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 Abstract - We present a novel simulation platform for 

uncertainty quantification (UQ) studies of photonic integrated 

circuit (PIC) design. This platform supports time-efficient 

variability studies such as stochastic collocation and spectral 

projection that enables variability aware PIC design. 

 

I.  INTRODUCTION 

 As the density of optical components in photonic integrated 

circuits (PICs) rises, rigorous simulation and extensive 

characterization are required for complicated designs such as 

interleavers and optical switches with a large radix before 

fabrication. Even though the physical layer effects can be 

accurately captured through advanced modeling techniques, the 

variability of fabrication can significantly degrade the system 

performance (e.g. insertion loss, crosstalk, etc.) and impact the 

product yield.  This is due to the high refractive index contrast 

in silicon photonics, where nanometer-scale deviations are 

crucial for the overall performance of photonic devices [1-2]. 

Consequently, rigorous studies of uncertainty quantification 

(UQ) of dense PIC structures are essential in the fabless design 

process prior to foundry fabrication processes.  

 Over the past decade, several UQ techniques have been 

demonstrated to assess device-level variation [3-4]. Among the 

popular choices for stochastic simulations, Monte Carlo is one 

of the most straightforward techniques to apply random 

variation on model parameters, while the underlying physics of 

a photonic simulator remains uninterrupted [5]. Even though 

brute-force Monte Carlo simulations offer a great accuracy, 

these simulations in general are too computationally intensive. 

The Monte Carlo convergence rate is generally far too slow to 

simulate dense PICs with parameters varied through the 

fabrication process. As an alternative, polynomial chaos 

expansion offers more efficient simulations compared to Monte 

Carlo method, by mathematically modeling the stochastic 

processes i.e. the system performance metrics [6]. Computing 

the stochastic moments from this model can provide a massive 

speedup to the calculation of mean and variance compared to 

Monte Carlo (the mathematical reasoning behind the speedup 

has been thoroughly discussed in the literature [7]), but 

polynomial chaos has a larger computational cost when the 

numbers of random variables increases. Thus, it is important to 

know at which when polynomial chaos expansion yields faster 

convergence than Monte Carlo techniques, and which method 

best minimizes time spent in the design and simulation stage.   

 In this paper, we present our photonic variability simulator, 

a Python-based platform, to model the effects due to fabrication 

variations in PIC designs using both Monte Carlo and 

polynomial chaos expansion. A scalable and time efficient 

solution of advanced UQ is described based on the interaction 

between Chaospy [8] with OptSim, a simulation engine based 

on compact models of photonic components (S-matrix). 

II.  PHOTONIC VARIABILITY SIMULATOR 

 The photonic variability simulator we implemented is a 

simulation scheme that interfaces with Chaospy and the optical 

engine described in Fig. 1. A nonintrusive polynomial chaos 

model was employed, where the optical engine is treated as a 

black box. The inputs for optical engine are the randomly 

sampled component variables. The outputs of the various 

spectral and/or time domain data are then used to calculate the 

mean and variance of a parameter of interest, like the 

responsivity of a photodiode, or the Q factor of a ring. These 

statistical moments can be calculated by either Monte Carlo or 

polynomial chaos methods e.g.  stochastic collocation or linear 

regression.  

 Simulation flexibility is derived from using Chaospy to 

both sample the variables and perform polynomial chaos 

expansion. The open-source package can support correlated 

stochastic models, user-defined algorithms for UQ, and an 

exhaustive library of pre-defined probability distributions. 

Using these capabilities allows for comparing UQ techniques 

while simulating dense PICs with large numbers of random 

variables. 

 This flow also offers a great deal of scalability in 

comparison to one based on intrusive polynomial chaos 

techniques. Intrusive polynomial chaos techniques involve 

changing the underlying equations of the simulation to include 

stochastic information inherently. Intrusive methods 

consequently yield statistical information about a figure of 

merit after one simulation. Both intrusive and nonintrusive 

polynomial chaos methods are valid, and simulation 

environments using intrusive techniques have been reported in 
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Fig. 1. Flowchart describing how our photonic variability simulator 
interacts with/controls the optical engine. The configuration file describes 

the Chaospy probability distribution of the parameter to be varied. The 

Python simulation environment will then randomly sample from the 

distribution and use the samples to populate the sim. 
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other disciplines such as circuit design [9]. But due to the 

complexity of optical simulations, intrusive methods can be 

more computationally expensive to solve than the original 

problem or can cause modeling correlations between random 

variables to become more difficult [6]. Consequently, 

uncertainty analysis for PICs ideally leverage existing optical 

simulators to perform experiments and employ nonintrusive 

methods. Using a well-tested optical simulator allows for the 

greatest amount of flexibility and ensures a scalable 

methodology for larger, complex systems.  

 OptSim was chosen as the optical engine to perform the 

compact model circuit-level analysis. The authors want to note 

that our photonic variability simulator uses Chaospy to handle 

all stochastic processing. It is essentially independent of the 

optical engine underneath, and should be compatible with any 

kind of circuit-level simulator based on compact model S-

matrix analysis.  

III.  TESTING SIMULATION ENVIRONMENT 

 The experiment used to verify the Chaospy/OptSim design 

flow is described in Fig 2. A silicon-based add-drop ring 

resonator was simulated to operate at 1550 nm. The OptSim 

schematic is shown in Fig 2a. The geometric parameters of ring 

were modeled as Gaussian random variables. As the focus of 

the paper on the simulation methodology and not the variation 

data itself, the variations for all three values being chosen at 

relatively reasonable values according to current fabrication 

tolerances, as shown in Table 1. Various Monte Carlo runs are 

displayed in Fig. 2b, all directly taken from runs of the 

simulator. Fig. 2c. shows the generated probability density 

function from 1000 runs of Monte Carlo and 30 runs of 

polynomial chaos. The similarity in the distributions confirm 

the expected advantages of polynomial chaos for a small 

number of random variables, validating the Chaospy/OptSim 

integration. 

IV.  CONCLUSION 

 The photonic variation simulator we implemented provides 

a straightforward, scalable method to investigate the variation  

sensitivity of PIC designs for creating more robust integrated 

systems. The simulator supports both Monte Carlo and 

polynomial chaos analysis of integrated optical systems, 

allowing for comparisons between the two approaches for 

higher order stochastic simulations of PICs. With this 

capability, more in-depth investigations of device sensitivity 

can be conducted for high yield, first pass silicon designs. 
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Fig. 2. (a) Optsim schematic for the test verifying the functionality of the Python environment for uncertainty quantification. (b) Results from Monte Carlo 

samples from the experiments. The red plot represents the mean; the gray represent various runs. (c) probability density function (PDF) of ring resonance. The 

red plot is the PDF taken from a polynomial chaos expansion model made after 30 runs, while the black markers were taken from the Monte Carlo PDF 

generated with 1000 samples. 

Simulation Random Variables 

Parameter Name Mean Std. Dev. 

Circumference (m) 4.22e-5 2e-9 

Effective Index (Neff) 3.6730 1.65e-5 

Tranmission Coefficients 0.5 1e-3 

 Table 1.  Parameters used for simulations described in Fig. 2. All 

parameters were assumed to have a Normal distribution. 

a.) b.) c.) 


