PathForward

Columbia team works jointly with HPE’s PathForward program in an integrated multidisciplinary effort to leverage photonic, system architecture, and software expertise to develop new photonic enabled Exascale systems designs and drive emerging integrated photonic interconnect technologies. The leading researcher of the PathForward project from LRL is Yanir London.

Perhaps the most critical barrier toward realizing Exascale computing is the fundamental challenge of data movement. With the extraordinary growth in parallelism at all scales, even in today’s systems, performance is increasingly determined by how data is communicated among the numerous compute-memory resources rather than the total raw computation. Data movement challenges impact the entire system stack: from the physical architecture and memory hierarchy to the algorithms and software development that must manage the immense growth in parallelism. At Exascale, these challenges grow, as energy consumption can be dominated by costs of data movement and thereby imposes constraints on the ultimate performance.

The main challenge for interconnect technology has always been to provide sufficiently high network bandwidth and message rate, while maintaining as low a latency as possible. However, more important than the raw interconnect performance in these areas, is how effectively applications are able to utilize the network. Historically, many interconnects have been built to provide these capabilities without regard to the communication mechanisms being used by the applications running on the system, leading to a bad semantic match between the communication primitives required by the applications and those provided by the network.

High performance interconnection networks that are intimately co-designed with the hardware and software and take advantage of the transformational advantages of photonics will directly impact the execution performance and scalability of Exascale DOE applications. Photonic technologies represent the most promising path toward realizing a fundamentally energy efficient system interconnect that can scale to meet Exascale bandwidth requirements. The Columbia team works jointly with HPE’s PathForward program in an integrated multidisciplinary effort to leverage photonic, system architecture, and software expertise to develop new photonic enabled Exascale systems designs and drive emerging integrated photonic interconnect technologies.

 

design exploration
Our Projects have been supported by funding from: