
Optically Connected and Reconfigurable GPU
Architecture for Optimized Peer-to-Peer Access

Erik Anderson
Columbia University
efa2113@columbia.edu

Jorge González
University of Campinas

jorge.gonzalez@ic.unicamp.br

Alexander Gazman
Columbia University
ag3529@columbia.edu

Rodolfo Azevedo
University of Campinas
rodolfo@ic.unicamp.br

Keren Bergman
Columbia University
kb2028@columbia.edu

ABSTRACT
Increasing industry interest in the optimization of inter-GPU com-
munication has motivated this work to explore new ways to enable
peer-to-peer access. Specifically, this paper investigates how re-
configurable optical links between GPUs in multi-GPU servers can
allow for minimized memory transfer latencies for given machine
learning applications. Silicon photonics (SiP) is proposed as the en-
abling technology for such a reconfigurable architecture due to the
potential for scalable and cost-efficient production. We evaluated
our architecture using traffic obtained from an NVLink-connected
8 GPU server executing a set of machine learning models including
AlexNet, DenseNet, NASNet, ResNet, MobileNet, and VGG16. Our
results show up to 24.91% reduction of the total relative transmis-
sion latency (RTL) between peers.

CCS CONCEPTS
• Computing methodologies → Graphics processors; • Hard-
ware → Emerging optical and photonic technologies;

1 INTRODUCTION
Since the introduction of GPUDirect peer-to-peer access [1], NVIDIA
has been gradually placing more and more importance on the effi-
cient movement of data between device memories. While providing
substantial performance benefits, adding multiple GPUs to a system
necessitates non-local GPU memory accesses. Because of this, im-
plementing efficient memory copies between devices has become
essential for executing modern GPU applications, such as those
used for various machine learning models.

NVLink was first introduced in 2014 [2] to replace the severely
bandwidth-limited PCIe connections that were initially used to
provide peer-to-peer access. NVIDIA’s 2018 release of NVSwitch
[2] further highlights the importance of enabling efficient inter-
connectivity between peers in GPU-accelerated servers. In this
paper, an optically connected GPU architecture using Silicon Pho-
tonic (SiP) circuit switches is proposed as a radically new GPU

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6475-1/18/10.
https://doi.org/10.1145/3240302.3240418

communication structure to further increase performance. An ex-
haustive bandwidth-steering algorithm is introduced to minimize
total latency for device memory transfers. Initial results for this al-
gorithm and proposed architecture are reported using traffic traces
generated from a multi-GPU system.

2 PHOTONIC GPU ARCHITECTURE
2.1 Reconfigurable Silicon Photonic Links
Through leveraging the immense investment already placed in
the microelectronics industry, Silicon Photonics (SiP) has enabled
cost-efficient production of high-speed on-chip optics for intercon-
necting and disaggregating computing systems [6].

In addition, SiP optical circuit switches (OCS) allow dynamic
link-level reconfigurability for a new class of bandwidth-steered
applications. In [7], it was shown that bandwidth-steering via OCS
can achieve significant performance gains for dragonfly networks.
Using SiP, optical links can be traded between groups to allow for
optimized inter-group connectivity.

Fig. 1 shows a simple example of this bandwidth-steering con-
cept to optimize the outgoing connections from 1 GPU in a 3 GPU
system. Depending on the microarchitecture of the OCS, the optical
signals in Fig. 1 could each represent a single wavelength signal or
a wavelength-division multiplexed (WDM) signal. The OCS is con-
figured at the beginning of each application phase to provide larger
portions of the total bandwidth to the highest-traffic GPU pairs. Fig.
1b illustrates a situation in which the algorithm has determined
that an unequal amount of bandwidth between GPU A and GPUs
B and C will result in increased performance. The specifics of this
configuration algorithm are detailed in the following section.

Figure 1: Based on the relative amounts of data sent from GPU A to
GPUs B and C during a given application, the optical circuit switch
(OCS)will reconfigure itself tominimizeGPUA’s total transmission
latency. (a) The baseline configuration provides equal bandwidth
from GPU A to GPUs B and C (b) In this example, the optimization
algorithm has determined that GPU A requires 3x more bandwidth
to GPU C than GPU B.

https://doi.org/10.1145/3240302.3240418

MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA E. Anderson et al.

(a) 8 GPU configuration connected using
an optical circuit switch (OCS)

(b) Original Hyper-Mesh
Topology

(c) Traffic Matrix - Flowers
Dataset - MobileNet model

(d) Optimized Connectivity
Matrix

Figure 2: Optimizing connectivity for 8-GPU server using Flowers training set on a replicated-variable MobileNet model.

2.2 Link Optimization Algorithm
For the state-of-the-art NVLink topology, much of the complexity
of the bandwidth-steering approach from [7] can be reduced to a
minimization problem. Because NVLink does not support routing
of any kind, all existing flows between GPUs must be supported by
some non-zero amount of bandwidth. After reserving the minimum
amount of allocatable bandwidth, termed a bandwidth unit, for every
required connection, the remaining bandwidth units are distributed
among the other GPUs to minimize the total amount of relative
transmission latency (RTL). To calculate the RTL for a single source-
destination pair requires the division of the element [i][j] in the
traffic matrix for a given application by the corresponding element
in the topology’s connectivity matrix, where [i] and [j] represent
the destination and source GPU IDs respectively. An aggregate
RTL for each GPU is calculated by summing the RTLs from the
appropriate column in the traffic and connectivity matrices. An
exhaustive algorithm is used to iteratively minimize the aggregate
RTL for each GPU. This requires calculation of c j ∗

(k−1
k−c j

)
RTLs per

GPU where c j is the number of required connections for GPU j,
and k is the number of bandwidth units per GPU.

By analyzing each GPU independently, the algorithm generates
a new topology without considering the maximum number of avail-
able receivers per GPU. However, the cost of additional receivers
to accommodate this approach can be minimized by optically dis-
aggregating the GPUs to allow for extra physical space per device.

3 EXPERIMENTAL RESULTS
Fig. 2a shows our proposed reconfigurable architecture for 8 GPUs
within a single server. The topology is based on theNVLink-connected
hyper-mesh GPU configuration. The connectivity matrix for this
topology is shown in Fig. 2b. Each element [i][j] in the connectiv-
ity matrix denotes the total number of bandwidth units that GPU j
can use to send data to GPU i. In this experiment, each bandwidth
unit represents 1 NVLink sublink that provides 25 GBps of band-
width. Each NVLink-enabled GPU has 6 outgoing and incoming
sublinks, giving a total of 300 GBps of bidirectional bandwidth [2].
It is important to note that while Fig. 2a shows the outgoing and in-
coming connections as a single bidirectional link, the optimization
algorithm treats each unidirectional connection independently.

We evaluated our architecture using the training phase of several
Tensorflow machine learning models with both parameter server
and replicated variables [4]. The Cifar10 dataset [5] was used to
train the AlexNet, DenseNet100, DenseNet40, NASNet, ResNet110,
and ResNet20 models. The Flowers dataset [3] was also used, and
provided input to both MobileNet and VGG16 models.

A geometric average of 10% and 4% reduction in total RTL is
achieved when optimizing connectivity using replicated and pa-
rameter server variables respectively. The maximum percentage
decrease in RTL using replicated variables was 24.77% using the
Flowers training set on the AlexNet model, and the minimum was
1.09% for ResNet110 with Cifar10 input. For parameter server vari-
ables, the maximum was 24.91% for AlexNet with Cifar10 input,
and the minimum was 0.52% for NasNet with Cifar10 input. Only a
small reduction is seen when the original hyper-mesh topology is
well suited to the application. As expected, the replicated variable
models experience increased performance relative to the parameter
server models. This is due to higher levels of peer-to-peer traffic as
a result of variable synchronization. The traffic matrix for the repli-
cated MobileNet model with Flowers training set is shown in Fig.
2c. Each value in the traffic matrix is normalized by the maximum
number of bytes sent between any two GPUs. Using the equation
detailed in Section 2.2, only 320 RTL calculations are required to
perform the optimization algorithm. The generated connectivity
matrix is shown in Fig. 2d, and provides a 10.61% reduction in RTL
at the cost of only 2 additional receivers per GPU.

4 CONCLUSION AND PROPOSEDWORK
In conclusion, we have proposed a novel optically-connected GPU
architecture that uses an exhaustive minimization algorithm for
bandwidth-steering multi-GPU systems. Initial results show a sig-
nificant decrease in total RTL at the cost of a few additional receivers
per GPU. In future work, we will analyze the trade-offs between
reduced latency and additional hardware, and determine how other
applications, such as Big Data, could benefit from this architecture.

ACKNOWLEDGMENTS
This work was supported by the São Paulo Research Foundation
(FAPESP-2014/016429), CAPES (PROCAD 2966/2014) and the NSF
IGERT Program (DGE-1069240).
REFERENCES
[1] [n. d.]. NVIDIA GPUDirect. Retrieved April 24, 2018 from developer.nvidia.com/

gpudirect
[2] [n. d.]. NVIDIA NVLink Fabric. Retrieved April 23, 2018 from www.nvidia.com/

en-us/data-center/nvlink/
[3] [n. d.]. Tensorflow Flowers Dataset. Retrieved April 28, 2018 from download.

tensorflow.org/example_images/flower_photos.tgz
[4] [n. d.]. Tensorflow High-Performance MOdels. Retrieved April 28, 2018 from

www.tensorflow.org/performance/performance_models
[5] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features

from tiny images. Technical Report. University of Toronto.
[6] C. Sun et al. 2015. Single-chip microprocessor that communicates directly using

light. Nature 528, 7583 (2015), 534–538.
[7] K. Wen et al. 2017. Flexfly: Enabling a Reconfigurable Dragonfly through Silicon

Photonics. International Conference for High Performance Computing, Networking,
Storage and Analysis, SC November (2017), 166–177.

developer.nvidia.com/gpudirect
developer.nvidia.com/gpudirect
www.nvidia.com/en-us/data-center/nvlink/
www.nvidia.com/en-us/data-center/nvlink/
download.tensorflow.org/example_images/flower_photos.tgz
download.tensorflow.org/example_images/flower_photos.tgz
www.tensorflow.org/performance/performance_models

	Abstract
	1 Introduction
	2 Photonic GPU Architecture
	2.1 Reconfigurable Silicon Photonic Links
	2.2 Link Optimization Algorithm

	3 Experimental Results
	4 Conclusion and Proposed Work
	Acknowledgments
	References

