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Abstract: Optical transmitters typically require electrical pre-amplification using driver 
amplifiers to optimize the optical modulation depth. To enhance the detection sensitivity and 
optimize the overall link budget, equalization is required to compensate for undesired signal 
distortion induced by the transmitter. In this paper, we propose and demonstrate a novel 
optical equalization scheme using a silicon photonic micro-ring resonator (MRR)-based 
switching circuit for mitigating driver-amplifier-induced pulsewidth distortion. The switching 
circuit simultaneously functions as a spatial optical switch as well as a two-stage optical 
bandpass filter for optical equalization. The experimental results indicate a 4.5-dB detection 
sensitivity enhancement at a data rate of 12.5 Gbits/s. The proposed approach is robust to 
different levels of pulsewidth distortion without additional signal processing, and has 
possibilities to support higher data rates by adjusting the MRR parameters. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction
With the growing diversity of communication intensive big data applications, including 
cloud-based services and high-performance data analytics, current datacenter architectures are 
increasingly challenged by these workloads. Disaggregated network architectures with 
photonic switched interconnects, sharing computing and/or memory resources among servers 
via a photonic switched interconnect, have been proposed as a solution to this challenge [1–
4]. Silicon photonic (SiP) switches are emerging as prime candidates for optical switching in 
data center interconnection networks since SiP switch fabrics combine the advantages of 
supporting high bandwidth density and low-latency switching, while occupying a small 
footprint and operating with low power consumption [1,5,6]. 

To efficiently transmit data in datacenters, Non-return-to-zero (NRZ) signaling for 
intensity modulation and direct detection (IMDD) systems is currently preferred due to the 
primary metrics of cost and power consumption [7,8].Optical transmitters in such IMDD 
systems typically employ electrical pre-amplification using driver amplifiers to optimize 
optical modulation depth through optical intensity modulation [9–12]. Due to the nonlinearity 
that arises from offset voltages in driver amplifiers, pulsewidth distortion induced by driver 
amplifiers leads to unequal periods of logic one-level and zero-level and consequently 
reduces the overall link detection sensitivity [13]. As reported in [14], the offset voltages can 
be compensated using electronic circuits, which adds power consumption and complexity to 
the system. In this paper, we demonstrate a technique that can be utilized to equalize this 
transmitted pulsewidth distortion in photonic circuits containing SiP micro-ring resonator 
(MRR)-based switching fabrics. This approach is not only robust to different levels of 
pulsewidth distortion without additional signal processing or computing, but also potentially 
capable of supporting higher data rates by adjusting MRR parameters. Moreover, since the 
device primarily serves the function of optical switching, our approach efficiently eliminates 
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electrical NRZ signals with a fixed peak-to-peak voltage (Vpp) of 1.3 Volt. The external 
intensity modulator, where the Vπ is 3.5 Volt, operated at its quadrature point superimposes 
the electrical NRZ signals onto the intensity of the input optical carriers, forming input NRZ-
encoded optical signals. Since the switching circuit is a polarization dependent device, a 
polarization controller is used to TE-polarize the input NRZ-encoded optical signals prior to 
the switching circuit for reducing additional insertion loss. To guide the input NRZ-encoded 
optical signals to pass through a selected optical path of the switching circuit, a center 
frequency of the path band is adjusted to the input optical carrier frequency under a DC-bias 
control. On the receiver side (RX), a power adjuster consisting of an optical amplifier and an 
optical attenuator is utilized to compensate the optical power loss through the switching 
circuit. Note that the maximum noise figure of the optical amplifier is 6 dB. Additional 
amplified spontaneous emission noise, which is induced by the optical amplifier, is 
suppressed using an optical filter (BVF-200) with a bandwidth of 50 GHz. The output NRZ-
encoded optical signals are displayed on an optical spectrum analyzer (BOSA 400), and a 
sampling oscilloscope following a 43-Gbits/s photodiode (Finisar XPR2022A). Finally, bit-
error ratio (BER) analysis is performed with the error tester in the BERT. 

5. Results and analysis

5.1 Driver-amplifier-induced distortion

To realize the proposed optical equalization, we consider the signal distortion induced by a 
driver amplifier in the OOK lightwave modulator. We first consider the situation of the driver 
amplifier in its linear region. Electrical NRZ signals at a data rate of 12.5 Gbits/s, with a 
power spectrum following a (sin2 x)/x2 pattern [21],are amplified using the driver amplifier, 
and then drives an external intensity modulator generating the input NRZ-encoded optical 
signals, as shown in Fig. 4(a). As can be seen in Fig. 4(b), the modulation signals are 
symmetric in intensity and are 35-dB weaker than the input optical carriers. After 
photodetection, a clear eye-diagram with an input eye-crossing-percentage (ECP) of 50% is 
obtained, as shown in Fig. 4(d). The ECP is calculated as follows [21]: 

Crossing Level - Zero Level
ECP

One Level - Zero Level
100%= × (6)

We next consider the situation of the driver amplifier in its nonlinear region. Since the driver 
amplifier distorts the electrical NRZ signals through offset voltages in the driver amplifier 
[13], the resulting input NRZ-encoded optical signals exhibit nonlinear distortion components 
around the null points at ± 12.5 GHz. As shown in Fig. 4(e), the eye-diagram exhibits an 
extension of the one-level periods and a reduction of the zero-level periods, resulting in an 
input ECP of 73%. 

5.2 Optical equalization using a MRR-based switch 

By taking advantage of the symmetric optical filtering nature of MRR elements, the proposed 
switching circuit is used to function as an optical equalization unit. The optical path 4-4 of the 
switching circuit is described here as an example. First, to guide the input NRZ-encoded 
optical signals, as shown in Fig. 4(b), passing through the optical path 4-4 of the switching 
circuit, the MRR_I16 and the MRR_O16 are DC-biased at 0.86 Volt and 1.12 Volt, 
respectively. An optical spectrum of the output NRZ-encoded optical signals at the fourth 
drop port (O4) of the switch is shown in Fig. 4(c). As can be seen, since the switching circuit 
performs a two-stage optical bandpass filter, the nonlinear distortion components are 
effectively suppressed by at least 5 dB while the other optical components between ± 12.5 
GHz are preserved. As shown in Fig. 4(f), a clearer eye-diagram with an output ECP of 
around 59% is thus observed. 
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6. Conclusions
This study demonstrates driver-amplifier-induced pulsewidth distortion equalization for 
photonic switched interconnects using a SiP MRR-based switching circuit. The switching 
circuit is shown to function as both a spatial optical switch and an optical equalization unit. A 
4.5-dB detection sensitivity enhancement is obtained at a data rate of 12.5 Gbits/s. The 
proposed approach is robust to different levels of pulsewidth distortion, and potentially 
capable of supporting higher data rates by adjusting MRR parameters. Our approach thus 
eliminates additional electronic signal processing and the related power consumption to 
overcome this transmitter impairment. As the underlying mechanism relies on optical filtering 
suppressing nonlinear distortion components close to the filtering edge of the switching 
circuit, it can also apply to MRR-based switches with different architectures, such as Hitless 
router [24], Crossbar [25] and Benes [26]. It should be noted that cascading multiple MRRs, 
which can form a multi-stage switch, may induce higher optical power loss, bandwidth 
narrow-down effect, and group delay effect [27,28]. Moreover, by using one filtering edge for 
asymmetric optical filtering, this technique may be applied to compensate the chirp effect, 
induced by optical intensity modulation [29,30]. 
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