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The increasing size and complexity of deep learning (DL) models have led to the wide adoption of distributed
training methods in datacenters (DCs) and high-performance computing (HPC) systems. However, communi-
cation among distributed computing units (CUs) has emerged as a major bottleneck in the training process. In
this study, we propose Flex-SiPAC, a flexible silicon photonic accelerated compute cluster designed to accelerate
multi-tenant distributed DL training workloads. Flex-SiPAC takes a co-design approach that combines a sili-
con photonic hardware platform with a tailored collective algorithm, optimized to leverage the unique physical
properties of the architecture. The hardware platform integrates a novel wavelength-reconfigurable transceiver
design and a micro-resonator-based wavelength-reconfigurable switch, enabling the system to achieve flexible
bandwidth steering in the wavelength domain. The collective algorithm is designed to support reconfigurable
topologies, enabling efficient all-reduce communications that are commonly used in DL training. The feasibil-
ity of the Flex-SiPAC architecture is demonstrated through two testbed experiments. First, an optical testbed
experiment demonstrates the flexible routing of wavelengths by shuffling an array of input wavelengths using a
custom-designed spatial-wavelength selective switch. Second, a four-GPU testbed running two DL workloads
shows a 23% improvement in job completion time compared to a similarly sized leaf-spine topology. We further
evaluate Flex-SiPAC using large-scale simulations, which show that Flex-SiPAC is able to reduce the commu-
nication time by 26% to 29% compared to state-of-the-art compute clusters under representative collective
operations. © 2024 Optica Publishing Group

https://doi.org/10.1364/JOCN.497372

1. INTRODUCTION

Recent AI advancements have been largely driven by the emer-
gence of large-scale deep learning (DL) models. Notably, large
language models (LLMs), such as ChatGPT, have demon-
strated significant progress across various applications. Their
increasing model size and dataset requirements demand dis-
tributed deep learning (DDL) solutions, which partition and
distribute training models or datasets across clusters of com-
puting units (CUs). As Fig. 1 shows, the reported number
of CUs (e.g., GPUs, TPUs, or NPUs) employed in training
representative DL models exhibits an exponential growth over
the years. This trend is expected to continue into the future
(although not yet formally reported, the projected number
of GPUs for the next generation of ChatGPT is expected to
surpass 30,000 [14]) [15,16]. In state-of-the-art accelerator
systems, the bandwidth discrepancy between intra-cluster
interconnects and inter-cluster networks has created com-
munication bottlenecks for DDL, severely limiting training
efficiency [1].

To mitigate these challenges, an existing approach is to
provide uniformly high bandwidth among CUs. For instance,

Fig. 1. Reported numbers of GPUs utilized in training major
models from 2016 to 2023 [1–13].

the Nvidia DGX-H100 SuperPOD system uses high-speed
NVSwitches and NVLinks with up to 900 GB/s aggregated
bandwidth to connect GPUs both within and across compute
nodes. However, these high-speed electronic switches and
links incur high cost and energy consumption and are distance
limited [17]. To scale the size of the training cluster beyond
the limit of the electrical wires, the use of slower interconnects
(e.g., 400 Gb/s InfiniBand fabric) becomes inevitable among

1943-0620/24/02A157-12 Journal © 2024 Optica Publishing Group

https://orcid.org/0000-0003-2284-7985
https://orcid.org/0000-0001-8580-1728
mailto:zw2542@columbia.edu
https://doi.org/10.1364/JOCN.497372


A158 Vol. 16, No. 2 / February 2024 / Journal of Optical Communications and Networking Research Article

these groups, which again introduces bandwidth discrepancy
at group boundaries. This issue is further compounded when
multi-tenant jobs are mapped non-uniformly onto the com-
pute clusters, leading to bandwidth waste in idle links, calling
for bandwidth reconfigurability in addition to high capacity.

To address the bandwidth challenges associated with train-
ings in accelerator clusters, we previously introduced the
SiPAC architecture at OFC’23 [18,19]. SiPAC exploits multi-
wavelength selective switching and high-bandwidth DWDM
links to emulate a multi-dimensional all-to-all topology in
the optical domain. This topology provides high-bandwidth
direct paths for DDL collective operations, which also exhibit
multi-dimensional communication patterns. The co-designed
collective algorithm builds on this hardware multi-casting
capability to achieve both latency and bandwidth efficiency.

In this work, we introduce Flex-SiPAC, a flexible silicon
photonic accelerated compute architecture. Building upon
the prior SiPAC architecture, Flex-SiPAC introduces band-
width reconfiguration in the wavelength domain to enhance
network agility in a multi-tenant compute cluster where jobs
are heterogeneous in both size and mapping. To flexibly route
wavelengths, we employ (1) comb-driven DWDM transceivers
with multiple reconfigurable output ports that can flexibly
split the comb wavelengths and (2) micro-resonator-based
spatial-wavelength selective switches (SWSSs) that together
enable flexible traffic aware topology optimization. Leveraging
this wavelength reconfiguration primitive, we also propose a
co-designed topology-aware all-reduce collective communi-
cation algorithm that can efficiently utilize the dynamically
allocated wavelengths. This work augments the architecture
presented earlier with reconfigurable capabilities and presents
a comprehensive analysis of this proposed design. The major
contributions of this work are summarized as follows:

• Wavelength Reconfigurable Interconnect Fabric: We
demonstrate the integration of reconfigurable capabilities into
both the transceiver and switch, enabling the construction of
a fully wavelength reconfigurable interconnect fabric for the
compute cluster. We report a testbed experiment using a WSS
where a variable number of input wavelengths are routed to
different output ports. The experimental results demonstrate
the feasibility of flexible and high-bandwidth communica-
tion enabled by the reconfigurable WSS in the Flex-SiPAC
architecture.

• Traffic-Aware Wavelength Reconfiguration: We show
how to leverage the wavelength reconfigurable interconnect
fabric to achieve traffic-aware topology reconfiguration for
multi-tenant DL traffic workloads. We propose a heuristic
approach to solve the integer linear programming (ILP) opti-
mization problem formulated in the context of the bandwidth
steering algorithm. We report small-scale system-level testbed
results that show a 23% performance improvement relative to a
similarly sized leaf-spine topology on DDL workloads.

• Topology-Aware All-Reduce Collective Algorithm
Co-design: We present a co-designed all-reduce collective
communication algorithm, Flex-SiPCO, that leverages the
reconfigured bandwidth of Flex-SiPAC to reduce bandwidth
waste and achieve higher communication efficiency. To evalu-
ate the performance of our proposed Flex-SiPAC-Flex-SiPCO

co-design, we conduct detailed packet-level simulations on
representative DDL workloads. Large-scale simulation results
show that our topology-algorithm co-design improves the
communication time by a factor of 26% to 29% compared to
the state-of-the-art accelerator clusters.

2. BACKGROUND AND RELATED WORK

In this section, we provide an overview of the state-of-the-art
accelerator architectures developed under both commercial
and research settings and provide background on the collec-
tive communication patterns commonly observed in DDL
workloads.

A. Network Architectures for Accelerator Clusters

DL workloads demand specialized accelerators to achieve
high-performance computations while relying on efficient
networking solutions to scale the size of the training. In this
section, we describe the state-of-the-art accelerator systems
and discuss ongoing research efforts focused on enhancing
networking performance through the integration of optical
switching technologies.

1. Static Network Architectures

To meet the high-bandwidth and low-latency demand of
the data-movement intensive workload, various commercial
architectures have been developed to facilitate efficient com-
munication in accelerator clusters. For example, Meta’s
ZionEX architecture incorporates a custom accelerator
equipped with advanced networking capabilities, including a
high-bandwidth and flexible intra-node topology. However,
the scale-out bandwidth is much lower than the intra-node
bandwidth, which limits the efficiency of the collective com-
munications [9]. Similarly, earlier versions of Google’s TPU
Pod [20] architecture adopted a high-speed intra-pod fabric
wired in a 2D-torus topology. Scaling the 2D-torus becomes
distance limited as wrap-around links become so long that
they have reached the limits of electrical interconnects. As a
solution, optical fibers are used for these long links. Another
notable architecture is the Nvidia DGX-SuperPOD, which
uses specialized electrical switching fabric to facilitate high-
speed communication. In earlier releases of this architecture
(i.e., prior to DGX-H100 SuperPOD), only GPUs within
a server were interconnected using high-speed NVLinks
and NVSwitches, while the servers themselves were inter-
connected using slower InfiniBand fabrics. In summary, the
general approach across different state-of-the-art architectures
was to provide extremely high bandwidth among CUs in a
group. Initially, this approach was effective since most of the
workloads could be contained inside a group, but with the
increasing scale of DDL model and dataset sizes, research has
highlighted the challenges stemming from bandwidth discrep-
ancies between intra-group and inter-group links. Collective
operation becomes bottlenecked at the slower inter-server
links, resulting in higher communication costs [1]. To address
this challenge, Nvidia’s latest release, the H100-SuperPOD
architecture, introduces an additional layer of NVSwitches
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and NVLinks, forming an all-NVLink connected topology
to provide uniform high bandwidth among GPUs within the
reach of the electrical links.

2. Reconfigurable Network Architectures

Recent research studies have focused on integrating optical
switching technologies into DCs to enhance their flexibility
[21]. Some examples include using MEMS-based optical
circuit switches (OCSs) to address traffic imbalances in DC
workloads, which often exhibit temporal and spatial locali-
ties [22]. These OCSs enable the dynamic allocation of link
bandwidth to traffic hotspots using spatial switching, which
involves simultaneously switching all wavelength channels
from input to output ports. Another approach involves using
fast optical switches [23] or fast tunable transceivers [24] for
more rapid bandwidth reconfiguration. However, frequent
network reconfiguration could lead to significant overhead in
the control plane and has been shown to yield limited benefits
in DC settings [25–27].

As the use of accelerator clusters becomes prevalent within
DC and HPC systems, this trend toward optical switching
has also been extended to accelerator network architectures.
In Google’s latest TPUv4 Pod [16], OCSs are employed to
connect outer wrap-around links for the 3D-torus base blocks,
enabling topology engineering for different job mappings and
training parallelisms. Additionally, other OCS-based reconfig-
urable accelerator systems for distributed learning applications
have been proposed [28–30]. However, these MEMS-based
OCSs lack the capability to selectively route individual wave-
lengths in the wavelength domain, which restricts switching
granularity, particularly in DWDM architectures. The Flex-
LIONS architecture uses a combination of arrayed waveguide
grating router (AWGR) and Mach–Zehnder switches (MZSs)
to enable the reconfiguration of individual wavelengths in
the optical domain while maintaining a static all-to-all GPU
interconnect [31]. However, scaling the number of CUs in
an all-to-all fashion is limited by the finite number of wave-
lengths per transmitter. To address this limitation, a commonly
employed approach is to introduce hierarchy into the system.
The SiPAC architecture [18] implements a connection scheme
based on the BCube topology but utilizes micro-resonator-
based WSSs to route DWDM wavelengths. This approach
enables the realization of a multi-dimensional all-to-all net-
work in the optical domain, which enables scaling beyond the
limitations of a fully all-to-all network.

B. Collective Communication in DDL Workloads

DDL relies on collective communication to synchronize the
intermediary results of each individual CU within the distrib-
uted computing cluster. The specific communication pattern
varies depending on the type of operation involved in different
parallelization strategies. A dominant collective operation in
data parallelism and certain tensor model parallelisms [32]
is the all-reduce operation, where each CU has a data buffer
containing the outcomes obtained by executing a point-
wise calculation on the corresponding index across all CUs
[33]. Other collective operations, such as the reduce-scatter,

all-gather, can be derived from all-reduce (i.e., all-reduce
can be decomposed into reduce-scatter and all-gather) with
modifications to the transmission pattern and operations
performed. Therefore, we will mainly focus on the all-reduce
operation in this study. Other collective operations, such as
primitive all-to-all, have been evaluated in the static cases in
[18]. Many algorithms for all-reduce have been proposed in
the past, including ring-based [34], hierarchical ring-based
[35], and mesh-based [36], each with different latency versus
bandwidth trade-offs. These algorithms are oblivious to the
underlying physical topologies and rely on pre-configured
templates designed for specific collective topologies (i.e., ring,
hierarchical-ring, and mesh topologies). The traffic pattern
formed by the particular collective algorithm is therefore
relatively stable across the iterations of the training process.
We propose an all-reduce collective algorithm co-designed
with the Flex-SiPAC physical topology, leveraging the optical
multicasting and wavelength reconfiguration capabilities of our
proposed optical hardware.

3. Flex-SiPAC ARCHITECTURE

In this section, we describe the Flex-SiPAC design, high-
lighting the details of the SiP technologies employed in this
architecture. All mathematical notations are summarized in
Table 1.

A. Topology Design

The Flex-SiPAC architecture maintains the same link-level
connections as the SiPAC [18] architecture, which is based on
the BCube physical topology [37]. SiPAC(r , l ) is a recursively
defined topology where r and l represents the switch radix and
the current level/dimension in the topology. The base unit
of level l = 0 consists of a single r -port WSS connecting r
disaggregated CUs. According to the recurrence relation, for
each level l > 0, SiPAC(r , l ) is constructed by connecting r l

r -port WSSs, each of which connects r SiPAC(r , l − 1) units,
as illustrated in Fig. 2(a). Each CU is therefore equipped with
l + 1 optical ports, which is equivalent to the number of levels
in the topology as well as the diameter of the topology. Similar
to BCube, CUs in Flex-SiPAC serves both as end hosts and
relay nodes. To minimize the impact of traffic relaying, our

Table 1. List of Mathematical Symbols and Their
Respective Descriptions

Notation Description

r Switch radix
l Level index in the Flex-SiPAC topology, l ∈ [0, L − 1],

where L =max(l)+ 1
w Number of tx/rx wavelengths per transceiver
N Number of CUs in the topology
M Number of WSSs in the topology
P Number of jobs mapped to the topology
U Set of CUs in job i : U = {ui }, i ∈ [0, P − 1]
S Set of WSSs in level l : S = {s l }, l ∈ [0, L − 1]
T Traffic matrix: T = [tij] ∈RN×N , tij = 0, ∀i = j
3 Number of wavelengths among each CU-pair (through

l th level WSS):3= [λ(l)ij ] ∈RN×N, λij = 0, ∀i = j
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Fig. 2. (a) Flex-SiPAC architecture based on the recursive BCube topology [37]. The l th level is constructed from r l r -port switches and
r (l − 1)th level units. (b) Example Flex-SiPAC(r = 2, L = 2) network showing two port connections per CU and full connectivity in level 0.

co-designed collective algorithm (Section 4) enables each CU
to communicate only with its immediate neighbors in each
time step under uniform job mapping. When transit traffic
is required, the algorithm ensures that the transit message
traverses the fewest intermediate hops before an operation
(i.e., reduction) is performed.

In the Flex-SiPAC architecture, the electronic packet
switches (EPSs) are replaced with reconfigurable WSSs, and
the comb-source driven transceiver architecture on each CU is
redesigned to incorporate reconfigurability at the endpoints.
Initially, the wavelengths from each transmitter are uniformly
distributed to each output port, and the WSS in each dimen-
sion uniformly routes the wavelengths to all directly connected
neighbors. It should be noted that current comb-driven laser
sources already offer 160 wavelengths [38], and silicon pho-
tonic modulators have achieved a data rate of 128 Gb/s per
wavelength [39]. Scalable micro-ring resonator (MRR) switch
designs have also demonstrated feasibility for port counts up
to 128 [40]. However, achieving these numbers altogether
requires addressing several challenges, including managing
insertion loss, handling temperature variations, engineering
the MRR’s free spectral range (FSR) to align with the wave-
lengths, and scaling the switch port count. These benchmarks
can provide valuable references for future scalability while
acknowledging the associated challenges. Figure 3 illustrates
the projected trend for future bandwidth scaling as a function
of the switch radix used in the Flex-SiPAC architecture. Under
a uniform wavelength distribution, the per-link bandwidth can
reach up to 4 Tb/s. Since each CU in a SiPAC(r , l) can reach
(r − 1) direct neighbors via wavelength routing in a single
dimension, the CU-to-CU direct bandwidth can reach up to
256 Gb/s when the switch radix is 16. The WSS radix used is

Fig. 3. Flex-SiPAC bandwidth scaling under uniform distribution
of wavelengths.

typically small since the number of endpoints scales exponen-
tially with the number of levels in the topology. For example, a
radix 16 switch could achieve a topology size of 256 for L = 2
and 4096 for L = 3. Furthermore, the ability to flexibly tune
the wavelengths at both the transceiver and the switch allows
us to achieve a much larger design space that is characterized by
the entire space under the dotted horizontal curves in Fig. 3 for
a given link bandwidth.

B. SiP Technologies for Flex-SiPAC

1. SiP Wavelength Reconfigurable Switches

The WSS proposed in the SiPAC architecture [18] has the
ability to route multiple wavelengths from a single input port
to each of its directly connected neighbors, creating a high-
bandwidth all-to-all optical topology within each dimension.
This feature enables efficient optical multicasting, improving
the communication efficiency of collective operations. In
this work, we enhance this design by incorporating spatial
reconfigurability into the WSSs. Our objective is to route
a flexible number of incoming wavelengths from any input
port to any output port while avoiding coherent crosstalk
at each output bus. This approach allows us to achieve sim-
ilar benefits to previous studies on reconfigurable networks
[16,28,29,41–43], but in the wavelength domain with finer
granularity. We propose a few options for this switch design.
One possible implementation to achieve this functionality is
through the use of a double-crosspoint micro-resonator based
switch, which can be explored further based on the work in
[44]. This implementation has an added advantage in that it
can be designed to oversubscribe the number of wavelength-
selective cells to accommodate the broadband wavelengths
from the reconfigurable transceivers that will be introduced
next. Another approach involves replacing regular micro-ring-
based resonators in a cross-bar switch with tunable switching
cells, where the free-spectral-ranges (FSR) of each switch cell
can be adjusted to drop a specific number of wavelengths.
The work on these switching devices is ongoing and will be
presented in subsequent publications.

2. SiP Wavelength Reconfigurable Transceivers

The integration of optical transceiver ports directly onto
chip interposers eliminates the need for expensive network
interface cards (NICs). In our design, each CU in Flex-
SiPAC is equipped with an embedded comb-driven DWDM
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transceiver, such as the one described in [45]. In addition
to providing massively parallel DWDM bandwidths, the
transceivers are augmented by introducing wavelength recon-
figurability to dynamically route wavelengths across different
output ports. By default, the DWDM wavelengths are evenly
distributed across fibers that connect to CUs in different
dimensions. However, if the traffic pattern demands higher
bandwidth than what a single dimension can support, we can
configure the transceivers to combine wavelengths from dif-
ferent output ports and transmit them through a single output
port.

To achieve this, we incorporate a reconfigurable (de)-
interleaving structure after the embedded transceiver that splits
the original single fiber output into multiple fiber outputs.
Figure 4(a) illustrates an architectural example of such a de-
interleaving structure design, where the central broadband
de-interleaver is assisted by several balanced Mach–Zehnder
interferometers (MZIs) to route wavelengths to different paths.
In this 1× 2 transceiver configuration, modulated DWDM
wavelengths entering the de-interleaving structure can be
configured to travel through different light paths by tuning
each of the MZIs. For an evenly split distribution, the wave-
lengths are routed through the center broadband de-interleaver
[Fig. 4(b)]. The specific implementation of this de-interleaving
structure can vary based on system requirements. Different
wavelength interleaving schemes, such as odd-even interleaving
[46] or band-interleaving [47,48], can be employed. When we
need to redirect wavelengths from the second output port to
the first, we can tune the MZIs accordingly so that all wave-
lengths are routed through the upper branch, bypassing the
broadband de-interleaver. Symmetrical operations can be per-
formed for routing all wavelengths to the second output port.
This reconfigurable de-interleaving structure serves as a base
unit that can be cascaded into multiple stages, hierarchically
achieving more reconfigurable output ports. The number of
ports required is equivalent to the number of levels in Flex-
SiPAC, which is typically small (e.g., 2 or 3). The combined
effect of this tunable transceiver-switch co-design allows us to
flexibly reconfigure wavelengths across different dimensions as
well as among different endpoints within a single dimension.
Ongoing research is being conducted on these reconfigurable
transceiver implementations, and the results will be presented
in future works.

Fig. 4. (a) Example of a 1× 2 wavelength reconfigurable trans-
ceiver architecture. (b) Evenly distributing incoming modulated
wavelengths across the two output ports.

C. Topology Engineering in the Wavelength Domain

We now formalize the wavelength granularity bandwidth steer-
ing algorithm within the context of a Flex-SiPAC network. We
begin by assuming that jobs are mapped sequentially onto the
cluster, with each job selecting a collective algorithm such as
ring, hierarchical-ring, mesh, or SiPCO [19] to carry out the
collective operation based on the parallelism of interest. For
example, when four jobs of size four are sequentially mapped
onto a Flex-SiPAC (r = 4, l = 1) using the mesh algorithm,
each sub-traffic matrix forms a full mesh across the four CUs
under the same level 0 WSS. However, when two jobs of size
eight are assigned, each sub-traffic matrix establishes a full
mesh across the eight CUs, spanning two levels of WSSs. Given
the sub-traffic matrix formed by the selected collective algo-
rithm in each job, we construct a full topology traffic matrix
T = [tij] by aggregating these sub-traffic matrices. These initial
traffic matrices used for topology optimization are simplified
representations of real traffic matrices to redirect bandwidth
that initially spans CUs across multiple jobs to within CUs
belonging to the same job. In the case of Flex-SiPAC, we pick
SiPCO to restrict communication to directly connected neigh-
bors. This ensures that tij = 0, ∀i, j : λij = 0. We then filter
out any traffic that crosses CUs between different jobs. Our
objective is twofold: (1) determining how the wavelengths
from the input port of the transceiver should be allocated to
each output port and (2) configuring the switch states in each
dimension to maximize network throughput. We describe our
desired topology in the wavelength domain as 3= [λij]. To
align the topology with the traffic matrix, we aim to allocate
wavelengths between CUs in proportion to the volume of
traffic exchanged between them. To achieve this, we employ an
ILP formulation as expressed in Eq. (1).

The decision variable λij represents the number of wave-
lengths connecting CUi to CU j . The objective of the
optimization problem involves a quadratic objective func-
tion that minimizes the least square difference between the
wavelength topology and the target traffic matrix. The selec-
tion of a quadratic objective function is driven by its convex
nature, which facilitates the convergence of the optimiza-
tion algorithm. This optimization is subject to (1) ingress
and (2) egress constraints, which ensures that the number of
wavelengths remains within the limits of the available trans-
mitter/receiver wavelengths. Since this optimization considers
the globally available bandwidth across all dimensions, the
solution to the ILP problem corresponds to the total number
of wavelengths per CU-pair. To reduce complexity, we relax
the last constraint from an integer to a continuous decision
variable and employ a heuristic approach to obtain a solution
that closely approximates the optimal solution. The heuristic
consists of two steps: proper rounding of the decision variables
and an iterative assignment process for CUs that have not
been assigned the full set of w wavelengths. In the first step,
we round the decision variables to their nearest integer values.
Next, we iterate over each CU that requires additional wave-
lengths, assigning weights based on the difference between the
currently allocated wavelengths and the ideal number of wave-
lengths. The wavelengths are then allocated one-at-a-time in
a round-robin fashion based on decreasing weight values. We
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note that the wavelength assignment at each transceiver port
and WSS is not trivial. During each step of this wavelength
assignment process, we need to ensure that the ingress and
egress wavelength constraints as well as the wavelength multi-
plexing constraints are satisfied across each CU in the global
topology. We continue this iterative process until every CU has
been assigned the full set of w transmitting wavelengths. The
wavelength routing permutation in each WSS can be solved by
constructing a vertex-coloring problem, with individual signals
as nodes that are connected based on distinctive properties
such as input, output, and wavelength. Algorithms such as
DSatur [49] could be used to solve this problem:

min
3

N−1∑
i=0

N−1∑
j=0

(λij − tij)2,

s.t. 1)
N∑

j=1

λij ≤w, ∀ 0≤ i ≤ N − 1,

2)
N∑

i=1

λij ≤w, ∀ 0≤ j ≤ N − 1,

3) λii = 0, λij ∈Z, ∀ i, j ∈ {0, . . . , N − 1}. (1)

To translate the heuristic solution into network control,
we can partition the process into two key components: trans-
ceiver tuning and switch tuning. This requires a centralized
SDN-enabled network controller, which is responsible for
coordinating the updates to transceivers and switches. We
note that controller with similar functionality has already been
implemented commercially [16]. The network controller is
also responsible for gathering information about the mapping
of jobs onto the topology, as well as the selection of collective
algorithms by each job. At each reconfiguration time step t ,
the network controller carries out the optimization heuristic to
determine the optimal solution for bandwidth allocation λij[t].
We iterate through all the CU-pair and determine whether the
current wavelength allocation scheme is different from the one
in the previous time step λij[t − 1]. If so, we determine the
number of wavelengths that need to be switched and configure
both the transceiver and WSS to the target states. Our objec-
tive is to minimize modifications to the existing wavelength
allocation by assigning wavelengths that have not yet been
assigned a destination to the current allocation. It is important
to note that we assume the reconfiguration frequency to be
on a once-per-workload-arrival basis since the traffic pattern
remains relatively stable within each training process as men-
tioned in Section 2.B. This assumption also aligns with similar
observations made in [26,27].

4. CO-DESIGNED COLLECTIVE ALGORITHM

The Flex-SiPCO collective algorithm is an extension to the
SiPCO collective algorithm [18] and takes job mapping and
bandwidth reconfiguration into consideration. It follows a
similar design principle as the SiPCO algorithm, leverag-
ing the advantages of the Flex-SiPAC’s multi-port property

and utilizing all available wavelengths in each dimension at
every timestep. An example of the original SiPCO all-reduce
algorithm can be found in [19]. We describe the Flex-SiPCO
all-reduce as an example, noting that other collective oper-
ations such as all-gather and reduce-scatter can be derived
from all-reduce, and a similar design principle can be applied
to all-to-all communication. We assume that job sizes are an
integer multiple of r as a job size smaller or equal to r would
reduce this algorithm to the mesh-based algorithm. For each
job mapped onto the topology, we first determine the maxi-
mum level (l̂ ) of switches s l̂ , l̂ ∈ [1, L] removing, which will
disconnect CUs in this job. This step ensures that we use the
appropriate levels of WSS in the subsequent steps. Given the
current job’s CU placement and the reconfigured topology
information, we next identify a list of CUs connected to the
same l̂ level of switches but are not part of the current job. This
step ensures that the algorithm can be applied to any general
job mapping. The remaining steps of the algorithm closely
follow the original SiPCO algorithm in that the local message
is evenly partitioned into r l̂ chunks. We proceed by organiz-
ing these partitioned chunks into l̂ groups, with each group
consisting of r chunks. We label the chunks with their group
index as g ∈ [0, l̂ − 1] and chunk index as c ∈ [0, r − 1].
Initially, each CU sends its chunks from group g = l mod l̂
using link l , where l ranges from 0 to l̂ − 1, to a maximum of
r directly connected destination CUs sharing the same level
of WSS. CUs that are listed as non-communicating CUs are
excluded from this process. The chunks originally destined for
the excluded CUs are rerouted as transit chunks to the CUs at
the same indices as the transmitting CU in the (l + 1)mod (l̂)
level, preferably with a reconfigured link to provide higher
bandwidth. Subsequently, each CU performs a local reduction
operation on all the received chunks (including transit chunks
in their respective indices). In the following v ∈ [1, l̂ ] steps, we
repeat the previous step, but with a rotation of the l̂ groups of
r chunks through the l̂ connected links. This rotation ensures
that chunks in group g = (v + l)mod l̂ are sent through
link l . The rerouted chunks go through the same rotation (with
a constant offset) and reduction with the other rerouted chunks
at the corresponding index. In these steps, we leverage the mul-
ticasting capability of the WSS to multicast the already reduced
chunk in group g to directly connected neighbors within the
same job. This process is repeated for l̂ − 1 steps, resulting in
each CU possessing l̂ fully reduced chunks. In the last step, the
l̂ chunks in group g = (l̂ + l)mod (l̂) are multicast using links
in level l so that each CU now has r l̂ chunks from all the CUs
in the same job, completing the all-reduce process. We then
apply this algorithm to all the jobs.

The complete algorithm is presented in Algorithm 1. The
latency cost of this algorithm can be represented by the α + nβ
model where α is the link latency per time step, β is the transfer
time per byte, and n is the message size on a link per unit step
[50]. Under this model, the overall latency is upper bounded

by (l̂ + 1)
(
α + (r − 1) 2n

r l̂
β
)

since each link transmits at most

(r − 1) 2n
r l̂

bytes during each of the l̂ + 1 steps. The latency
term is constant, and the bandwidth term is close to optimal
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Algorithm 1. Flex-SiPCO All-Reduce Algorithm

Input: r ,U = {ui |i ∈ [0, P − 1]}, 3= [λij] ∈RN×N

1: for each job i ∈ [0, P − 1] do
2: ui← Set of CUs in job i
3: l̂←max{l |removing s l disconnects ui } + 1
4: for each CUx ∈ ui , i ∈ [0, P − 1] do
5: Partition the local message into r l̂ evenly sized chunks
6: C c

g ← chunk c ∈ [0, r − 1] in group g ∈ [0, l̂ − 1]
7: F Label each r contiguous chunks with index

g ∈ [0, l̂ − 1]
8: F Label each chunk within each group

c ∈ [0, r − 1]
9: for each l ∈ [0, l̂ − 1] do
10: for each y ∈ [0, r − 1]|λl

xy > 0 do
11: Send {C c

l } using link l→ CUy , ∀ CUy ∈ ui

12: Send {C c
l } using link (l + 1)mod(l̂), ∀ CUy /∈ ui

13: for step v ∈ [1, l̂ ] do
14: for each CUx ∈ ui , i ∈ [0, P − 1] do
15: for each l ∈ [0, l̂ − 1] do
16: g = (v + l)mod l̂
17: rc= reduced chunks, fc= transit chunks
18: Bcast {C rc

g } using link l→ CUy , ∀CUy ∈ ui ,
λl

xy > 0

19: Forward {C fc
g } to level (l + 1)mod (l̂)

as we scale to larger values of r . In summary, Flex-SiPCO is a
generalization of the previously proposed SiPCO algorithm
but takes job mapping and topology reconfiguration into con-
sideration. When the job distribution matches the topology
size, the algorithm reduces to the original SiPCO algorithm.

5. TESTBED EXPERIMENTS

We conduct two small-scale testbed experiments to demon-
strate (1) the feasibility of the wavelength reconfigurable
switching primitive and (2) the system-level benefit of
wavelength reconfiguration in Flex-SiPAC.

A. Optical Testbed Experiment

Our first experimental demonstration highlights a hardware
implementation for achieving multi-wavelength reconfigura-
tion via a spatial-wavelength selective switch. The ability to
selectively route an arbitrary number of wavelengths from any
input port to any output port supports flexible bandwidth
allocation that facilitates efficient collective communication
in the Flex-SiPAC architecture. Our testbed setup, as depicted
in Fig. 5(a), employs an array of four continuous-wavelength
tunable laser sources (CW-TLSs) spaced 200 GHz apart. The
laser wavelengths are modulated with a 16 Gb/s PRBS31 using
a linear reference modulator. These modulated signals are
then coupled into the 4× 4× 4λ spatial wavelength-selective
chip [Figs. 5(b) and 5(c)]. As a baseline, the switch is capable
of dropping one wavelength per output port, simulating the
all-to-all optical connection for each dimension in Flex-SiPAC.
The output signals are amplified using an erbium-doped fiber
amplifier (EDFA) to compensate for losses. Polarization con-
trollers (PCs) are used to maximize the optical power coupled

into the chips, and variable optical attenuators (VOAs) are used
to reduce power at the photodetector (PD). Optical spectra
measurements are taken at 10 MHz resolution using an optical
spectrum analyzer (OSA).

To showcase the wavelength reconfigurability of our system,
we thermo-optically tune the switch to two distinct configura-
tions. In the first configuration, all wavelengths are directed to
a single output port [Fig. 5(d)]. In the second configuration,
the four wavelengths are directed to three output ports, with
the second output port receiving two wavelengths [Fig. 5(f )].
Figures 5(e), 5(g), and 5(i) depict the captured optical spectra
at each output port for each configuration, respectively. We
observe that our channels of interest appear at their respective
output ports with a crosstalk suppression of 23 dB. We also
observe open eyes in all cases [Fig. 5(j)], illustrating error-free
operation at 16 Gb/s. These results exemplify the feasibility
of the multi-wavelength reconfiguration primitive required to
achieve the Flex-SiPAC architecture in the switching plane.
Ongoing research is being conducted to demonstrate the
feasibility of reconfiguration also in the transceiver plane as
mentioned in Section 3.B.2.

B. System Testbed Experiment

We then demonstrate the system-level performance of a small-
scale Flex-SiPAC (r = 2, L = 2) architecture using 4 Nvidia
Tesla M40 GPUs with RoCEv2 enabled Mellanox ConnectX-4
NICs. The testbed setup is shown in Fig. 6(a). To emulate
parallel wavelength transmission, each GPU is configured
to have a virtual bridge equipped with two 10 Gb/s SFP+
transceivers sending at two different wavelengths (1550.12 nm
and 1556.55 nm). Due to resource limitations, we emulate
the transparent switching of WSSs by directly connecting
the virtual bridges using fibers. We deployed two TensorFlow
MobileNetV2 workloads on the cluster, assigning each job to a
pair of sequential GPUs.

In the static SiPAC configuration, the second level links
remain idle since there is no inter-job traffic that passes through
them. To emulate the wavelength reconfiguration process in
Flex-SiPAC, we employ link aggregation groups (LAGs) in
the Pica8 switch [Fig. 6(b)] among GPUs mapped to the same
job and generate random background traffic to ensure suffi-
cient link utilization to activate the LAGs. We compare the
performance of Flex-SiPAC with similarly sized SiPAC (static),
EPS-based leaf-spine, and electronic BCube topologies. In
the leaf-spine topology, a single spine switch connects to two
aggregation switches, and each aggregation switch is linked to
two GPUs. The BCube topology has the same connections as
the Flex-SiPAC but with electrical switches in each level. We
use the NCCL algorithm for collective operations and run the
training workload over two epochs with a batch size of 128.
The network throughput is monitored using the Ryu SDN
OpenFlow monitoring program [Fig. 6(c)]. By redirecting
wavelengths from the second level links to the first level, we
effectively increase the bandwidth to where the traffic is con-
centrated. Flex-SiPAC demonstrates a reduction of 20%, 22%,
and 23% in job completion time (JCT) compared to static
SiPAC, BCube, and leaf-spine, respectively.
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Fig. 5. (a) Schematic of the experimental setup. Four CW tunable lasers are used to generate evenly spaced wavelengths at 200 GHz intervals.
(b), (c) The signals are modulated with a 16 Gb/s PRBS31 via a linear reference modulator and are coupled into a custom-designed 4× 4× 4λ
spatial wavelength selective switch. In the first configuration, (d) four wavelengths are routed to the same port, as shown by the optical spectra in
(e). And in the second configuration, the four input wavelengths are rerouted to three different ports with the second port getting two wavelengths,
as shown by the optical spectra in (g)–(i). The corresponding eye diagrams for each channel in the second configuration can be observed in (j).

Fig. 6. (a) Schematic testbed setup of the SiPAC (r = 2, L = 2)
and the Flex-SiPAC (r = 2, L = 2) when two jobs of equal sizes are
mapped onto the topology. (b) GPU servers connected to an EPS and
a SDN controller. (c) Throughput of the injection port under NCCL
all-reduce for the static SiPAC, Flex-SiPAC, leaf-spine, and BCube
topologies.

6. SYSTEM SCALE EVALUATION

A. Methodology

To demonstrate the scalability of our proposed architecture, we
perform extensive packet-level simulations. We use Netbench,
an event-driven, packet-level simulator [51], to evaluate the
performance of the Flex-SiPAC architecture. We expand the
original capabilities of Netbench to incorporate three addi-
tional components: (1) support for topologies with diverse
link latencies and bandwidths, (2) integration of a link-level
back-pressure based loss-less flow control mechanism [27],
and (3) handling of traffic with blocking flow starting times
(blocking flow starting times refers to the scenario where traffic

flows in the current time step cannot start until the traffic
flow from the previous time step has concluded, including the
completion of the all-reduce operation) commonly found in
collective communications. To evaluate the performance of our
proposed architecture, the system-scale evaluation comprises
two main types of comparisons. We begin by comparing it
with state-of-the-art electronic counterparts, followed by a
comparison with OCS integrated reconfigurable architectures.

1. Workloads and Job Mapping

The primary objective of this study is to assess the architectural
performance in the context of heterogeneous multi-tenant
job mapping. To accomplish this, we deploy two types of
traffic workloads while varying the number of jobs, job sizes,
and job mappings to thoroughly test the network. The first
type of traffic workload is the primitive all-reduce collective,
which represents a dominant collective operation in DDL
trainings under various parallelisms. The second type of
workload comprises realistic deep learning traces extracted
from application communication task graphs in [30]. The
simulated applications include VGG [52], Candle [53], and
Transformer (BERT) [3]. For each workload, we simulate
iterations of the collective communication, utilizing message
sizes extracted from the respective task graphs. Across all archi-
tectures, we apply the mesh-based (M) collective algorithm for
the all-reduce operations, given their efficiency in multi-port
architectures as demonstrated in [19]. As for the Flex-SiPAC
architecture, we also employ the Flex-SiPCO all-reduce algo-
rithm (F), as outlined in Section 4. We simulate the relaying
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of transit chunks by having the transit node initially accept
the transit packet and subsequently place it in the output
port queue. For each job mapping, we assume that jobs of
varying sizes are mapped sequentially onto continuous blocks
of CUs in the topology. We represent the job mapping as a
set {ui }, i ∈ [0, P − 1], where |ui | represents the number of
CUs in job i . To quantify the skewness of the job mapping
distribution, we utilize the skewness coefficient σ , defined as

σ = 1−
min(|ui |)

max(|ui |)
, ∀ i ∈ [0, P − 1]. (2)

A value of σ = 0 represents the uniform case, where all jobs are
of the same size, while σ = 1 indicates maximum skewness,
with jobs varying significantly in size.

2. Topologies

We expand upon the list of topologies described in [18,19] by
incorporating the latest additions into our evaluation. We nor-
malize the topologies using the per-CU bandwidth.

H100-SuperPOD [17]: The basic units of DGX-H100-
SuperPOD are DGX-H100 servers, each equipped with eight
H100 GPUs connected to an array of four NVSwitches using
18 server-facing NVLinks [54]. Multiple DGX-H100 serv-
ers are further interconnected through an additional layer of
NVSwitches utilizing 72 network-facing NVLinks per server.
This architecture aims to resolve the communication bottle-
neck caused by bandwidth discrepancies present in earlier
SuperPOD iterations [55]. However, its scalability is limited
by the physical distance of the NVLinks, restricting the con-
nectivity to a maximum of 256 GPUs. In our study, we adopt
the Giant Switch abstraction, assuming that SuperPODs larger
than 256 will connect to the same giant switch. We characterize
the per-CU bandwidth to be the sum of all NVLinks coming
out of a single GPU.

SiP-OCS: SiP-OCS is a reconfigurable topology proposed
in the SiP-ML DDL training framework [28]. It consists of a
layer of N GPUs with radix Q connected to another layer of
Q OCSs with radix N. For scalability, both the GPUs and the
OCSs in this topology require a large radix. In [28], the default
number of OCSs is 16. Therefore, we begin with 16 OCSs and
scale up to 64 for larger topologies. Initially, the OCSs are con-
figured to distribute bandwidth evenly among as many GPUs
as possible. After mapping the jobs onto the topology and
acquiring an estimate of the traffic matrix, an ILP formulation
that aims to maximize the minimum inverse of the completion
time is employed to inform how bandwidth should be steered
[28]. In our Netbench simulation pipeline, we implement
this estimated traffic matrix assuming a mesh-based all-to-all
operation for all jobs. The per-CU bandwidth is defined as the
sum of link bandwidths connecting to the OCS layer per GPU.

TPUv4: TPUv4 Pod, Google’s third supercomputer
designed for machine learning workloads, leverages OCSs
to dynamically reconfigure its interconnect topology. The basic
building blocks of TPUv4 Pod are TPU blocks of size 64= 43,
which are interconnected into a 3D-torus topology using elec-
trical cables. Only the TPUs positioned on the outer surface
of these blocks have optical connections to the OCS layer. A
4096 TPU cluster is formed by connecting 64 of these blocks

using 48 Palomar OCSs with 136 ports each. The OCSs can be
reconfigured to offer varying connection bandwidth among the
64 blocks. In this study, we adopt a straightforward rewiring
principle: when a job spans multiple blocks, the OCSs are
configured to evenly distribute light paths along all available
dimensions among the blocks within the same job. Since we
assume sequential job mapping onto the topology, the resulting
logical topology takes the form of extended rings along the
dimensions that connect these blocks. Here, the per-CU band-
width is defined as the cumulative bandwidth a single CU has
with its neighboring CUs.

B. Simulation Results

1. Primitive All-Reduce Workload

In this experiment, we set the topology size to 512, with a
per-CU bandwidth of 1920 Gb/s, equivalent to 60 wave-
lengths modulated at 32 Gb/s per wavelength. We varied
the message size from 1 kB to 100 MB, following common
DDL workloads [56–58]. For each topology, we employed a
range of job mapping skewness, with the job that spans the
whole topology (512 CUs, σ = 1) serving as the baseline. The
final JCT for a multi-tenant job mapping was determined
by selecting the maximum JCT among all the jobs in this
distribution. As shown in Fig. 7, the Flex-SiPAC topology
outperforms the other topologies for small message sizes and
exhibits equivalent or better support for larger message sizes
before reaching saturation. At the 1 MB data point, prior to the
latency curves reaching saturation, the Flex-SiPAC architecture
demonstrates a 26% to 29% improvement in JCT compared to
the DGX-H100 SuperPOD architecture. This improvement
can be attributed to two key factors: the Flex-SiPAC’s ability to
facilitate simultaneous direct transmissions to and from a large
number of endpoints without intermediate switch buffering,
and its ability to allocate higher bandwidth to CUs engaged in
intensive communication involved the same job. We also note
that in the context of a single job (σ = 1), both the Flex-SiPAC
topology and the Flex-SiPCO algorithm converge to the static
case. This results in SiPAC and Flex-SiPAC exhibiting iden-
tical performance. To maintain figure clarity, we omitted the
overlapping line representing the SiPAC-SiPCO combination.
Furthermore, Flex-SiPAC is able to achieve comparable net-
work performance with fewer components as it has a reduced
component count (transceivers and switches) comparing to the
other topologies [19] at given topology sizes.

2. Deep Learning Workloads

We next examine the performance of the reconfigurable
architectures using realistic DL communication workloads.
Figure 8 shows the performance of various topology-collective
combinations at 64 CUs [Fig. 8(a)] and 512 CUs [Fig. 8(b)],
both with a normalized per-CU bandwidth of 1920 Gb/s. We
map two jobs, both from the same workload but of varying job
sizes, onto the different topologies. The job size distribution
varies with a constant decrement in skewness. When examin-
ing different workloads, we find that the TPUv4 architecture
exhibits worse performance than the other architectures on the
VGG workload, especially at higher job mapping skewness. In
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Fig. 7. JCT of all-reduce collective communications for 512 CUs across different message sizes and different job mapping skewness (σ ) using
mesh-based (M) and Flex-SiPCO (F) all-reduce algorithms.

Fig. 8. JCT of different topology-algorithm combinations at (a) N = 64 and (b) N = 512 for three types of DDL workloads at various job
mapping skewness (σ ).

scenarios where job mapping distributions are more skewed
(with σ approaching 1), a larger number of CUs need to com-
municate with each other. The TPUv4 architecture’s 3D-torus
construction introduces a large hop count to reach a large
number of destinations, resulting in increased latency costs and
intermediate CU buffering. This effect becomes particularly
apparent when considering the VGG workload, which consists
of relatively smaller message sizes that are more sensitive to
latency. However, the reconfigured Flex-SiPAC architecture
demonstrates distinct advantages in this scenario. Its multi-
wavelength simultaneous transmission capability enables
efficient communication to a larger number of destinations
with minimal hop count, effectively reducing the latency cost
associated with mesh-based operations. Conversely, when jobs
are uniformly mapped (with σ close to 0), a significant portion
of links remain uninvolved in communication. In the worst-
case scenario, half of the CUs may not communicate with the
other half, resulting in idle dedicated direct-connect links.
Despite efforts to reconfigure the wavelengths, the redirected
bandwidth remains limited to links connecting CUs within the
same job to their directly connected neighbors. For mesh-based
algorithms that require simultaneous transmission to all CUs
within a job, this necessitates multi-hop transmission and
intermediate CU buffering, leading to congestion. In this con-
text, the combination of the mesh algorithm with Flex-SiPAC
demonstrates worse performance. This characteristic becomes

evident when analyzing the results for the candle and trans-
former workloads, which feature relatively larger per-iteration
message sizes. However, Flex-SiPCO effectively addresses
this concern by enabling transmissions exclusively to directly
connected neighbors. Although this introduces slightly larger
per time-step message chunks, it results in reduced overall
congestion and queuing delays, striking a beneficial trade-off.
In summary, we observe that the Flex-SiPAC-Flex-SiPCO
co-design is able to outperform the other topology-collective
combinations across different topology sizes and job mapping
skewness.

Scalability Analysis: We assess the scalability of the Flex-
SiPAC architecture by comparing it to the other switch-based
architectures, normalizing the results based on their switch
radix, since it is a key factor when determining the maximum
attainable scale of a reconfigurable network. For DGX-
SuperPOD, we use the radix of the top-layer NVSwitch
and assume a constant per-server aggregation of eight GPUs.
From Fig. 9, we observe that SiP-OCS exhibits poor scalabil-
ity as its current architecture assumes that each OCS has the
same number of ports as the CUs in the flat topology. The
DGX-H100 scales slightly better than SiP-OCS as it has an
extra layer of server aggregation. TPUv4 demonstrates better
scalability due to its topology construction: the building blocks
of 64 TPUs are fixed, and the OCS radix limits the number of
wrap-around links that can be connected, resulting in higher
aggregation under the OCS. A 2-level Flex-SiPAC exhibits
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Fig. 9. Network size as a function of switch radix for the reconfig-
urable accelerator network topologies.

improved scalability compared to TPUv4 after r = 32 as the
number of endpoints scale exponentially with base r . And
lastly, the 3-level Flex-SiPAC scales more effectively due to the
exponential increase in endpoints with the number of levels. A
3-level Flex-SiPAC using WSS radix of 16 would give us 4096
endpoint CUs (the same size as the production TPUv4 cluster)
and is therefore enough to construct an accelerator cluster in a
data center network with a reasonable switch radix and a small
network diameter. The bisection bandwidth of the Flex-SiPAC
architecture scales proportionally with the number of end-
points because all CUs have one connection to the top-layer
WSS in the other half of the topology.

7. CONCLUSION

In this study, we describe the Flex-SiPAC accelerator network
architecture designed to facilitate efficient collective commu-
nication in DDL. By leveraging wavelength reconfigurable
transceivers and WSSs, Flex-SiPAC achieves a highly flexi-
ble multi-dimensional all-to-all network. Our experimental
testbed demonstrates the WSS’s ability to achieve compact and
arbitrary bandwidth steering, thereby validating the feasibility
of wavelength reconfiguration in the Flex-SiPAC architecture.
In addition to the physical hardware, we also proposed an
all-reduce collective algorithm that would efficiently use the
bandwidth in the Flex-SiPAC architecture. To further evaluate
Flex-SiPAC’s performance, we conduct realistic packet-level
simulations, considering factors such as topology size, message
size, and job mapping skewness. The results of our system-
level simulations demonstrate that the topology-algorithm
co-design is able to achieve a 26% to 29% reduction in com-
munication time compared to current state-of-the-art compute
clusters in representative collective communications.
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