
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Automated tuning and channel
selection for cascaded micro-ring
resonators

Hattink, Maarten, Zhu, Ziyi, Bergman, Keren

Maarten Hattink, Ziyi Zhu, Keren Bergman, "Automated tuning and channel
selection for cascaded micro-ring resonators," Proc. SPIE 11308, Metro and
Data Center Optical Networks and Short-Reach Links III, 113080P (31
January 2020); doi: 10.1117/12.2546471

Event: SPIE OPTO, 2020, San Francisco, California, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 07 Feb 2020  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Automated Tuning and Channel Selection for Cascaded
Micro-ring Resonators

Maarten Hattink*a, Ziyi Zhua, and Keren Bergmana

aColumbia University, New York, NY 10027, USA

ABSTRACT

As bandwidth requirements and integration of photonic components in computing systems increase, the optical
micro-ring resonator are becoming an important building block for dense, high-bandwidth interconnects. Ring
resonators are small in size and can operate at data rates up to 60Gb/s NRZ,1 making them well-suited for
integrating many rings operating at different wavelengths into a single device. These devices are a promising
solution for complex interconnected systems, such as chip-to-chip interconnects.2 However, using these rings can
be challenging as they are sensitive to fabrication and temperature variations and need constant tuning to lock
them to their assigned optical wavelengths.3 This tuning is commonly done by inserting embedded heaters in
or above the ring. Existing techniques that tune the rings by the optical power coupled into the rings require
extensive characterization and spectrum analysis, or out-of-band signalling, to account for rings drifting across
optical channels and fabrication variations. In this work, we use four cascaded micro-rings implemented in a
silicon photonic device operating in the C-band. Each ring taps a single wavelength from a bus waveguide. The
remaining light in the bus waveguide is then fed into a photodiode, which is used to monitor the tuning of all
rings. We show an algorithm that, based only on information about the design of the chip, tunes the rings to
the exact desired optical channel. With this algorithm the use of more complex techniques to directly measure
a ring’s coupled wavelength can be avoided, reducing system complexity.
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1. INTRODUCTION

Dense Wavelength Division Multiplexing (DWDM) is used in many types of systems to achieve the increasing
bandwidth requirements of computing systems. To implement low cost, energy efficient, DWDM links, the use of
micro-ring resonators in integrated Silicon Photonics (SiP) platforms is very promising. Micro-rings are compact
and have been shown to modulate data at up to 60Gb/s NRZ1 and 112Gb/s PAM4.4 Because micro-rings are
wavelength selective, they can also function as a wavelength selective filter. When a number of micro-rings are
cascaded along a bus waveguide, they can combine the function of modulator and wavelength demux without
requiring additional optical components, making this a useful structure for DWDM modulators and receivers.5,6

A challenge when using silicon micro-rings is that silicon has a large thermo-optic coefficient,7 and small changes
in ambient temperature cause a ring’s resonance frequency to shift significantly. This is compounded by small
manufacturing variations resulting in small differences in resonance frequencies between copies of the same micro-
ring. A resonance shift due to a change in ambient temperature of 0.1nm/◦C will move the resonance frequency
by 6nm over a range of 25-85◦C. In case of a system using the standard ITU grid,8 channels are spaced by 0.8nm
(100GHz), so this 6nm shift can cause rings to shift across multiple channels.

To solve this, much work has been done on locking rings to a desired wavelength and maintaining that lock.
This is typically done using micro-heaters placed in or near the ring.9–11 The ring can be locked to an optical
signal by sensing the power coupled into the ring and employing a feedback to loop to either maximize or minimize
that power, depending on the desired configuration. Many implementations for sensing the optical power coupled
into a micro-ring exist, each with pros and cons. The simplest implementation of this control loop is to tap some
power from the ring and measure it using a photo-diode. Many other more advanced techniques exist. Some
examples rely on the photoconductance of doped heaters,12 or use a single optical power tap to measure the
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response of multiple cascaded rings.13 The techniques reduce the number of electrical connections compared to
the simplest case and/or the number of analog-to-digital converters (ADCs). None of the mentioned techniques,
however, can completely solve the problem of locking rings to a specific desired wavelength in a DWDM scenario.
Because the unbiased ’starting’ resonant frequency is unknown, and the exact wavelength rings are tuned to is
not measured, it is difficult to distinguish different channels from each other. As a result, rings can be tuned to
the wrong channels. In some systems, the receiver of the optical signals can decode the channel it is receiving.
From there the system can deduce which channel each ring is tuned to and correct this, if necessary. This is,
however, not always possible. For example, when designing a pluggable optical transceiver that needs to work
with a wide range of other devices in a network, of which the transceiver has no knowledge or control.

In this work, we demonstrate a fully automatic algorithm to map micro-ring resonances to specific wave-
lengths without requiring intensive characterization of individual devices, exact frequency measurements, and
only minimal external information. This algorithm works on the basis of detecting when rings are locked to the
same wavelength and builds a list of control voltages that map to the same wavelengths. By combining this
list with information about the design of the rings, such as their designed size or the number of wavelengths in
the system, the algorithm can place each ring at an exact wavelength channel. After each ring is placed at the
desired wavelength channel, previously reported techniques can be used to keep them locked to their respective
channels.

2. APPLICATION SYSTEMS

In telecommunication optical networks various techniques exist for out-of-band signalling and channel identifi-
cation, which can be used to ensure network components are tuned to their correct optical channel. This also
requires some form of network management to tell all components how to interpret this out-of-band signalling. In
contrast, optical transceivers employing coarse wavelength division multiplexing (CWDM) used in data centers
use such large channel spacing that optical wavelengths can drift across multiple nanometers without issue. One
advantage of allowing for such a large wavelength tolerance is that the transceivers do not need to communicate
with other network components to establish a reliable connection, as opposed to the telecommunication systems.
The algorithm we are presenting in this work is intended for use in systems where it is desirable to have minimal
knowledge of the other equipment in the system, like the transceivers in data centers, but where the required
number of channels is so high that it is not possible to allow for the wide channel spacing. Using this algorithm
we can also remove any extra components that would be needed for out-of-band signalling. The algorithm allows
a system that consists of a number of cascaded micro-ring resonators to tune to specific channels, by only mea-
suring the power coupled into the rings, and tuning the rings. For this it only needs to know how many optical
channels are launched into the device, and the sizes each ring is designed to operate at. Its basic principle is that
it finds all channels each ring can tune to, and to detect when two adjacent rings are tuned to the same channel.
With adjacent rings we do not mean rings physically placed next to each other, but two rings that are designed
to operate at adjacent channels. To detect when two adjacent rings are tuned to the same channel, they need
to be close enough, or be able to tune across a large enough range. The easiest way to ensure this, is to make
sure rings can tune across a large enough range so that any fabrication variation will not result in two adjacent
ring’s resonances being so far apart they cannot tune to the same optical channel.

One challenge that needs to be resolved is that a micro-ring has many resonances. While a ring is set to
the largest wavelength channel and is then tuned farther, it can lock to the smallest wavelength with the next
resonance. This situation can be difficult to distinguish from tuning between two channels using the same
wavelength. To reliably determine which of these situations is happening, the wavelengths need to be such that
the amount of resonance shift required to go from the last to the first channel, needs to be significantly larger
than the spacing between channels. By tuning over at least three channels, the algorithm can measure the
difference in tuning power required to move between channels and if one of the two shifts is significantly larger
than the other, that one is the switch from last to first channel. To account for fabrication variations, it the
accuracy of this is improved by tuning over more than three wavelengths, so that the algorithm has data points
to do this comparison.

We demonstrate the algorithm using the system schematically shown in Fig. 1. It consists of a bus waveguide
and eight cascaded micro-rings that each drop a signal from the bus waveguide to an optical output. Due limited
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Figure 1: Schematic representation of cascaded micro-rings and controller. Four wavelengths are launched into
the bus waveguide. Four of the eight rings are used to couple to the optical signals, while the other four are fixed
so that they do not couple any light. All remaining light is coupled into a photodiode for monitoring.

availability of suitable drivers, we use four of the micro-rings. All light that is not dropped by the rings is fed
into a photo-diode to monitor the locking status of the rings. The controller can set a voltage across each ring’s
micro-heater to tune its resonant wavelength. DWDM small form-factor plus (SFP+) transceivers, set to ITU
channels 57 (1531.90nm), 58 (1531.12nm), 59 (1530.33), and 60 (1529.55), are used as the light source. The
output from the transceivers is muxed together and launched into the device.

To maximize the coupling of light from the bus waveguide into the rings, the controller must minimize the
optical power on the photo-diode. To demonstrate the algorithm, four wavelengths and rings are used. Once
the controller has found the correct configuration using the algorithm presented in the next section, it can use
existing techniques to maintain that configuration.13

3. ALGORITHM

The algorithm to lock cascaded rings to specific channels is outlined in Algorithm 1. The version shown is for a
receiver system with a single monitor photo-diode like in our system. To find if a ring is locked to a wavelength
it looks for a local minimum in received power. For modulator devices the algorithm needs to be modified to
find local maximas in modulated power. And when each ring has a its own monitoring diode, the measurement
of optical power also needs to be modified slightly and select the correct ring to measure. But the principle of
finding wavelengths and overlapping the resonances stays the same.

3.1 Finding Available Wavelengths

The algorithm starts by finding all voltages at which a ring couples to a wavelength(lines 3-5), which it does for
each ring separately. Before it searches each ring all rings are detuned. This is done so that the ring being search
will be able to see all wavelengths within its tuning range. The result of this search is a list of all voltages, for
each ring, that map to some wavelength, and the corresponding change in optical power received Pdiff by the
monitor diode(s). These voltages are denoted Vr,i, with r being the index of the ring and i the index of the found
voltage and wavelength. The first found wavelength for ring r is mapped to Vr,1, the next to Vr,2, and so on.
The next step is to find which voltages on different rings map to the same wavelengths. The process for this is
detailed in Section 3.2. Once the system knows when different rings couple to the same wavelength, it combines
this with some information from the design of the system to map each ring voltage to a specific channel. This
is explained in Section 3.3.

3.2 Finding Matching Wavelengths

The core of the algorithm is determining at which voltages micro-rings couple to the same optical wavelength.
When two rings are set to the same wavelength, the second ring will not couple as much light as it did during
the initial search for available wavelengths, because the first ring will already have coupled most of the light on
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Algorithm 1 Map Rings Algorithm for cascaded receiver micro-rings

Design Parameters: NRINGS (Number of cascaded rings), ∆V (Voltage step when scanning)
All rings are indexed in order of ascending designed resonance. I.e. R1 is designed to operate at the lowest

wavelength and RN at the highest. They do not have to be constructed in this order though.

1: procedure MapRings(NRINGS , Nλ)
2: AvailableWaveLengths← Empty
3: for r ← 1 to NRINGS do
4: DetuneAllRings() . Detune rings, so ring r can see all wavelengths within range.
5: AvailableWaveLengths← FindAvailableWavelengths(r,AvailableWaveLengths)

6: MatchingWavelengths← FindMatchingWavelengths(AvailableWaveLengths) . See Section 3.2
7: ChannelMap← MapChannels(AvailableWaveLengths,MatchingWavelengths) . See Section 3.3
8: return ChannelMap

9:

10: procedure FindAvailableWavelengths(r, AvailableWaveLengths)
11: Pref ←MeasureOpticalPower() . Measure reference optical power
12: Vr ← 0V . Set ring r to 0V
13: while Vr < MAXIMUM(Vr) do . Do not exceed maximum voltage allowed for the ring
14: if LOCALMINIMUM(MeasureOpticalPower()) then . Check if optical power is at local minimum
15: Pdiff ← |Pref −MeasureOpticalPower()|
16: AvailableWaveLengths.ADD(Vr,i, Pdiff ) . Found a wavelength, save it to the list
17: i← i + 1

18: Vr ← Vr + ∆V

that wavelength out of the bus waveguide. To measure this, one ring is first tuned to a wavelength of interest
and the received optical power P1 is measured. Then, the another ring is tuned to a previously found wavelength
and the received optical power P2 is measured again. If the difference |P1 − P2| is much smaller than the
previously measured change in power Pdiff (Algorithm 1, line 15) it means that both rings are tuned to the
same wavelength. The threshold for deciding if if two rings are tuned to the same value depends on the designed
bandwidth and quality factor of the rings, as well as the spacing of the wavelengths. Narrow bandwidth, higher
quality factor, and wider spacing all increase the difference in optical power between two rings tuned to the
exact same wavelength and being tuned to adjacent wavelengths. In our system, the change in optical power is
measured by the monitor photo-diode. In a system where each ring is monitored individually, this difference can
be measured on the second of the two rings.

This process to is used by the algorithm in Fig. 2 to determine at which voltages each of the micro-rings
couple to the same wavelengths. To illustrate the results of this algorithm, an example of what a 4-ring system
with 4 wavelengths might measure is shown in Table. 1. First, all rings are detuned to ensure that they do not
interfere with the measurements. Next, the algorithm starts with the two highest indexed rings and tries to find
at which of the previously found voltages they map to the same wavelength. If no such wavelength can be found,
the device is faulty, as it was designed to be able to have rings tune to multiple wavelengths. Once a single
matching voltage has been found, all other matching voltages between those rings are known as well, as they
are in the same order. In Table. 1, a found matching voltage is shown using an ’=’ symbol and other deduced
matching voltages are placed in the same row.

When micro-rings can be tuned across their entire free spectral range (FSR), or when a large portion of the
spectrum within a FSR is filled with the optical signals, it is possible that a ring can lock to different wavelengths
using the two resonances at either side of the used optical spectrum. The algorithm will see this as a ’loop’ in
the matching wavelengths. This is solved by trying to find a matching wavelength between RN and R1. In the
example in Table 1, this is shown as V4,3 matching with V1,1.
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Figure 2: Diagram of FindMatchingWavelengths Algorithm

Table 1: Example result of Find-
MatchingWavelengths() in a 4-ring
system. Found matches indicated
by ’=’.

R4 R1 R2 R3 R4

V4,3 = V1,1 V2,4 V3,3 V4,3

V4,4 V1,2 = V2,1 V3,4 V4,4

V4,1 V1,3 V2,2 = V3,1 = V4,1

V4,2 V1,4 V2,3 V3,2 V4,2

3.3 Mapping Matched Wavelengths to Channels

Once a mapping has been found of which voltages correspond to the same wavelength, the system does not yet
know exactly which optical channel they map to. To determine this, some more knowledge of the system’s design
is required. This is easiest in a system that is designed to not have a loop. V1,1 would map to the smallest possible
wavelength and channel. Starting from there, the process to map the other channels is straightforward. The
difficulty arises is when there is a loop in the matching wavelengths. In such cases, the system must be able to
distinguish between a ring moving to the next wavelength, and a ring moving from the largest wavelength using
one resonance to the smallest wavelength using another resonance. In a system where the FSR is maximally filled
using equally spaced optical channels, it not possible to distinguish these two cases using only simple optical
power measurement techniques. For example, in a system that uses 4 optical channels separated by 5nm and
micro-rings that have an FSR of 20nm, tuning from the last wavelength to the first wavelength takes the same
5nm of tuning that it takes to tune from one channel to another. Herein also lies the key solving the loop. A
system must be designed so that the FSR is greater than the number of channels multiplied by the channel
spacing, and wavelengths need to be placed such that requires a ring to be tuned across a greater distance to
move from the last to the first wavelength, then it does to tune between adjacent channels. Then, the extra
power required to tune from the largest to the smallest wavelength will be more than when tuning from one
wavelength to the next wavelength. How much larger the FSR needs to be depends on the fabrication variation,
the quality of the measurements, and the resolution of the heater voltage, as the measured difference in power
needs to be big enough to be reliably distinguished.

4. RESULTS

4.1 Search for available wavelengths

During the first part of Algorithm 1, the controller searches for the voltages that maximize the received power,
which means the rings are detuned as much as possible. Then the algorithm searches for wavelengths that are
available to each ring. It does so by first detuning all rings and then scanning through each ring to find at which
voltages it is locked to a wavelength, and by how much the received power drops at that wavelength. Fig. 3 shows
traces of this process for each individual ring. To speed up the process, the heater voltage is raised such that the
square of the heater voltage increases at a constant rate. This works because the power dissipated in each heater
is proportional to the heater voltage squared, and therefore the ring’s resonances do not shift much for small
voltages. All wavelengths that each ring can lock are marked with a black line, of which the height is equal to
the measured change in optical power Pdiff . Because of the close spacing of the wavelengths and bandwidth of
the micro-rings the received power does rise to its completely detuned value in between two wavelengths. From
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(a) R1 (b) R2

(c) R3 (d) R4

Figure 3: Trace of search for available wavelengths. Heater voltage squared (blue) and received optical power
(red) vs. time. The black lines indicate each found wavelength and the measured drop in optical power when
the ring is locked. While each ring is searched, other rings are detuned.

this figure we can also see that R1, R2, and R3 can tune to all four optical channels, but R4 can only tune to
two optical channels.

4.2 Matching wavelengths

After searching for all available wavelengths, and measuring the change in received optical power, the algorithm
will attempt to find which wavelengths of different rings correspond to the same optical signal. To do this the
algorithm first tunes a ring to one of its wavelengths and . It then cycles an adjacent ring through its available
wavelengths. For every attempted wavelength the difference in power between only until it finds one that causes
a much smaller change in optical power than it during the initial search, which means that both rings are tuned
to the same wavelength. We see this by comparing Fig. 4 with Fig. 3c. They both show a trace of the wavelength
search for R3, but R2 is set to its second wavelength during the trace shown in Fig. 4. R2’s wavelength is clearly
missing and at the same tuning voltage of R3, the drop in optical power is much smaller. Fig. 4 also shows what
the thresholds are the algorithm uses to determine if R3 is tuned to the same wavelength as another ring. This
threshold is only met for the wavelength R2 is tuned to. With the device we used, a threshold of half of Pdiff
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Figure 4: Trace of search for wavelengths for R3, while
R2 is set to its second wavelength. Also indicated is
the threshold for deciding when R3 is set to the same
wavelength as another ring, which is only reached when
matching with R2.

Figure 5: Trace of search for for matching wavelength
between R3 and R4. R1 and R2 are set to their detun-
ing voltages. Also indicated are the decsision thresholds
for each of the attempted wavelengths R3 is set to.

resulted in reliable determination of matching wavelengths. Fig. 5 shows a trace of this matching process when
matching R3 and R4. First R4 is set so its first available wavelength. Then R3 is stepped through its available
wavelengths until the third wavelength meets the threshold. For rings R1 through R3 the algorithm correctly
determines that the first wavelength of those rings matches with each other.

4.3 Combining measurements with design parameters

Because the rings in our device were not tuned an entire FSR it is straightforward to determine to which channel
each of the rings’s wavelengths map. From the design of the system the algorithm knows that there are four
optical channels, and rings R1-R3 are all able to tune to four wavelengths. Therefore the first wavelength of
each rings maps to the lowest wavelength channel (ITU channel 60). And the other wavelengths then map to
the subsequently higher wavelength channels, channels 59, 58, and finally 57. The algorithm determined that
R4’s first wavelength is the same as R3’s third, which is ITU channel 58.

4.4 Determining a switch in resonance

Because our device cannot tune the entire FSR, we cannot show how the algorithm can determine when a ring
switches from the highest wavelength using one resonance, to the lowest wavelength using the previous resonance.
However, since this is done by comparing the increase in power that is required to shift from one wavelength
to the other, we show that the algorithm can measure the larger shift when two wavelengths are spaced further
apart. To do this, we launched ITU channels 57 through 60, each spaced 0.8nm, and channel 55, which has
1.6nm spacing from channel 57. The controller then searched for available wavelengths. Fig. 6 shows the square
of the heater voltage required to tune to each ITU channel. The fitted lines shows that the increase in power to
tune between channels 57 through 60 is almost constant, while the change from 57 to 55 is significantly more. By
designing designing a system such that it takes a larger shift to go from the last wavelength to the first, a similar
change in required power will be measured, and this can be used to determine which of the found wavelengths
are the first and last channels.

5. CONCLUSIONS

The capability to tune cascaded micro-ring resonators exactly the right channel is required in many types of
systems, and can also be useful in systems where this is not a requirement. In this last case, there might be
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Figure 6: Square of heater voltage required to tune rings R2, R3, and R4 to each of the launched ITU channels.
The fitted lines show that it takes significantly more power to shift from channel 57 to 55 then between the other
channels.

multiple possible configurations of the rings, and by know exactly to which channel they are tuned, one can
choose the configuration that uses the smallest amount of power for the ring tuning. In this work we have
proposed an algorithm to tune cascaded micro-ring resonators to exactly their desired optical channels using
only simple techniques to measure optical power and knowledge of the system’s design. We have experimentally
shown that this algorithm works for a system where the rings cannot fully tune an entire FSR. For the case
where rings can tune an entire FSR, they the FSR must be larger than the number of channels multiplied by
the channel spacing. We have also shown, that in that case, we can measure the extra shift required for a ring
to tune from the last wavelength to the first. This is done using only simple optical power measurements and
knowledge of the system’s design. Using this technique, it is not necessary to measure the wavelength of light
being coupled into the micro-rings, or extensively characterize each ring for fabrication variations and ambient
temperature.
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