
Low-Power Optical Interconnects based on Resonant Silicon
Photonic Devices: Recent Advances and Challenges

Meisam Bahadori
EE Department, Columbia University

New York, NY, USA
mb3875@columbia.edu

Keren Bergman
EE Department, Columbia University

New York, NY, USA
kb2028@columbia.edu

ABSTRACT
The progressive blooming of silicon photonics technology (SiP)
over the last decade has indicated that optical interconnects may
substitute the electrical wires for data movement over short dis-
tances in the future. A key enabler is the resonant structures that
can participate in both modulation and demultiplexing of a high
throughputwavelength divisionmultiplexed (WDM) photonic link.
The optical and electro-optical properties of such devices are sub-
ject to various design considerations, operation conditions, and op-
timization procedures. We present recent technological advances
in photonic links based on resonant structures and highlight the
key challenges thatmust be overcome at a large scale. Furthermore,
we discuss how the design space of these resonant devices, down
to the geometrical parameters and fabrication errors, can affect the
performance and reliability of a photonic link.
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1 INTRODUCTION
Silicon Photonics (SiP) platform has been the subject of intensive
research for more than a decade now and its prospects continue to
emerge as it enjoys the maturity of CMOS manufacturing indus-
try [2]. SiP foundries all over the world [27] and particularly in the
US (AIM Photonics) have been developing reliable photonic design
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kits (PDKs) that include fundamental SiP building blocks such as
wavelength selective modulators and tunable filters. Microring res-
onators (MRR) are hailed as the most compact devices that can per-
form both modulation and demodulation in a wavelength division
multiplexed (WDM) transceiver design [9]. Although the use of
WDM can reduce the number of fibers carrying data, it also makes
the design of transceivers challenging [24]. It is probably accept-
able to achieve compactness at the expense of somewhat higher
transceiver cost and power consumptions. Nevertheless, these two
metrics should remain close to their actual values [61] for Datacom
applications. An increase of an order of magnitude is clearly not
acceptable. For example costs relative to bandwidth for an opti-
cal link in a data center interconnect will have to decrease from
the current ∼$5/Gbps down to <$1/Gbps [1, 3]. Additionally, the
transceiver itself must remain compact.

Silicon does not exhibit optical absorption at wavelengths in the
vicinity of 1550 nm (a transparent material) and has an indirect
bandgap. Therefore, silicon-based MRR modulators are designed
based on the “electro-refraction" principle [47]. In this type of mod-
ulators, the refractive index of the material (silicon) is alternatively
changed by applying an electrical signal, resulting in a different op-
tical path length for “0" bits and “1" bits. In 1987, Soref et al. [51]
characterized how the optical properties (index and absorption) of
Silicon change by injecting charge carriers into an undoped sam-
ple or by extracting carriers from a doped sample. Although this
phenomenon, called the plasma dispersion effect, is fast enough
to enable Gb/s modulation speed [58], it still provides a weak per-
turbation of the refractive index. In addition, unlike the thermo-
optic effects [5], the optical absorption of Silicon is also affected
through the plasma dispersion effect. In return, electro-refractive
modulators are relatively easy to fabricate, robust, and broadband.
In contrast to electro-absorptive modulators (EAM) [16], they do
not require the presence of Germanium or another absorbing ma-
terial in the silicon-on-insulator (SOI) fabrication process.

2 SILICON PHOTONIC LINKS
A photonic link is by definition equipped with a transmit unit (Tx)
and a receive unit (Rx). The link architecture based on an inte-
grated photonic platform such as Silicon Photonics can be envis-
aged as the ones presented in Fig. 1 [7, 10]. The Tx requires in-
put optical power in the form of serialized/combined optical wave-
lengths. Eachwavelength provides one channel of optical data. One
convenient solution is to use a multi-wavelength laser source such
as a comb laser source [11]. The optical power is then injected into
the Tx using vertical grating couplers or edge couplers. This pro-
cess inflicts optical loss and is unavoidable. Grating couplers with
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more than 75% coupling efficiency [54] and less than 4 dB loss [26]
have already been demonstrated.

The architecture in Fig. 1(b) consists of cascadedmicroringmod-
ulators. Eachmodulator is designated to a specificwavelength through
thermo-optic tuning of its resonance, whilemodulating light through
fast charge carrier based electro-optic effects in silicon. The out-
put data streams of all modulators are combined and multiplexed
inside the bus waveguide and extracted from the Tx unit into a
carrier fiber through another optical coupler. As can be seen in Fig.
1(b), multiplexing of optical channels in a transmitter architecture
based onMRRmodulators is achieved at no additional cost because
of the wavelength-selective property of MRRs.

The Rx unit is equipped with a wavelength demultiplexer since
WDM scheme is used [6]. Light from each channel, accompanied
by optical crosstalk [8], is incident on a photodiode, which is then
converted to electrical current. The electrical current is converted
to electrical voltage signal and amplified and finally deserialized to
recover each individual electrical data stream. Although inclusion
of a clock-and-data recovery (CDR)module is a common choice for
the Rx units, forwarded clock schemes have also been proposed for
MRR-based links [18].

(a)

(b)
Figure 1: (a) Structure of a single-λ photonic link with a mi-
croring modulator at the transmitter and no spectral filter-
ing at the receiver. (b) Anatomy of a WDM link based on
microring resonators. Multiplexing of wavelengths is easily
achieved due to the wavelength-selective nature of MRRs.
Spectral filtering is required at the receiver to select individ-
ual channels.

Figure 2(a) depicts the inter-relations of optical and electrical
parts of a link to target a specific throughput and energy/bit metric.
A link design problem can be formulated in several ways: 1) Max-
imizing the total throughput (aggregated bandwidth) of the link
by finding the best combination of number of channels and data
rate per channel for a given optical power budget; 2) minimizing
the energy/bit metric for a given throughput; 3) maximizing the

throughput for a given energy/bit metric. In [9], we showed that a
silicon photonic link under ideal electronics circuitry can provide
up to 2 Tb/s of aggregation. However, later on we included more
realistic models for the modulator drivers and TIAs based on 65nm
CMOS node and concluded a maximum supported throughput of
1.6 Tb/s for the best energy/bit metric (∼1.5 pJ/bit) [7]. In a more
recent work, we added an optimization of themicroring resonators
based on realistic fabrication limitations (e.g. the coupling gaps are
in the range of 100nm–400nm) and found out that the maximum
supported bandwidth is limited to less than 1 Tb/s [10]. Figure 2(b)
shows the result of optimization of the link for various through-
put targets and Fig. 2(c) shows the breakdown of the calculated
energy/bit metrics. This shows that both electronic and photonic
components play a significant role in determining the capacity of
a silicon photonic link.

(a)

(b) (c)
Figure 2: (a) Diagram of electrical and optical interplays for
designing and analyzing a photonic link. Both electronics
and photonics play important parts in the energy consump-
tion of the link (in units of pJ/bit). (b) A recent example of
optimizing an MRR-based silicon photonic link for various
throughputs. (c) Breakdownof energy consumption of a link
for various aggregations.

3 MICRORING MODULATORS
In 2005, it was first demonstrated that silicon MRRs can provide
adequate phase shift by taking advantage of the plasma dispersion
effect (PN or PIN diode). The device had a compact footprint (12
µm diameter) while achieved more than 10 dB of extinction ra-
tio with a low insertion loss [59]. Since then, many researchers
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have proposed various modulator designs based on MRRs for low-
power and high-speedmodulations. MRRs with free spectral range
as large as 22 nm (diameter <10 µm) have been demonstrated for
dense WDM systems, capable of operating at 15 Gb/s [50]. Dy-
namic energy consumptions as low as 7 fJ/bit have been demon-
strated for an MRR operating at 25 Gb/s with 1 V peak-to-peak
drive voltage [23]. In 2013, the first 50 Gb/s modulation at 1.96 V
peak-to-peak drive voltage for a silicon racetrackMRRwas demon-
strated [4]. In order to enhance the modulation efficiency and re-
duce the effective junction capacitance, MRRs with ZigZag [56]
and interdigitated [43] junctions have been proposed. MRRs have
also been used for higher-order amplitudemodulation formats such
as four-level pulse amplitude modulation (PAM4) [48] at 80 Gb/s
and PAM8 at 45 Gb/s [15], with a power consumption of 7 fJ/bit
and 1 fJ/bit, respectively. Due to the nonlinear spectral response
of MRR, a single PN phase shifter requires unequal voltage steps
to realize a high-order PAM. To resolve this, designs with two sep-
arate phase shifters embedded in one MRR have been proposed
[42]. Phase modulation such as binary phase shift keying (BPSK)
at 10 Gb/s has also been realized with MRRs [25]. Table 1 provides
a summary of recent notable demonstrations of microring modu-
lators.

Table 1: Notable demonstrations of SiP microring modula-
tors.

Structure Bit rate Modulation Extinction Year Ref.
(Gb/s) Format Ratio (dB)

MRR-PIN 12.5 NRZ >9 2007 [58]
MRR-PIN 15 NRZ NA 2016 [50]
MRR-PN 25 NRZ >5 2011 [23]
MRR-PN 40 PAM4 NA 2017 [42]
MRR-PN 25 NRZ 4.5 2012 [57]
MRR-PN 44 NRZ 3.01 2012 [56]
MRR-PIN 50 NRZ 4.58 2013 [4]

4 MICRORING FILTERS
The use of cascaded MRR modulators at the transmitter to achieve
WDM signaling mandates the presence of a wavelength demulti-
plexer at the receiver end. As shown in Fig. 1(b), MRRs in the form
of add-drop structures are capable of performing wavelength de-
multiplexing due to their wavelength selective spectral response.
Based on the desired passband and the rejection ratio of the filter,
first-order [8, 12–14] or higher-order [19, 32, 46, 55] add-drop fil-
ters are used. Higher order filters provide a better rejection ratio
but suffer from a higher loss in their passband.

Recently we showed that it is possible to perform an optimiza-
tion on the add-drop filters to minimize the optical power penalty
of the demultiplexing array [6]. Such optimization of microrings
requires a deeper understanding of how these structures operate.
MRRs in a demux array are subject to multiple physical and optical
constraints. For example, the radius must be large enough to pre-
vent undesired high bending losses [19], but not too large in order

to avoid interference of other resonances in the optical bandwidth
of interest. Moreover, the 3dB optical bandwidth of a ring used
in a WDM add-drop configuration should be large enough to ac-
commodate the bandwidth of the optical signal to be dropped. A
too narrow bandwidth will result in heavy, and undesired, trunca-
tion of the signal spectrum, thus distortions [9] (truncation power
penalty). However, a too large bandwidth can cause a severe optical
crosstalk problem (crosstalk power penalty) if the channel density
is high [8, 19, 39].

Under these multiple constraints, the selection of an MRR with
right parameters is not a straightforward and easy task. For ex-
ample, a larger radius results in a strong coupling of the ring to
the waveguides while at the same time it results in a smaller opti-
cal loss of the ring. Furthermore, in some cases no realistic MRR
matching all the requirements exists. In order to characterize the
design space of MRR filters, recently we developed accurate com-
pact models [49] that incorporate the effect of physical dimensions
(width, height, gap size, radius) on the optical response of first or-
der and higher order structures. Such compact models allow us
to characterize the design space of a first-order MRR as shown in
Fig. 3. In Fig. 3(a), we calculate the contours of optical loss in the
passband of the filter and gray out losses worse than 1 dB. In Fig.
3(b), the maximum extinction of the filter outside of its passband
is calculated and the values greater than -30 dB are ruled out. In
Fig. 3(c), the optical bandwidth of the passband is plotted and the
region from 10 Ghz to 50 Ghz is selected. Finally, the design space
shown in Fig. 3(d) is obtained by overlaying the contours of all the
parameters. The center point of the design space corresponds to a
radius of 9 µm and coupling gaps of 180 nm. The center point still
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Figure 3: Design space exploration of silicon-based first-
order MRR. (a) Contours of optical loss in the passband. (b)
Contours of rejection ratio outside of the passband. (c) Op-
tical bandwidth. (d) Design space. Output gap refers to the
distance between the ring and the drop waveguide.
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remains in the white zone even with the presence of small varia-
tions on the gap or radius.

5 CHALLENGES AT SCALE
Although the physical principles behind the operation of MRRs are
well-known, a significant amount of engineering effort must be put
together to make a MRR-based transceiver fully functional. Here,
we briefly review four obstacles that negatively affect the optical
performance of MRRs.

5.1 Thermal Sensitivity of MRRs
Thermal effects significantly change the optical behavior of silicon-
based devices due to the strong thermo-optic coefficient of silicon
material (dnSi/dT = 1.8×10−4 K−1) [20]. For very narrow-band op-
tical devices such as MRRs, thermal susceptibility can be signifi-
cantly detrimental, and requires accurate monitoring and control
of the temperature to maintain desired behavior and performance
over a long period of operation [17, 31, 60]. The resonance of a
typical silicon MRR is shifted by ∼10 Ghz (∼0.07 nm) for each de-
gree Kelvin change in the temperature of the MRR [34, 44]. A sin-
gle degree of temperature variation is therefore sufficient to cre-
ate significant spectral distortion of on-off keying (OOK) signals
for densewavelength-divisionmultiplexing (DWDM) systems that
employ the link architecture of Fig. 1(b). In order to experimentally
verify the sensitivity of a silicon MRR as shown in Fig. 4(a), we
put it inside a temperature chamber (oven) shown in Fig. 4(b) and
tracked the resonance wavelength by increasing the tempearture
(Fig. 4(c)). As expected, a linear relation between shift of resonance
and temperature was observed indicating a thermal sensitivity of
0.067 nm/K of the resonance.

(a) (b) (c)
Figure 4: (a) Structure of an MRR with a microheater. (b) An
oven hosting an MRR. (c) Measured shift of resonance as a
function of temperature.

The popular solution for thermal control of MRRs is based on
active thermal feedback control [40, 41] and consists of sending
an electrical current through integrated metallic or doped-silicon
basedmicro-heaters to induceOhmic heating. Thismethod of oper-
ation is based on the heat diffusion principle which is a rather slow
process. The thermo-optic bandwidth of the heater-MRR structure
is typically limited to 50–100 kHz. Recently, we investigated the
main tradeoffs between the thermo-optic bandwidth (i.e., heating
speed) and the thermo-optic efficiency (i.e., shift of resonance as
a function of heater power, in units of nm/mW) for MRRs [5] and
concluded that reaching a higher efficiency leads to a lower speed.
The rise time and fall time of thermo-optic response typically falls
on the order of micro-seconds. Such low speed response imposes

challenges in real-timemonitoring andwavelength locking ofMRRs.
On the plus side, the small thermo-optic bandwidth of theMRR can
be utilized to actuate the heater with electrical digital signals such
as pulse width modulation (PWM), hence eliminating the need for
digital to analog converters [35].

5.2 Self-heating and bistability of MRRs
Due to the resonant nature of MRRs, there is a strong build-up
of optical power inside the resonator. The enhancement of optical
power is proportional to the finesse (Q-factor) of the resonator for
a critically coupled MRR [33]. At the presence of such high opti-
cal power inside the ring, even a slight inherent absorption can
lead to a noticeable change in the temperature of the ring which
causes a thermal drift of resonance, hence deteriorating the opti-
cal OOK data. Although for the short period of a “1" bit (e.g., 100
pico-second for 10 Gb/s OOK) this effect is not tangible, for a long
stream of consecutive “1" bits it poses a severe threat to the op-
eration of both MRR modulators and filters. A recent transceiver
design has clearly pointed out this problem [52] and proposed a
thermal tuning algorithm based on the statistics of the data stream.
It is worth noting that addition ofmore electronic circuitry for such
algorithms will add-up to the overall energy consumption of the
photonic link.

5.3 Fabrication variations and nonuniformity
The spectral parameters of an MRR such as resonance wavelength,
free spectral range (FSR), and the optical bandwidth mainly de-
pend on the geometrical properties of the MRR. It is quite known
that current silicon photonic fabrication imposes variations on the
dimensions of the waveguides (typically in the range of ∼5 nm)
[21] and the radius of the ring. This results in deviations of the
resonance wavelength from the original design [36, 38] and re-
quires thermal tuning, hence degrading the energy efficiency of
the link. Furthermore, identical devices experience different vari-
ations based on their location on the silicon wafer (fabrication
nonuniformity) [37]. Therefore, in order to predict the yield of
the fabrication and include that in the optical budget of the link,
a wafer-scale statistical model of the variations for the photonic
devices should be developed [21, 29, 45]. Most likely, such statis-
tical models vary from one silicon photonic foundry to another
which may impose challenges on predicting the yield for a particu-
lar transceiver design. Unconventional designs such asmulti-mode
waveguides have been proven to mitigate the impact of fabrication
variations on the resonance of MRRs [30].

5.4 Sidewall roughness and backscattering
inside MRRs

Narrow-band spectral response of MRRs in conjunction with high-
speed data streams puts stringent requirements on the design of
MRRs for high-performance links. It has been shown that in appli-
cations where very narrow linewidths (i.e. Q > 10000) are required,
even a slight roughness on the sidewalls of the ring will cause
backscattering (BS) inside the ring [22, 28]. The effect of backscat-
tering inMRRs is typically observed in the form of a splitting of the
resonance in the spectral response of the ring [28]. Such spectral
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distortion adds extra complexity that further narrows down the de-
sign space of MRRs for minimizing power penalties. An increase
of optical bandwidth (thus a decrease of the Q-factor) limits the
attenuation of the high-frequency components of the dropped sig-
nals, but may lead to a truncated filtering shape that inflicts higher
losses and spectral distortions on the central frequency compo-
nents of the dropped signals. Figure 5(a) shows the spectral re-
sponse of one of our fabricated add-drop MRRs exhibiting a sig-
nificant resonance splitting. Figure 5(b) compares the simulated
response of an MRR with and without the observed backscatter-
ing. A loss of 5dB in the passband is inflicted onto the optical data
which can significantly impact the bit-error-rate of the optical link.

(a) (b)
Figure 5: (a) Measured spectral response of a first-order add-
drop with strong backscattering (BS). (b) Simulated MRR
with and without backscattering (BS).

6 CONCLUSIONS
Our recent studies indicate that silicon photonic links based on mi-
croring resonators can provide data aggregations in the range of
0.5–1 Tb/s at energy efficiencies in the range of 1.5–3 pJ/bit. While
the design space of MRRs is not hard to explore for the optimum
designs, significant amount of engineering effort still needs to ac-
company that to overcome challenges such as thermal sensitivity
ofMRRs, optical absorption and self heating, fabrication variations,
and backscattering effects. The potential of silicon photonics for
monolithic integration with CMOS electronics [53] is driving engi-
neers to find the best solutions for all the problems that MRRs are
facing.
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