
B44 Vol. 12, No. 4 / April 2020 / Journal of Optical Communications and Networking Research Article

Flexspander: augmenting expander networks in
high-performance systems with optical bandwidth
steering
Min Yee Teh,* Zhenguo Wu, AND Keren Bergman
Department of Electrical Engineering, Columbia University, New York, New York 10025, USA
*Corresponding author: mt3126@columbia.edu

Received 2 October 2019; revised 16 December 2019; accepted 22 January 2020; published 28 February 2020 (Doc. ID 379487)

Communication efficiency is one of the deciding factors in determining many of today’s high-performance com-
puting (HPC) applications. Traditionally, HPC systems have been on static network topologies, making them
inflexible to the variety of skewed traffic demands that may arise due to the spatial locality inherent in many
applications. To handle traffic locality, researchers have proposed integrating optical circuit switches (OCSs)
into the network architecture, which reconfigures the network topology to alter and dynamically adapt to the
predicted traffic. In this paper, we present a novel reconfigurable network topology called Flexspander. Beyond
offering a flexible interconnect, Flexspander also offers full flexibility in terms of construction and can be built
with any arbitrary combination of commercial electrical packet switches and OCSs. We evaluate Flexspander
performance through extensive simulations with multiple network traces, and our results show improved per-
formance for Flexspander over currently proposed static and reconfigurable topologies in terms of the flow
completion time. © 2020 Optical Society of America

https://doi.org/10.1364/JOCN.379487

1. INTRODUCTION

Many state-of-the-art high-performance computing (HPC)
systems and Cloud data centers (DCs) are typically intercon-
nected through either a hierarchical Clos [1,2] or Dragonfly
[3] topology. In the case of the former, Clos (or fat tree) topol-
ogy can provide multiple paths between compute nodes for
efficient load balancing. The latter promises a low network
diameter to guarantee low-latency pathways between arbi-
trary pairs of compute nodes. In the meantime, researchers
in the DC networking community have proposed building
networks based on expander graphs [4,5]. These networks
ensure good network connectivity at scale, even when built
with packet switches of modest radices. More importantly,
expander networks outperform most other topology classes at
the same cost [6], which makes them cheaper alternatives to
build. Regardless of the interconnect topology, statically wired
networks are inherently inflexible and can suffer performance
degradation when running workloads that generate highly
skewed traffic.

In order to deal with skewed traffic workloads, researchers
have begun looking into employing optical circuit switches
(OCSs) to introduce reconfigurability to the network topology.
Early works in reconfigurable networks were predominantly
focused on the DC front, in which researchers proposed
augmenting the network with high switching latency OCSs

based on microelectromechanical system (MEMS) technol-
ogy [7,8]. Limited by the high switching latency of earlier
MEMS OCSs, these architectures generally operate by serving
traffic with large flows that are bandwidth-bound using high-
capacity circuits that go through the OCSs, while sending the
latency-bound traffic with small flows via a conventional static
network. Meanwhile, Flexfly represents the first instance of a
reconfigurable network aimed for HPC applications. Unlike
earlier works on reconfigurable networks, Flexfly employs
silicon photonics (SiP) switches, which have nanosecond-level
switching latency.

Regardless of the technology behind the OCS, prior works
have been rather limited in that they do very little in address-
ing how the physical wiring of the network should be done.
Specifically, very little work has been done on elaborating the
design of flexible interconnects built with any arbitrary com-
bination of electrical packet switch (EPS) and OCS radices. In
practice, it is often not possible to purchase a specific combina-
tion of hardware radices, especially when system operators are
building systems with commercially available switches.

In this paper, we propose a novel reconfigurable topology
built upon the foundations of expander networks, called
Flexspander. In the Flexspander topology, different pods of
EPSs are interconnected via a layer of OCSs. By configuring
the switching states of OCSs, different logical connectivities
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between network pods can be realized, thus allowing the topol-
ogy to handle skewed traffic workloads. Within each pod, the
EPSs are wired to form an expander network, allowing the
intra-pod topology to be resilient to bottlenecks even with
a very sparse number of links. Since the intra-pod expander
topology can be generated at random (see Jellyfish [4]) and
can be formed with an arbitrary number of links per switch,
Flexspander gives system operators total freedom when it
comes to physical wiring of the network.

Using network traces obtained from real applications, we
evaluate the performance of Flexspander and compare it to
many other classes of network topologies. Our simulations
show that Flexspander is able to outperform the current state-
of-the-art reconfigurable topology called Flexfly in terms of
flow completion time (FCT). Specifically, when compared to
Flexfly, Flexspander is capable of reducing FCT by as much as
93% on average for moderate to low network loads.

The rest of this paper is organized as follows: we begin
by discussing the high-level properties and the limitations
of expander networks in Section 2. Next, we introduce the
Flexspander network topology and discuss its construction
in Section 3. Details of the bandwidth steering algorithm are
fleshed out in Section 4. The performance of Flexspander,
alongside other baseline topologies, is simulated and analyzed
in Section 5.

2. EXPANDER NETWORKS

Expander networks are built based on the mathematical con-
cept of expander graphs, which falls into a class of graphs with
high edge expansion at any given degree. The edge expansion
metric essentially measures the weakest bisection bandwidth
of the graph, making it a good measure of how difficult it is
to bottleneck the said graph. The high edge expansion prop-
erty of expander graphs implies that every cut in the graph
is traversed by many links. In other words, in an expander
graph, the total number of links connecting any set of nodes
to the rest of the network is large with respect to the size of
that set [5]. This property renders static expander networks
a big advantage: diversity of paths for traffic flow. Since there
are many paths between any two nodes in an expander graph,
traffic can be distributed across the network and is therefore
hardly bottlenecked anywhere.

A few expander-graph-based network topology designs have
been proposed in the past. For example, random connected
graphs such as Jellyfish [4] are shown to exhibit a high degree of
edge expansion assuming uniform traffic. Xpander [5], another
instance of expander-based network topology that relies on lift-
ing an already existing expander graph, also shows near optimal
edge expansion. Using this technique, Xpander DCs can match
the performance of today’s DCs with about 80%–85% of the
switches and are significantly more robust to network changes
than today’s DCs built with fat trees.

However, neither Jellyfish nor Xpander can accommo-
date the inherent heterogeneity of network components and
account for the traffic skewness that exists in DCs and HPCs
[9–11]. In HPC, traffic locality tends to arise from the nature
of the underlying computation pattern. Similarly, DC traf-
fic tends to exhibit high degrees of spatial locality (albeit the

locality is much less-predictable), rendering these topologies
sub-optimal for non-uniform traffic characteristics [12].

3. FLEXSPANDER ARCHITECTURE

A. Topological Structure

Although prior works have shown that expander networks
(e.g., Xpander [13], Jellyfish [4]) achieve good network
throughput, their evaluations have not considered the per-
formance under highly skewed traffic. Even though expander
networks have high edge expansion, which means that they are
difficult to bottleneck, the construction of expanders implicitly
assumes uniform traffic, which is rarely the case in most pro-
duction DCs with highly skewed traffic [14–16]. Under highly
skewed network traffic, it is likely that expanders would suffer
from poor performance due to uneven link utilization.

We therefore propose Flexspander (see Fig. 1), a net-
work topology built upon the foundations of expanders, but
also capable of dynamically adapting to skewed traffic. The
Flexspander topology is built by inter-connecting a collection
of pods via an OCS layer. By reconfiguring the OCS states,
different pod-level topologies between pods can be realized.

Meanwhile, each pod comprises a group of EPSs, intercon-
nected “statically” such that the intra-pod topology forms a
good expander network. Note that there is no strict definition
of what an expander is. A full mesh is defined as the perfect
expander, but another regular graph with an identical number
of nodes but with sparser edges is also an expander, as long as
its edge expansion is high given its degree. Flexspander places
no requirements on what the intra-pod level topology should
be, as long as it is a well-connected sub-network. In this sense,
Flexspander can be viewed as a generalization of the Flexfly
topology [10]; in fact, specific instances of Flexspander designs
are indeed Flexfly instances.

A Flexspander topology can be uniquely identified with the
following parameters:

• ro —the OCS radix,
• re —the EPS network-facing radix,

Fig. 1. Illustration of the Flexspander topology. All pods in the
network are interconnected via a flexible layer comprising multiple
OCSs. Within each pod, EPSs are connected statically as an expander
network.
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• [s i ]—the array of the number of EPSs in pod i ,
• σ—the ratio of inter-pod to intra-pod bandwidth.

These parameters are determined at design time by the net-
work operator, based on various design choices including, but
not limited to, the target system size (i.e., the number of com-
pute nodes), the port count of commercial packet switches, and
the radices of OCSs. Imagine a network operator has decided
on using a 32-port Mellanox switch [17] and has decided that
each switch will dedicate 6 ports for server-facing connections.
This leaves 26 ports for network-facing connections, which
we shall denote as re . Then, the network designer decides on
σ , which controls the ratio of network-facing ports used for
inter-pod connection to intra-pod connection. This parameter
acts as a design knob, which allows the network operator to
adjust for the desired amount of reconfigurable bandwidth
(i.e., the number of links wired to OCSs that can be steered
to different pods based on traffic demands). The relationship
between σ and the number of inter-pod connection ports,
re ,inter, and number of intra-pod connection ports, re ,intra, is
given as

re ,inter =max

(
1, re ∗

σ

1+ σ

)
,

re ,intra =max(2, re − re ,inter).

We enforce a minimum number of ports that should be
allocated for inter-pod and intra-pod connections. For the
inter-pod ports, at least one port per EPS should be dedi-
cated for OCS connection, which is a minimum requirement
for reconfigurable network topologies. For intra-pod con-
nections, each switch must dedicate at least two ports, since
this is the minimum number of ports needed to form a ring
topology, which can be seen as a minimally connected intra-
pod topology. Note that as σ gets larger, more of the EPSs’
network-facing ports are wired to the OCS layer, so more
OCSs may be needed to fully connect the inter-pod links. The
tradeoff here is that the intra-pod topology becomes more
sparse. Evaluating the opportunity-cost of this tradeoff is up to
the network operator to decide.

1. Inter-podWiring

The first step to building a Flexspander network is wiring each
pod to the OCS layer. The manner in which the OCSs and pod
switches are physically wired sets up the physical topology. (We
use the terms wiring and striping interchangeably to denote
the pattern of physical wiring between network components.)
Even though the network performance is determined largely by
the logical topology as a result of a specific set of optical switch
configurations, the physical topology construction determines
the range of achievable logical topologies.

Here, we detail the inter-pod wiring algorithm. The
pseudocode is shown in Algorithm 1.

When wiring pods to the OCS layer, we assume that each
pods is fully connected. This means that there has to be at least
one logical topology in which any arbitrary pod pair is inter-
connected. We assert later on in the intra-pod topology wiring

Algorithm 1. Pseudocode of the algorithm for wiring
pods to the OCS layer

1: procedure InterPodWiring

2: Input:
3: 1) ro - OCS radix
4: 2) re - EPS network-facing radix
5: 3) [s i ] - Number of EPSs in pod i
6: 4) σ - Ratio of inter-pod to intra-pod bandwidth
7: Output:
8: 1) [y k

i ] - Physical wiring plan
9: BEGIN
10: L = [(i, li )]← [(i, 0)] ∀ i ∈ {1, ... , N}
11: r ′e =max(1, dre ∗

σ

1+σ e)

12: for each OCS k do
13: Sort L in ascending order
14: for each port in current OCS do
15: (i, li )= L .pop( )
16: if li < s i ∗ r ′e then
17: y k

i ← y k
i + 1

18: L .insert((i, li + 1))
19: return [y k

i ]

20: END

that every pod must indeed be a strongly connected compo-
nent. As we will see in Section 3.A.2, building an expander
intra-pod topology implicitly guarantees that our assumption
here holds.

When wiring the pods to the OCS layer, we want to ensure
that each pod is striped to as many OCSs as possible. The
rationale here is that the number of logical links two pods can
form is at most the number of OCSs that these two pods are
both physically wired to. Another way to understand this is
that two pods cannot form logical forms if they are not physi-
cally connected to at least one OCS in common. Based on
this intuition, we want every pod to be connected to as many
different OCSs as possible, and no OCS should ever be wired
to the same pod more than once, if possible. The pseudocodes
in between lines 14 and 18 essentially aim to allocate the most
under-connected pods to the current OCS. That said, we leave
the formalized proof of the validity of this argument as an
exercise for future work.

2. Intra-podWiring

Within each pod, the EPS network is interconnected statically.
At design time, the network operator gets to specify σ , which
denotes the ratio of bandwidth each pod allocates for inter-pod
connections to intra-pod connections. There are two possible
cases to consider when wiring intra-pod topology: 1) when
the number of intra-pod links per EPS is sparse relative to the
pod size and 2) when the number of intra-pod links per EPS is
dense relative to the pod size.

When the number of intra-pod links per switch, re ,intra,
is sparse relative to the pod size, s i (i.e., re ,intra < s i − 1), we
cannot form a full mesh. Even so, we would still want the
intra-pod network topology to be well connected and robust to
bottlenecks. To achieve this, we borrow the powerful concept
of expander graphs from graph theory. (Expander graphs are
commonly interpreted as sparse approximations of full-mesh
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networks [18].) Expanders, due to their high edge expansion,
are very resilient to bottlenecks. Constructing good expanders
is still an active research thread in graph theory and is outside
of the scope of this paper. We refer interested readers to [18–
20] for more details on expander construction. It turns out,
however, that random graphs tend to be very good expanders,
which is the core idea behind the conception of the Jellyfish
topology [4]. Flexspander constructs intra-pod EPS networks
as expanders, using a wiring technique similar to [4], by gen-
erating several random graphs and selecting the graph with the
highest edge expansion.

Next, we consider the wiring for the dense case
(i.e., re ,intra ≥ s i − 1). The intra-pod wiring can be done
by uniformly connecting each switch together, until one
or more switches run out of spare links to connect to other
switches. This process is then repeated for all other switches
within the pod until all switches run out of spare ports for
intra-pod connections.

B. Network Controller

In terms of hardware, the Flexspander network can be built
with off-the-shelf OCSs [21,22] and does not require spe-
cialized OCS hardware to function. However, a Flexspander
network built with high-speed OCSs will no doubt be more
responsive in its reconfigurability. Most commercial OCSs in
today’s market have switching speeds on the order of tens of
milliseconds. For instance, an Agiltron MEMS Matrix 48× 48
Fiber Optical Switch boasts a switching speed of 20 ms. In
addition to switching latency, reprogramming the routing
tables in response to path changes from a topology reconfig-
uration may take seconds, as is the case in Google’s B4 [23].
This delay could be delayed in smaller scale networks, but we
conservatively estimate the overall reconfiguration latency to be
on the order of seconds.

The responsibility of deciding when, where, and how the
topology reconfiguration should be triggered falls on the
network controller, which subsumes the bandwidth steering
algorithm. The network controller should also contain means
for traffic estimation, which can take the form of a centralized
database containing the traffic patterns of applications that
have come before. While the network controller does not
explicitly need to be integrated with the scheduler, it should
be aware of how the new application is physically mapped
onto the network in order to estimate a traffic matrix. Using
a combination of historical data on applications and current
traffic measurements from switches (e.g., using sFlow [24]), an
estimated traffic matrix can be computed. Based on the esti-
mated traffic matrix, the network controller can then verify if
the new estimate is sufficiently different from the traffic matrix
the topology is currently configured for. If the controller deems
that there is sufficient difference between the traffic loads, then
the bandwidth steering algorithm can be triggered. This overall
logic is shown in Fig. 2.

A recent study in [11] reveals that on average, NERSC’s
Cori supercomputer receives a new job on the order of every
17 s. So, on first-order approximation, the network controller
could trigger a reconfiguration every 17 s to set up the network
for the incoming application. For DC oriented workloads,

Fig. 2. Proposed network controller for the Flexspander topology.
The network controller contains the bandwidth steering algorithm
and is responsible for deciding when topology reconfiguration should
be triggered.

a more data-driven approach can be used to determine the
suitable frequency to trigger bandwidth steering.

4. BANDWIDTH STEERING IN FLEXSPANDER

Next, we formalize the bandwidth steering algorithm in a
Flexspander network. We first give a naive formulation of the
bandwidth steering problem under a known traffic load, which
is conceptually straightforward, but has a runtime complexity
that scales exponentially with the network size. We then flesh
out the details of our bandwidth steering heuristic that has a
polynomial time complexity.

Note that the wiring between the EPSs of the same pod are
static, as they do not go through a layer of OCSs. Only the
inter-pod links are reconfigurable, since only the inter-pod
fibers are physically wired to the optical switches. We refer the
readers to Table 1 for the collection of recurring mathematical
notations used in this section.

A. Naive Approach

Given an inter-pod traffic matrix, T = [tij], we need to deter-
mine how the inter-pod links should be allocated such that we

Table 1. Collection of Mathematical Notations and
Their Respective Descriptions

Notation Description

N Number of pods in Flexspander
M Number of OCSs in Flexspander
T = [tij] ∈RN×N Traffic matrix, where tij denotes the traffic

rate (Gbps) sent from s i to s j

D= [dij] ∈RN×N Target logical topology, where dij denotes the
number of s i egress links connected to ingress
links of s j

X = [x k
ij] ∈

ZN×N×M

Integer number of logical links connecting
the egress port of pod i to the ingress port of
pod j , via OCS k

Y = [y k
i ] ∈ZN×M Number of physical links connecting pod i to

OCS k
S = [s i ] ∈RN Number of EPSs in pod i
A= [a ij] ∈RN×N Cost of connecting an egress port of pod i to

an ingress port of pod j
ro OCS radix
re EPS radix (Note that this term includes only

the network-facing ports.)
σ Ratio of inter-pod to intra-pod bandwidth
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can maximize network throughput. Based on this rationale, we
would expect the ideal topology to be one that best “matches”
T. This means that the logical topology allocates links between
pods proportional to the volume of traffic exchanged between
them. In essence, bandwidth steering allows us to trade path-
diversity for more short paths between the network hotspots.
To compute the logical topology overlay, we can use the
following integer linear program (ILP) formulation:

min
x

N∑
i=1

N∑
j=1

(
M∑

k=1
x k

ij − dij

)2

s.t. 1)
N∑

i=1
x k

ij ≤ y k
j ∀ 1≤ j ≤ N, 1≤ k ≤M,

2)
N∑

j=1
x k

ij ≤ y k
i ∀ 1≤ i ≤ N, 1≤ k ≤M,

3) x k
ij is an integer.

(1)

Note that the objective function in Eq. (1) is a least-squares
fit between the logical topology and the target logical topology.
Meanwhile, constraints 1 and 2 enforce the physical con-
straints, in that they ensure that the number of logical links
connecting pod i to pod j through OCS k cannot exceed the
number of physical wires that connect OCS k to both pods.
The optimal solution to Eq. (1) is the one with the shortest
euclidean distance to our target. We use a quadratic objective
function due to its convexity, which helps the optimization
algorithm converge. Unfortunately, computing an optimal
logical topology to Eq. (1) is an NP-complete problem [25,26].
Therefore, we need to design a good heuristic to relax the com-
plexity associated with solving Eq. (1); we detail the heuristic
next.

B. Bandwidth Steering Heuristic

Our heuristic is split into multiple sub-steps. Note that the key
source of the bandwidth steering algorithm’s complexity lies in
configuring each switch individually such that the overall log-
ical topology best matches our target logical connectivity. To
relax this complexity, we solve the overall bandwidth steering
problem using two sequential, smaller steps:

1. Compute an ideal target logical topology to strive for by
ignoring physical constraints that would otherwise make
this computation very challenging.

2. Configure all OCSs such that the overall logical topology
is close to the target logical topology.

1. Sub-step 1: Computing the Target Logical Topology

The first step to bandwidth steering is to derive the best “target”
logical topology. A target logical topology does not necessarily
have to be a realizable logical topology, but merely one that
is deemed to be best suited to a given traffic load. This target
logical topology then acts as a reference when we configure the
individual OCSs such that all the OCSs are configured in a way
that the overall logical topology is as close to the target logical
topology as possible.

In order to compute the target logical topology, we need to
consider the routing as well, since the performance of a topol-
ogy is intimately tied to how network traffic is routed over the
network. In this paper, we assume that the topology is designed
based on shortest-path routing. The underlying assumption
here is that the optimal target logical topology is the one that is
proportionally closest to the traffic matrix, since such a logical
connectivity offers the most bandwidth between the hotspots.
Given a traffic matrix, T, we then compute the target logical
topology, D, as follows:

min
D
(dij − tij)2

s.t. 1)
N∑

j=1
dij ≤

M∑
k=1

y k
i ∀ 1≤ i ≤ N,

2)
N∑

i=1
dij ≤

M∑
k=1

y k
j ∀ 1≤ j ≤ N,

3)dij ∈R ∀ i, j ∈ {1, . . . , N}.

(2)

Note that constraints 1 and 2 of Eq. (2) merely constrain the
ingress and egress degree of each pod, such that the target logi-
cal topology does not violate the number of ingress and egress
ports that are connected to the OCS layer. While the target log-
ical topology should be defined as a matrix of integer numbers,
enforcing this makes the optimization problem hard to solve.
We found that there is no reason for the target logical topology
to take on integer values, so we drop the integer constraint to
reduce complexity.

2. Sub-step 2: Configure the OCSs to Match the Target
Logical Topology

Once a target logical topology has been computed, we pro-
ceed to configure the OCSs such that the overall inter-pod
logical topology is as close to the target logical topology, D, as
possible. To do this, we iteratively configure the switch state
of each OCS, placing more priority in forming links between
pod pairs that are still very far from reaching their target logical
connectivity. Modeling each OCS as a bipartite flow graph,
as shown in Fig. 3, allows us to configure the switch state of
an OCS by solving a min-cost flow problem. Based on the
physical wiring pattern of an OCS, Algorithm 2 generates the
corresponding bipartite representation.

Algorithm 2. Generate a bipartite flow graph for an
OCS

1: procedure GenerateOCSBipartite(o k)

2: Initialize empty bipartite graph, Gk

3: Add dummy source and sink nodes
4: for each ingress port do
5: Add node, mark with source pod ID
6: Add edge from dummy source to node
7: for each egress port do
8: Add node, mark with destination pod ID
9: Add edge from node to dummy sink
10: for each ingress node do
11: for each egress node do
12: Add edge between ingress and egress node
13: return Gk
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Fig. 3. Each optical circuit switch can be modeled as a bipartite
network flow graph, with each ingress/egress port labeled with the
source/destination pods.

Next, using the “distance” between the current logical
topology and the target logical topology to “score” the flow
costs, we can obtain the best switch configuration of each
switch. The optimal configuration of each OCS can be solved
using Edmonds–Karp, which can be done in polynomial time
complexity.

C. Algorithmic Complexity

Solving for an optimal logical topology under a specific traffic
matrix has no known polynomial-time algorithm; our heu-
ristic, however, is a polynomial-time algorithm. To bootstrap
the system, we need to generate a bipartite representation of
each OCS in the form shown in Fig. 3, using Algorithm 2.
This needs to be done only once at design time; the bipartite
graphs can be stored to disk for reuse. The time complexity for
generating all bipartite representations is O(r ∗M), where r
denotes the OCS radix, and M denotes the total number of
OCSs in Flexspander.

The bandwidth steering algorithm is triggered every time
the network controller decides to reconfigure the logical topol-
ogy in anticipation of a given traffic matrix. Therefore, the
algorithmic complexity must be low. Our bandwidth steering
approach comprises two steps (detailed in Sections 4.B.1 and
4.B.2, respectively). The first step involves solving a quadratic
program, which can be solved efficiently using commercial
optimization tools such as Gurobi [27] and CPLEX [28]. Once
the target logical topology has been computed, configuring
all of the OCS switches using Algorithm 3 has a runtime of
O(M ∗ r 4).

Algorithm 3. Configuring OCS states

1: procedure ConfigOCS({Gk}, D)
2: x k

ij← 0 ∀ i, j ∈ {1, ... , N}, k ∈ {1, ... , M} F
Initialization

3: for k ∈ {1, 2, ... , M} do F iterate over each OCS
4: Solve matching for Gk with a ij ∀i, j ∈ {1, 2, ... , N}
5: a ij←

∑M
k=1 x k

ij − dij FUpdate the matching scores
6: return x k

ij ∀ i, j ∈ {1, ... , N}, k ∈ {1, ... , M}

5. PERFORMANCE SIMULATION

A. Evaluation Methodology

We use Netbench [29], an open-source packet level simulator,
to evaluate network performance.

1. Flow Distribution

We incrementally vary the flow arrival rate (also referred to
as load), λ, from 9000 to 30,000 arrivals per second for all of
our simulations. At each (Poisson) flow arrival, a source and
destination for the flow are picked from a traffic probability
distribution for each pair of switches. The distribution of flow
sizes used in our simulation is based on pFabric’s web search
[36], as shown in Fig. 4.

2. Benchmark

Our simulations are based on application traces derived in real
HPC applications. The types of applications that we simu-
late are MiniDFT, AMG, and MILC. We also use network
traces from a Facebook Hadoop cluster in order to simulate
performance for more DC-oriented workloads [12]. In Fig. 5,
the switch-to-switch traffic matrices are collected from these
traces. We can immediately see a high degree of spatial local-
ity, especially for the AMG and MILC traces. Meanwhile,
MiniDFT2 exhibits very little traffic altogether, as seen in the
predominantly dark traffic matrix heatmap.

3. Topology

All EPSs have 32 ports (i.e., r = 32), and OCSs have 16 (bidi-
rectional) ports. The Flexspander instance used in this paper
is formed using eight pods, with each pod being formed using
eight EPSs. We compare the performance of Flexspander
against Flexfly [10], which represents the state-of-the-art
reconfigurable topology that we are aware of. Further, we
compare the performance of Flexspander against some other
baseline topologies such as Dragonfly [30], High-dimensional
Torus (HD Torus), and HyperX [31]. Note that the Flexfly,
Dragonfly, HD Torus, and HyperX topology instances are sim-
ilarly sized, using 8 groups of 8 switches each, and built using
32-port EPSs and 16-port OCSs. Although there are many
variants of Dragonfly [32], we use the canonically defined
Dragonfly topology, as proposed in the seminal work of Kim
et al. [3].

4. Routing

We used all three routing algorithms, namely, Yen’s K-shortest
paths (KSP) algorithm [33], equal-cost multi-path (ECMP)
[34], and valiant load balancing (VLB) [35], for our simula-
tions with Flexspander, Flexfly, Dragonfly, HD Torus, HyperX,
and Xpander. Specifically, we use k = 10 for KSP between
all switch pairs in order to take advantage of the path diver-
sity of expander networks [6,13]. However, the performance
results in Figs. 6–8 show only the routing that yields the best
performance for each topology.



B50 Vol. 12, No. 4 / April 2020 / Journal of Optical Communications and Networking Research Article

Fig. 4. Flow size distribution used in our simulations. Distribution
is drawn from [29].

5. Metrics

In this paper, we evaluate the performance of all topologies
using FCT. A higher flow completion time indicates poorer
network performance. Based on the simulated flow comple-
tion of all the network flows, we analyze the worst-case and
average-case performances using the 100th percentile and 50th
percentile FCTs, respectively.

B. Simulation Results

In this section, we use the aforementioned evaluation method-
ology to evaluate Flexspander performance relative to Flexfly,
Dragonfly, HyperX, and HD Torus. We assume a 10 Gbps
bandwidth for both intra-pod and inter-pod links and an aver-
age link latency of 20 ns. The worst-case and median FCTs for
all simulated applications using ECMP routing are shown in
Fig. 6 and Fig. 7, respectively. We similarly analyze the fraction
of flows completed within the simulated time frame; the results
are shown in Fig. 8.

We first look at the worst-case FCTs for different topologies.
Figure 6 shows that in general, Flexspander performs the best
at low to medium load levels, though at high traffic loads,
all topology performances converge. This is because at high
load levels, the bottlenecked links move towards the injec-
tion/ejection links. The superior performance of Flexspander
can be accredited to its topological reconfigurability, allowing
the topology to dynamically allocate more network capacity
to alleviate network hotspots. In other words, Flexspander is
able to trade path diversity for more direct capacity between
pods that are expected to exchange more traffic, which allows

(a) (b) (c) (d)

Fig. 5. Switch-to-switch traffic matrices of application traces used in our simulations, represented as 2D heatmaps. (a) AMG, (b) Facebook
Hadoop, (c) MILC, and (d) MiniDFT2. The traffic matrices represent an aggregated traffic exchanged over the course of each application. The
brighter colors denote heavier traffic.

Fig. 6. 100th percentile (i.e., worst-case) FCT simulations for all application-generated traces, comparing Flexspander to similarly sized
Dragonfly, Flexfly, Xpander, HD Torus, and HyperX.
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Fig. 7. 50th percentile (i.e., median) FCT simulations for all application-generated traces. The median flow completion time is a good indica-
tor of the average case performance.

Fig. 8. Fraction of flows completed within a simulated time frame of 1 s. Only flows that are created between 0.25 s and 0.75 s are consid-
ered, in order to rule out flows that arrive either 1) too late into the network to complete or 2) too early into a network that has just initialized and
uncongested.

these pods to send traffic via shortest paths without the risk
of congesting the direct paths. In terms of percentage of flows
completed, routing traffic with KSP on an Xpander topology
matches the performance of Flexspander, which is routed with
ECMP. KSP allows traffic to take more path options to reach
its destination and exploit the impressive path diversity of
Xpander topologies. That said, Xpander’s FCT performance
suffers as a result of KSP sending most traffic via non-shortest
paths. This may result in an increased routing latency for small
flows and an increased overall congestion level, as traffic stays
in the network for longer periods of time.

It is worth noting that Flexspander consistently outperforms
Flexfly, even though Flexfly possesses a richer intra-pod band-
width due to its fully connected intra-pod topology. Compared
to the Flexfly, Flexspander still offers a plethora of short paths
between any two switches within the same pod. Both Figs. 6
and 7 show that Dragonfly generally performs the worst, due
to its relatively poor inter-group bandwidth. Since there is only
a single link connecting any two Dragonfly groups, the inter-
group bandwidth may quickly become overwhelmed when all
traffic between two groups is sent along this bottlenecked link.
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C. Routing in Flexspander

Next, we evaluate the effects of different routing schemes on
the Flexspander topology and investigate the type of routing
that would work best alongside a flexible interconnect. Three
routing strategies are compared in this experiment: 1) ECMP,
2) KSP, and 3) VLB. Figure 9 shows the effects of different
routings on worst-case FCT. Since the trends for the median
FCT are similar to the worst-case FCT, we present only the
worst-case FCT performance for a detailed discussion.

We can see here that the ECMP performance is compa-
rable to those of KSP and VLB in terms of worst-case FCT.
This finding goes against those in [6], in which the authors
found that KSP can more effectively utilize the path diversity
in expander-based networks to load-balance traffic, therefore
resulting in superior performance. Our results show that with
a traffic-aware topology, the routing algorithm should priori-
tize sending traffic along the shortest paths instead of using
ECMP. This makes sense, since bandwidth steering allocates
more shortest paths between network pods that are expected
to exchange more traffic, at the expense of reducing the num-
ber of paths between pods that exchange little traffic. Thus,
KSP does not fully take advantage of the augmented capacity
between pods when it sends more traffic along non-shortest
paths, thus nullifying the advantages of bandwidth steering.

This argument similarly applies to VLB. VLB aims to more
evenly distribute traffic across the network through the use of
a randomly chosen first step, which helps load-balance links
better in uniform network topologies. As a result, VLB would
not perform as well in Flexspander, as the logical topology
already has more capacity between the hotspots, which the
router should take advantage of.

6. RELATED WORKS

A. Folded Clos Networks

Folded Clos networks, more commonly known as fat trees [2],
have been used widely as interconnects in large-scale HPC

systems [37,38]. Fat tree topology benefits from having a
regular structure, making routing and load balancing across
the network very manageable. Further, fat trees possess a full-
bisection bandwidth, making them very resilient under heavy
traffic. However, these topologies can be very expensive to
deploy, due to the high number of EPSs and long cable length
required to build them. Therefore, practical compute systems
that employ fat tree networks typically build oversubscribed fat
trees instead to save cost, though oversubscribing fat trees may
ultimately congest the core layer links when traffic demand
soars [39]. Unlike the folded Clos topology, Flexspander is not
tiered, and the network resembles expander networks due to its
flat hierarchy.

B. Expander Networks

The class of expanders in graph theory has always received
much attention from researchers in the field of mathematics
and computer science. Some recent works in the networks
community have thus proposed building DC topologies as
expanders to save cost and improve network performance.
Both Jellyfish [4] and Xpander [5] propose interconnecting
top-of-rack (ToR) switches in DC networks based on foun-
dations in expander graphs and are shown to have improved
performance over today’s DC topologies. However, these
topologies optimized for uniform traffic demand would
demonstrate sub-optimal performance when the inherent
heterogeneity of network components and the traffic skewness
that exists in DC networks are taken into account. Flexspander
attempts to mitigate this by incorporating OCSs into the
network, allowing dynamic topology reconfiguration to better
serve non-uniform traffic loads.

C. Reconfigurable Networks

To handle skewed traffic patterns that may bottleneck a uni-
form network topology, some prior research has proposed
using OCSs to dynamically change the logical topology. For

Fig. 9. 100th percentile FCT for Flexspander using different routing schemes.
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large-scale networks (DCs or supercomputers), many proposed
approaches employ OCSs for “elephant” flows to mitigate the
load on EPSs [7,8,40,41]. The Flexfly architecture exploits
optical switching to reallocate bandwidth between groups
according to application needs [10]. With transparent optical
switching, Flexfly reconfigures the inter-group topology based
on the traffic pattern, stealing additional direct bandwidth
for communication-intensive group pairs. Compared to prior
literature, Flexspander allows network operators to explore
different relative proportions of reconfigurable capacity with
static capacity and determine the best design for each use case.

More recently, researchers have also proposed integrating
optical switching with conventional fat tree topologies for
HPC systems [11]. Specifically, the authors proposed adding
a layer of OCSs between the ToR and aggregation layers to
enable packets to traverse shorter paths to their destinations
and prevent heavy traffic from congesting the core links.

More recently, researchers have also proposed reconfig-
urable network architectures built with wireless technologies,
based on either free-space optics (FSO) [42,43] or radio waves
[44]. Compared to OCS-based approaches, these wireless
architectures offer much higher connection flexibility, since
any arbitrary pair of tranceivers can form links. However,
steering wireless “links” between tranceivers presents a signifi-
cant challenge in practice, as it requires highly sophisticated
hardware and software controllers to ensure proper steering.
Further, wireless link quality can be affected easily by a vari-
ety of environmental factors that may arise in either a DC or
a supercomputer facility, causing reliability issues that may
ultimately lead to performance deterioration.

7. CONCLUDING REMARKS

Many state-of-the-art network topology architectures currently
employed for DCs and HPCs assume a uniform traffic pat-
tern when being designed, and most of them employ static
topologies that can match only a limited number of traffic
patterns. Thus, when these networks encounter highly skewed
and localized traffic, their performance may become degraded.
In this work, we proposed Flexspander network architecture,
which integrates OCSs into expander networks to achieve a
flexible reconfiguration. We demonstrated through simulations
that Flexspander topology would offer valuable advantages over
current static and reconfigurable topological designs such as
Dragonfly and Flexfly in terms of its speed and flexibility [45].
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