ONIC: Optical Network Interface for Multi-Wavelength Interconnects in Ubiquitous CMP Computing Systems

Keren Bergman and Gary Carter
Advanced Computing Systems

HPC Systems

- Top-of-the-line
 - Cell, Opteron, Xeon
 - InfiniBand
- Highly specialized
 - Scientific computing
 - Financial analysis
 - Task parallelization

Data Centers

- Commodity
 - Celeron, Athlon
 - Ethernet
- General-purpose
 - Web/database apps
 - Virtualization
 - Cloud computing

Components

Applications

Users

Research/Government

Enterprise

ACS Interconnects Workshop - April 16, 2010
• The common bottleneck: the *interconnect*
 - Network bandwidth: a scarce resource
 - results in low server utilization
 - Power consumption: an even scarcer resource
 - Cost/Complexity (e.g. cabling), Location/Space
• Electronic technologies *will not scale*
Alleviating the Bottleneck

- Photonic technologies can enable scaling
 - Wavelength Division Multiplexing
 - Fiber bandwidth >> Cable bandwidth
 - Terabits vs Gigabits
 - Excess bandwidth traded off to simplify control
 - Bit-rate transparency
 - Switches operate at message rate, not bit rate
 - Low loss
 - Large bandwidth-distance product
 - No regeneration, pre-emphasis, equalization
 - Lower power density
 - Google: ~500 W/ft²
 - Photonic integration
 - Reduce power and cost
Network Requirements

HPC Systems

- Highly orchestrated
 - Complex, long-running algorithms
 - Extremely parallel and distributed
- Stringent latency requirements
 - Overhead of memory accesses limiting (1000s of clock cycles)

Data Centers

- Unpredictable
 - Bursty at the edge
 - Short, random messages
 - Long, extended flows
- Throughput-limited
 - Long flows account for majority of bandwidth
 - Localized hot-spots
 - Relaxed latencies

No “one-size fits all” network
We propose a unique end-to-end WDM optical network test bed platform featuring:

- A configurable hybrid photonic network building-block
 - Optical/electronic switching
 - Packet/circuit traffic support
- A network-agnostic optical network interface
 - Support for standard protocols (e.g. InfiniBand, etc.)
- Support for optically-connected memories
Photonic Network Test Bed

The test bed will feature flexibility and scalability to evaluate various topologies/configurations

- Reprogrammability to support various architectures and protocols
- Configurable levels of hybrid electronic/optical switching
- All-optical packet switching
- Optical circuit switching
- Wavelength-division multiplexed (WDM) data streams
- Centralized, distributed, and/or hierarchical control
All-Optical Hybrid Switch

- Simultaneous Circuits and Packets
 - Traffic adaptability
 - Resource reallocation
- 4 \times 4 wideband support
- \lambda\text{-striped messages}
 - Simplicity
 - Bandwidth: Tb/s
- Programmable/Reconfigurable
 - FPGA-based control scheme
- Building block for data center networks
 - Provide max BW at the top of the DC hierarchy
Architecture and Packet Structure

HEADERS

PAYLOAD

Payload

Control Logic

Power splitter

wavelength filter

receiver

optical fiber

electronic trace/cable

in

out

Time

λ

UMBC
Architecture and Packet Structure

- **Power Splitter**
- **Wavelength Filter**
- **SOA**
- **Receiver**
- **Optical Fiber**
- **Electronic Trace/Cable**

Headers

Payload

Circuit or Packet

Control Logic

ACS Interconnects Workshop - April 16, 2010
Architecture and Packet Structure

ACS Interconnects Workshop April 16, 2010
Implementation

- 4 sub-modules
 - 1 per input port
 - 4 SOAs
 - Xilinx CPLD
 - PIN-TIA-LA
Implementation

- Each sub-module centrally managed
 - Xilinx Virtex 5-based board
 - Manages output contentions
 - Prioritizes circuits over packets
 - Port configuration
 - Packet or Circuit
 - Configured via Ethernet
 - Managed via Windows GUI
Demonstration

- All-optical packet routing
 - 4×10 Gb/s Λ-striped packets
 - in_0 to $\text{out}_0/\text{out}_1$
- Concurrent circuit generation
 - 10 Gb/s stream
 - in_3 to out_3
- Error-free 10^{-12}
Photonic Network Test Bed

• Modular 4 × 4 switching node design
 ▪ Functionality
 o Network protocol support (Ethernet, etc.)
 o Circuit & Packet Switching
 ▪ Flexibility
 ▪ 1 × 2, 2 × 2, or 4 × 4
 ▪ Robustness
 o status monitoring
 o debugging functionality
 ▪ Currently Under Development
The Interface Challenge

• Interface Optical Packet-Switched Networks to Real-World Systems
 ▪ Non-Trivial Hurdle for Optical Networks & I/O Protocols

• Need a **seamless** interface between nodes and network
 ▪ Support standard protocols
 ▪ Network agnostic
 ▪ WDM
 ▪ Resilient
 ▪ Low Latency
O-NIC Design Vision

- **Virtual Switch Model**
 - Local Node Interacts with High-Radix ‘Virtual Switch’
 - O-NIC Performs Address & Flow Control Translation
Comparison with Standard I/O

- Optical Switching Occurs in Physical Layer
 - Requires Links to be Made & Broken Rapidly
 - Continuous Link-Based Protocols Assume Transport Layer Switching
 - Clock & Data Recovery Must be Restarted with Every Switch in Destination
 - Infiniband Link Training
 - 100ms + at 2.5 Gbps, 200ms + at 5/10 Gbps per lane
 - Current O-NIC Design < 2ms at 2.5 Gbps per lane
Packet Traversal

- This configuration of our optical interface is of a 2-node prototype currently under construction
Packet Traversal

- Typical Layers of the Protocol Stack Running on the Nodes
- Similar Design Across Standards
Packet Traversal

- Command & Data in App Layer Flows Down NIC Protocol Stack
- Transport & Link Layers Add Protocol Header & Tail
- Physical Layer Slices Packet for Multiple Transmitters
- Physical Layer Inserts Packet into Transmitter Stream
Packet Traversal

- Continuous Link
- In Idle, PRBS is Sent
 - Maintains Clock Recovery, DC Balance
- Packet is Inserted into PRBS Stream
Packet Traversal

- Packet Flows Up Protocol Stack to Virtual Switch
Packet Traversal

- Virtual Switch Sends Packet to Optical Network Side of O-NIC
- Optical Network Arbitration Layer
 - Packet Aggregation
 - Optical Injection Arbitration
 - Switch Emulator Interface
Packet Traversal

- Optical Network Transport Layer
 - Address Translation Table
 - Network Ack / Nack
 - Network Timeouts
 - Network Flow Control
Packet Traversal

- Optical Network Packet Encoder
 - Creation of Optical Packet
 - Consumption of Optical Packet
Packet Traversal

- Optical Physical Layer
 - Optical Transceivers
 - Electronic Transceivers
O-NIC Packet Format

- HEADERS
 - Header Sequence
 - Payload
 - Tail

- PAYLOAD
 - Data
 - Skip

GUARD TIME

For CDR Unit

\[\ldots, \text{COMMA, D10.2 \times15, } \ldots \]
O-NIC Packet Format

HEADERS

PAYLOAD

DATA

SKIP

For CDR Unit

..., COMMA, D10.2 ×15, ...

GUARD TIME

Header Sequence

Payload

Idle

Idle

Time

λ

OCS Interconnects Workshop ■ April 16, 2010
O-NIC Logic Design

INFINIBAND LINK LAYER

FPGA

OPTICAL PACKET ENCODER

LOOKUP TABLE

HEADER GENERATOR

OPTICAL PACKET DECODER

INFINIBAND INTERCONNECTS WORKSHOP

ACS Interconnects Workshop April 16, 2010

32
O-NIC Logic Design

![Diagram of O-NIC Logic Design]

- **O-NIC Logic Design**
- **Optical Packet Encoder**
- **Optical Packet Decoder**
- **Lookup Table**
- **Header Generator**
- **PCI Express Link**
- **FPGA**

ACS Interconnects Workshop ▪ April 16, 2010
O-NIC Logic Design Test Mode

IB Pkt Gen

Optical Packet Encoder

Lookup Table

Header Generator

Optical Packet Decoder

IB Pkt Checker

Error Counter

FPGA

ACS Interconnects Workshop • April 16, 2010

UMBC
O-NIC : Electronic Hardware

- 4 Stratix II GX FPGAs
 - 14 Transceivers at 5.0 Gbps
- Infiniband & PCIe Adapters
UMBC Setup

Modulators

FPGA

Receivers

ACS Interconnects Workshop April 16, 2010
Electronic Memory

- Devices share command and address lines for parallel access
- Many wires/pins
- Path-length matched for skew
- Bus clocked at higher rate than memory devices

- Extremely complex wiring
- High energy dissipation
- Large pin-out
- Does not scale with performance, capacity, or physical distance
Optically-Connected Memory

- Scales with performance, capacity, and physical distance
 - Bit-rate transparency
 - Distance immunity at computer-scale
 - Large bandwidth-distance product
- Simplified wiring
 - Board space near processor now available for other uses
Accomplishments

- Demonstration of circuit-switched microprocessor/SDRAM communication over 4×4 Optical Test-Bed
 - CPU is emulated on a high-speed FPGA
- All communication between CPU and Memory Controller is electronic
- All communication between Memory Controller and SDRAM is optical
Advantages of Optical Interface

• Decoupled energy-distance relationship
 ▪ SDRAM can be arbitrarily distant
 ▪ Entirely new design space for computer systems
• No long traces to drive
 ▪ Less power
 ▪ Higher bandwidth, lower latency
• Less pins on DIMM module and going into chip
 ▪ Waveguides can achieve dramatically higher density due to WDM
• Ideal for scaling to large number of SDRAM devices
 ▪ Memory architectures with higher capacity and greater bandwidth than electronics can provide
Next Steps

• Optical Network Interface Card
 ▪ Reduce CDR Time
 o Optimize CDR Settings
 o DC-Coupling of All Transceiver Elements
 o Explore Alternate Clock Recovery Options
 ▪ Network-Level Operations
 o E.g. Port Discovery, Flow Control

• Memory Interface
 ▪ Optimize Link for Circuit Switching
 o Currently Using Tweaked O-NIC Burst-Mode Design
 ▪ Switch to 5 Gbps per lane with 8 lanes
 ▪ Build Packet-Switched Variation
Questions?

Visit Us At

http://lightwave.ee.columbia.edu