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Abstract— Microring resonators (MRR) with non-identical
ring and bus waveguide widths are easier to fabricate as they
allow for larger gaps. For effective design exploration, we
propose a new behavioral model for the directional coupler
of an MRR with non-identical ring and bus widths, which
can be used to calculate the MRR design performace. The
analysis shows that the proposed modeling technique matches
the corresponding 3D FDTD simulations well.

I. INTRODUCTION

TO support the data traffic demands in the next gen-
eration high performance computing (HPC) systems,

wavelength division multiplexing (WDM) links are expected
to replace the electronic interconnects that suffer from high
latency and losses. The emerging silicon photonics (SiP)
platform appears to be a promising technology to achieve
the bandwidth and power requirements of the next generation
HPC systems. Due to small footprint and high wavelength
selectivity, microring resonators (MRR) are widely used in
WDM links as modulators at the transmitter-side, and as
filters at the receiver-side. To optimize the link performance,
a careful design of each of the components, and specifically
the MRR devices, is required. Typically, MRR devices in
a WDM link are designed for a specific wavelength band.
Besides the ring resonance positions, the ‘performance’ of
the MRRs is determined by its area, bandwidth, free-spectral
range (FSR), Q-factor, extinction ratio and the insertion
losses. Commonly, to find the best MRR design, a design
exploration is performed by scanning a set of geometric
parameters over a certain range of values. One can use 2D
or 3D FDTD or FEM simulations to compute the relevant
electromagnetic (EM) fields, and use these to calculate the
MRR’s performance. However, in this approach, it can take
a relatively long time to find the appropriate MRR design
that satisfies the link requirements. Alternatively, a compact
model can speed up the design exploration significantly.
For instance, the model proposed in Ref. [1] accurately
describes the physical behavior of MRRs with equal bus
and ring waveguide widths. However, in Ref. [2], it was
shown that MRRs with a narrow bus width have better
phase matching with the ring mode, weaker excitation of
high-order modes, and slower mode decay in the cladding.
This enables MRR devices with larger gap values that are
less sensitive to fabrication tolerances. Yet, current compact

Fig. 1. (a) Schematic of the FDTD simulation setup for the bus-ring
coupling section. (b) Cross-section of the slab waveguide.

models are limited to identical bus-ring waveguides widths.
In this work, we propose a behavioral model for the coupling
transfer function of the directional coupler (DC) of an MRR
for unequal ring and bus widths. We show that the proposed
modeling methodology nicely matches the corresponding 3D
FDTD simulations.

II. MODELING METHODOLOGY AND ANALYSIS

The nominal performance of MRR devices, e.g., reso-
nance, FSR, and bandwidth, can be determined from the
coupling transfer function of a bus-ring pair. Fig. 1(a) shows
a schematic of the bus-ring coupling section. A cross-section
of the studied slab-waveguide is shown in Fig. 1(b). To find
the coupling transfer function of the DC of the MRR, the
following coupling differential equations are solved numeri-
cally [3]:

dA

dz
= −jκa(z)B exp(−j2δz) + jαa(z)A (1)

and
dB

dz
= −jκb(z)A exp(j2δz) + jαb(z)B, (2)

where A and B are the amplitudes of the propagated EM
fields of the bus and ring waveguide, respectively, z is
the direction of propagation, 2δ is the difference between
the propagation constants, αl and κl are the modified self-
and cross-coupling coefficients, respectively, A(zstart) = 1,
B(zstart) = 0 and l = a, b. The coefficients αl and κl are a
function of the self-, cross-, edge-coupling coefficients, κii,
κij and cij , respectively, where i, j ∈ {1, 2}. The coefficients
κii, κij and cij , and in-turn αl and κl, are a function of
the transverse EM fields and are gap dependent. Therefore,
the transverse EM fields were calculated for various gaps
using Lumerical’s MODE solver tool. As can be seen from
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Fig. 2. The calculated coupling coefficients, κii, κij , and c12, using
Lumerical’s MODE solver (cross bar) versus the fitted exponential curves
(continuous curve) for wbus = 0.35, 0.4, 0.45µm, wring = 0.45µm,
hwg = 0.3µm, and hslab = 0.05µm at 1310nm.(h) The dashed black
curve stands for ln(κ).

Fig. 2(a)-(i), the coefficients κii, κij and cij can be fitted to
exponential curves as a function of the gap.

To validate the proposed modeling methodology of the
DCs with non-identical widths, a Lumerical 3D FDTD
simulation of the coupling section of the MRR structure
with a slab waveguide was set up. A schematic of the FDTD
simulation layout and the waveguide cross-section are shown
in Fig. 1(a)-(b). The wavelength is 1310nm and the slab
waveguide consists of silicon (Si, n1 = 3.507) with a silicon
dioxide (SiO2, n2 = 1.447). The waveguide height is hwg =
0.3µm, where the slab thickness is hslab = 0.05µm, and
the ring waveguide width is wring = 0.45µm. Following the
methodology in the previous paragraph, the through and the
coupling transfer functions, t = A(zend) and k = B(zend),
respectively, were calculated and compared to the FDTD
simulation results. Yet, to improve the fitting between the
model and the FDTD, we found that two modifications are
needed. First, we noticed that the cross-coupling coefficient
κij of coupling sections with identical waveguide widths
differ from the coupling coefficient κ = 0.5 2π

λ (neven−nodd),
which is the coupling coefficient obtained by using the
procedure proposed in Ref. [1]. Whereas the latter expression
can be derived from spatial coupled mode theory, in our
geometry, due to the high index contrast between the core
and the cladding this equality breaks down [4]. Therefore, we
used an ad hoc rescaling of the coupling coefficients κii, κij
and cij , by a factor F =

κ̂ij

κ , where κ̂ij is the cross-coupling
coefficient for the case of wring = wbus. We noticed we can
reuse the same F value for similar geometries with wring 6=
wbus. Second, in MMRs with wring 6= wbus and small
gaps, non-orthogonality of the unperturbed waveguide modes
result in |t|2 + |k|2 6= 1 [3]. Therefore, in our behavioral
model, we normalize |t|2 and |k|2 by |t|2 + |k|2. Both ad
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Fig. 3. Comparison between the predicted bus-ring coupling coefficients
(solid lines) and the 3D FDTD simulation results (crossbar markers) for
wring = 0.45µm, wbus = 0.35, 0.40, 0.45µm, hwg = 0.3µm, hslab =
0.05µm, and radii R = 3, 5, 7µm at λ = 1310nm. The blue and the red
colors stand for |t|2 and |k|2, respectively

hoc adjustments significantly improve the fitting between
the model and the FDTD results over a broad range of
MRR geometries. Figure 3 shows a good agreement between
the proposed behavioral model and the FDTD results for
wring = 0.45µm, wbus = 0.35, 0.4, 0.45µm, hwg = 0.3µm,
hslab = 0.05µm, and radii of R = 3, 5, 7µm at 1310nm.
This new behavioral model is a crucial first step in the
extension of the design exploration methodology proposed
in Ref. [1] towards MRR designs with non-identical widths,
which are often used in practice.

III. CONCLUSIONS

Current compact models are limited to identical bus and
ring widths. In this work, we present a behavioral model for
MRRs with unequal ring and bus widths. Our model contains
two ad-hoc modifications that allow the use of coupled mode
theory, despite the high refractive index contrast in c-Si
MRRs around 1310 nm. The behavioral model matches the
3D FDTD simulations well and will be a key component in
the design exploration of MRRs with non-identical waveg-
uide widths.
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