
Flexible Photonic Memory Pooling Architecture
For Efficient Compute Resource Allocation

Zhenguo Wu1 and Keren Bergman1

1 Department of Electrical Engineering, Columbia University, 500 W 120th St., New York, New York, USA. 10027
zw2542@columbia.edu

Abstract: We present a photonic memory pooling architecture and a co-designed opti-
mization methodology for flexible allocation of compute, memory, and network resources.
We demonstrate up to 5.4× to 7.5× improvements in DL training and inference time.
© 2025 The Author(s)

1. Introduction

The rapid advancement of artificial intelligence applications has created diverse computational requirements for
computing systems. Specifically, the training and inference of large-scale deep learning (DL) models have diverse
demands on compute power, memory capacity, and memory bandwidth. Current compute racks mainly consist of
computing units (CUs) that are connected to a fixed amount of high-bandwidth memory (HBM), limiting their
ability to adapt to changing demands. To enable more efficient use of compute and memory resources, memory
pooling has been proposed, where CUs are connected to a shared pool of memory units (MU) for dynamic memory
allocation. Current memory pooling approaches generally use local HBMs as high-bandwidth suppliers, while
slower remote MUs (e.g., DDR, GDDR) connected via a network fabric are used as capacity expanders. One
reason for having the memory hierarchy is the higher latency introduced by the networking layer when accessing
remote memory pools. Another reason for this setup is that HBM’s massive pin count is limited by the physical
length of electrical traces, requiring it to be placed near the compute die, which has limited periphery length.

In this work, we present a Silicon Photonic Accelerated Memory-Pooling architecture (SiPAM). SiPAM ex-
pands the current memory pooling design space by leveraging embedded silicon photonic (SiP) I/Os to create
a unified high-bandwidth domain for both memory and network data movement. We propose a co-designed op-
timization methodology to dynamically allocate compute power, memory capacity, and memory bandwidth for
different workloads. We validate the SiPAM architecture and optimization methodology using an analytical DL
evaluation framework. Evaluation results demonstrate 5.4× to 7.5× improvements in training and inference com-
pletion time compared to Nvidia H100 based compute system connected over NVLink fabric on DL workloads.

2. System Architecture

The SiPAM architecture adopts SiPAC’s physical topology design [1] by using Optical Circuit Switches (OCS)
and Dense Wavelength Division Multiplexed (DWDM) links to replace electrical Top-of-Rack (ToR) switches and
links (Fig.1a), achieving a multi-dimensional all-to-all topology. Additionally, it adopts the intra-rack resource
disaggregation model [2] by replacing some of the compute trays in a rack with memory trays containing remote
MUs (Fig.1a,b). The packet-switch-less design eliminates intermediate electrical-to-optical conversions and data
buffering, reducing in-network delays for low-latency remote memory access.

Fig. 1: Schematic of SiPAM architecture adopting (a) the SiPAC [1] physical topology and (b) the intra-rack
resource disaggregation model with (c) embedded SiP I/Os around each compute die, replacing local HBMs.

The compute architecture is designed with the compute die’s shoreline width as a critical resource. Recent works
on silicon photonic chip I/O have demonstrated embedded SiP chip delivering > 2 TB/s of bandwidth within



dimensions of 8.10mm× 8.62mm [3]. This achieves HBM-comparable bandwidth without distance limitations,
making it feasible to connect larger pools of remote HBMs to increase both capacity and bandwidth. Therefore,
SiPAM directly embeds high bandwidth SiP I/Os [3] along the compute die’s periphery, fully replacing HBMs
and high-speed inter-CU networking interfaces (Fig. 1c) to create a high-bandwidth communication domain for
both memory and network data movement. Each SiP I/O can be flexibly allocated for memory access or network
communication through an optically switched fabric, with a one-time reconfiguration before each workload starts,
guided by our co-designed optimization methodology. To interface with the multiple SiP I/Os per CU, we extend
the SiPAC design by adding rails of OCSes, ensuring full memory bandwidth to the memory pool when needed.
For the memory pool, while we do not specify a particular memory interface in this work, CXL [4] is an example
memory semantic interconnect showing promise for future adaptation to optical communication. We acknowledge
that time-of-flight delays and interface protocol overhead will introduce additional latency compared to directly
attaching HBMs around the compute die. However, a recent study on CXL interfaces has shown that this increased
memory latency can be entirely mitigated by increasing bandwidth when the memory system is fully loaded [4].

3. Optimization Methodology

We propose an optimization methodology to dynamically allocate compute power, memory bandwidth, and mem-
ory capacity for a given workload. First, given the peak compute floating-point operation per second (FLOPs/s),
Fpeak, of the CU (Fig.2a) and the arithmetic intensity, Iw, of the workload (Fig.2b), the minimum required mem-
ory bandwidth can be calculated as Breq = Fpeak/Iw which corresponds to the ridge point on the roofline plot
(Fig.2c). We assume that this ridge point stays invariant with increasing number of CUs, meaning both com-
pute power and memory bandwidth increase proportionally as additional CUs are introduced. Each MU in the
memory pool provides a fixed bandwidth of Bm, allowing us to determine the total number of required MUs:
Nm = ⌈Breq/Bm⌉ (Fig.2d). From this, we can determine the number of SiP I/Os allocated for the memory pool:
NIO,m = ⌈(NmBm)/BIO⌉, where BIO is the bandwidth per SiP I/O (Fig.2e). Any remaining I/Os will be used for
connecting to other CUs in the SiPAC topology. Next, we estimate the number of CUs needed to fit the workload
as: Nc =Cw/(NmCm) where Cw and Cm represent the size of the workload and the capacity of each MU (Fig.2f). We
then determine the parallelization strategy based on Nc. Depending on the chosen strategy, the memory capacity
and bandwidth requirements may change. In such cases, we revisit the previous steps to adjust the configuration
accordingly. This iterative process continues until a stable configuration is achieved or hitting a predefined iteration
threshold, which we consider the optimal solution. Note that Nc represents the minimum number of CUs required
to host the workload. When scaling up Nc, both compute and memory are increased proportionally, maintaining
the optimal compute-to-memory ratio.

Fig. 2: Step-by-step illustration of the optimization methodology to determine the optimal resource allocation.

4. System-Scale Evaluation

We use an analytical DL model, Calculon [5], to evaluate the performance of our proposed SiPAM architecture on
Transformer-based workloads of varying parameter count. The arithmetic intensity of each workload is estimated
as the ratio of the total number of FLOPs to the total memory bytes accessed. And the total workload size is
estimated by summing the memory requirements for weights, activations, weight gradients, activation gradients,
and optimizer states. For baseline comparison, we model the Nvidia H100 compute architecture, where each CU



has 1000 TFLOPs (float16) compute power and a fixed 80 GB of HBM (5× 16 GB) with a combined memory
bandwidth of 3000 GB/s (5× 600 GB/s). CUs in the baseline are connected within NVLink clusters of 8 at 900
GB/s and InfiniBand networks between clusters at 100 GB/s. For SiPAM, we assume that CUs have the same
compute power as the baseline and that each CU has a periphery length of 96 mm, allowing it to accommodate
up to 12 SiP I/O modules of 8 mm width [3]. For remote memory access, each MU provides 16 GB of capacity
at 600 GB/s bandwidth. In addition to HBM access latency, we incorporate an additional latency of 60 ns based
on estimates from [4] to account for intra-rack time-of-flight and other protocol overheads. We normalize the
architectures to the same per-CU bandwidth that is equivalent to the combined memory and network bandwidth
of the baseline.

From Fig.3a) and b), we observe that training workloads exhibit higher arithmetic intensity than inference, indi-
cating that they perform more FLOPs per byte of data moved from memory due to their greater computational de-
mands. Across different workloads, SiPAM’s compute intensity closely tracks each workload’s arithmetic intensity
for both training and inference, and the slight differences are due to rounding operations during optimization. In
contrast, the baseline compute intensity remains constant across different workloads since its compute-to-memory
bandwidth ratio is fixed. Fig.3c) and d) show the iteration time for training and inference normalized to SiPAM’s
iteration time for each workload. SiPAM consistently outperforms the baseline architecture by optimally allocat-
ing the needed resources based on each workload. This results in up to 5.4× to 7.5× reduction in iteration time
for training and inference, respectively. We observe that our proposed methodology is particularly effective for
memory-bound workloads, as it can provide additional memory bandwidth by connecting more MUs from the
memory pool. For workloads where the arithmetic intensity matches the compute intensity of the baseline, we
observe minimal gains from SiPAM. For compute-bound workloads, the performance improvement comes from
the optimization process allocating more CUs to the task. Overall, inference tasks benefit more from the dynamic
allocation of additional memory bandwidth, given their memory-bound nature.

Fig. 3: Arithmetic and compute intensity for training (a) and inference (b). Normalized iteration completion time
for training (c) and inference (d). The workloads shown are Transformer-based, with their parameter count indi-
cated next to each workload abbreviation.

5. Conclusion

In this work, we propose a silicon photonic based memory pooling architecture and an optimization methodology
to optimally allocate compute power, memory capacity and bandwidth. We report system-level evaluation results
that show up to 5.4× to 7.5× workload completion time improvement over Nvidia H100 based compute system.

Acknowledgments. This work is supported in part by the ARPA-E ENLITENED Program, the National Se-
curity Agency (NSA) Laboratory for Physical Sciences (LPS) Research Initiative, and the Center for Ubiquitous
Connectivity (CUbiC), and is sponsored by Semiconductor Research Corporation (SRC) and Defense Advanced
Research Projects Agency (DARPA) under the JUMP 2.0 program.

References

1. Z. Wu et al., “Flexible silicon photonic architecture for accelerating distributed deep learning,” Journal of Optical
Communications and Networking, vol. 16, no. 2, pp. A157–A168, 2024.

2. G. Michelogiannakis et al., “Efficient intra-rack resource disaggregation for hpc using co-packaged dwdm photonics,”
in 2023 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2023, pp. 158–172.

3. Y. Wang et al., “Silicon photonics chip i/o for ultra high-bandwidth and energy-efficient die-to-die connectivity,” in
2024 IEEE Custom Integrated Circuits Conference (CICC). IEEE, 2024, pp. 1–8.

4. A. Cho et al., “A case for cxl-centric server processors,” arXiv preprint arXiv:2305.05033, 2023.
5. M. Isaev et al., “Calculon: a methodology and tool for high-level co-design of systems and large language models,”

in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis,
2023, pp. 1–14.


