position that sends data through its one word long loop).
When it receives a signal indicating that the second empty
slot has passed, it switches to the straight through position.
It does this switching in the middle of the sécond empty
slot. The process continues in this fashion, with the first
logic unit sending signals to the second logic unit every time
it receives a signal indicating that an empty slot has passed.
Each time the second logic unit receives a signal, it switches
the second gate in the middle of an empty data slot.

Figure 8. The packer line and its control

The second logic unit keeps track of the parity of the
number of signals that it receives from the first logic unit.
When the second logic unit receives its second signal from
the first logic unit, it sends a signal to the third logic unit.
The third logic unit uses this signal to switch the third gate
in the middle of the second pair of empty slots (it switches
between empty slots three and four). The second logic unit
sends a bit to the third logic unit every other time it receives
a signal from the first logic unit. The configuration is repli-
cated down the entire cascade of gates and logic units. That
is, the 4th logic unit receives signals from the (i — 1)th unit
and passes the parity of the signals it receives to the (i+1)th
unit. Also, the gates toggle in the middle groups of empty
slots (of increasing length). The signals that pass among the
logic units can be thought of as the carry bits for a counter
that counts the number of blank slots that enter the packer.
In fact, the ith bit of the sum of the number of empty slots
arrives at the sth logic unit at the proper time for the jth gate
to be set appropriately.

Notice that gates that are further along in the sequence
switch in the middle of progressively longer blanks; there-
fore, the system is more and more jitter tolerant further
down the line. Notice also that the switching rate of the
gates is slower further down the line. For this reason, with
the possible exception of the first few logic units, all of the
logic can possibly be made out of electronics.

The packer described in this paper can be viewed as pro-
viding each word in the data stream with a variable length
delay. Thus it resembles the Tunable Optical Delay de-
scribed in [12, 13].

6.3. Combining the Splitter and the Packer

In order to completely sort a string of data, it is neces-
sary to look at each bit of each word. That is, the packed
data must be fed back through the splitter for each radix
bit. Figure 9 shows a full period of the data moving from
one packer through the splitter and into the other packer.
The heavy solid line represents packed data while the heavy
dashed line is the unpacked data stream. ‘

The lines from the splitter to the delay line and the packer
add a constant to the overall latency of the loop but are not
involved in the variable delays required for data packing.
Stepping through Figure 9 we have:

1. Att = 0, the data stream enters the splitter for the first
time.

2. Att = L/2,half the data has gone through the splitter.
The even packer is half full of blanks and ‘zero words’
and the even delay line is half full of blanks and ‘one
words’.

3. Att = L — 1, the last data word is processed by the

splitter, so at t = L the first packed word leaves the
even packer and enters the splitter.

4. Att = 3L /2, half the packed words have left the even
packer, been split and have filled the odd packer and
delay line with unpacked words and blanks.

5. Att = 2L — 1, the last word out of the even packer is
split. Thus at ¢ = 2L the odd packer and delay line are
filled and the first packed word leaves the odd packer.
This completes the cycle.

The cycle continues until all m passes of the sort have been
completed. '

Notice that this configuration allows for the time-of-
flight passing of data through the splitter and enjoys full uti-
lization of all the components, An important consequence
of this is that the high speed device that examines the radix
bit (the TOAD/NOLM in the splitter) is busy all the time.
Since the algorithm looks at each bit exactly once with this
device, the total time to sort a stream is equal to the total
number of bits in the stream times the rate at which this
TOAD/NOLM is picking bits out of the stream.

Figure 9. A full period of data movement
through the packers

7. Conclusions

It has been shown from an algorithmic perspective that
optical systems with the common kernel of data packing
can be constructed to perform an FFT and a radix sort at
very high throughput rates. New algorithms that adhere to
time-of-flight programming constraints were designed for
the data packing problem. Implementations using optical
fiber loops and a minimum number of optical switching el-
ements were presented.

Hardware details were avoided unless directly related to
the flow of data and the bit rate versus the word rate of the
systems. For example, the arithmetic unit of the FFT system
could be designed using heavily pipelined or parallel elec-
tronics instead of optics without affecting the overall flow
of data in the algorithm. Likewise, in the sorter, the tech-
nology for the logic that drives the 2 x 2 switches in a packer
was less important than the fact that each stage counted the
parity of the groups of blanks that passed through the previ-
ous stage, and that the entire cascade of logic only required
a single look at the data stream.

References

[1] K. E. Batcher. Sorting networks and their applications.
AFIPS Conference Proceedings, 1968 SICC, 32:307-314,
1968. '

[2] D. J. Blumenthal, K. Y. Chen, J. Ma, R. J. Feuerstein, and
J. R. Sauer. Demonstration of a deflection routing 2x2 pho-
tonic switch for computer interconnects. IEEE Photonics
Technology Letters, 4:169-173, 1992,

[3] N. B. Coletti. The TAO of optics: Sorting, FFT’s and other
transforms on the transpose architecture for optics. Techni-
cal report, IDA Center for Computing Sciences, 1994,

[4] J. W. Cooley and J. W. Tukey. An algorithm for the ma-

chine calculation of complex fourier series. Mathematics of

Computation, 19:297-301, 1965.

R. Fuller. Formal derivation of interconnection schema for

parallel computation. Congressus Numerantium, 70:249-

254, 1990,

A. Huang et al. Sagnac fiber logic gates and their pos-

sible applications: a system perspective. Applied Optics,

33(26):6254-6267, 1994.

H. F. Jordan, V. P. Heuring, and R. F. Feuerstein. Optoelec-

tronic time-of-flight design and the demonstration of an all-

optical, stored program, digital computer. Proceedings of the

IEEE, Special Issue on Optical Computing, 82(11):1678—

1689, 1994.

H. F. Jordan, D. Lee, K. Y. Lee, and S. V. Ramanan. Serial

array time slot interchangers and optical implementations.

IEEE Transactions on Computers, 43(11):1309-1318, 1994,

S. Kawanishi, H. Takara, K. Uchiyama, T. Kitoh, and

M. Saruwatari. 100 Gbit/s, 50 km optical transmission

employing all-optical multi/demultiplexing and PLL timing

extraction. Conference on Optical Fiber Communication

(OFC 93), 1993. paper PDP2.

[5]

(6]

(8]

[9]

176

[10] D.E.Knuth. The Art of Computer Programming Vol 3: Sort-
ing and Searching. Addison-Wesley, New York, NY, 1994,

[11] S. Korotky, 1994. Private communication, AT&T Bell Lab-
oratories.

[12] P.R.Prucnal. Photonic fast packet switching. In Photonics
in Switching Vol II, page 303, New York, NY, 1993. Aca-
demic Press.

[13] J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane. A tera-
hertz optical asymmetric demuitiplexer (TOAD). IEEE Pho-
tonics Technology Letters, 5(7):787-790, 1993.

[14] H. S. Stone. Parallel processing with the perfect. shuffie.
IEEE Transactions on Computers, 20(2):153-161, 1971.

[15] United Technology Photonics, Part No. APE-YBBM-1.5-
18-T-02.

