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ABSTRACT
Numerous optical circuit switched data center networks

have been proposed over the past decade for higher capac-

ity, though commercial adoption of these architectures have

been minimal so far. One major challenge commonly facing

these architectures is the difficulty of handling bursty traf-

fic with optical circuit switches (OCS) with high switching

latency. Prior works generally rely on fast-switching OCS

prototypes to better react to traffic changes via frequent re-

configurations. This approach, unfortunately, adds further

complexity to the control plane.

We propose METTEOR, an easily deployable solution for

optical circuit switched data centers, that is designed for

the current capabilities of commercial OCSs. Using multiple

predicted traffic matrices, METTEOR designs data center

topologies that are less sensitive to traffic changes, thus elim-

inating the need of frequently reconfiguring OCSs upon

traffic changes. Results based on extensive evaluations using

production traces show that METTEOR increases the per-

centage of direct-hop traffic by about 80% over a fat tree at

comparable cost, and by about 35% over a uniform mesh, at

comparable maximum link utilizations. Compared to ideal

solutions that reconfigure OCSs on every traffic matrix, MET-

TEOR achieves close-to-optimal bandwidth utilization even

with biweekly reconfiguration. This drastically lowers the

controller and management complexity needed to perform

METTEOR in commercial settings.

1 INTRODUCTION
Given the exponential growth in data center traffic, building

networks that meet the requisite bandwidth has also become

more challenging. Modern data center networks (DCN) typi-

cally employ multi-rooted tree topologies [34], which have a

regular structure and redundant paths to support high avail-

ability. However, uniform multi-rooted trees are inherently

suboptimal structures to carry highly skewed traffic common

to DCNs [31, 48]. This has motivated several works on using

optical circuit switches (OCS) to design more performant

data center architectures [17, 55]. Compared to conventional

electrical packet switches, OCSs offer much higher band-

width and consumes less power. More importantly, OCSs

introduces the possibility of Topology Engineering (ToE),

which allows DCNs to dynamically allocate more capacity

between “hot spots” to alleviate congestion.

Despite showing immense promise, optical circuit-

switched data centers have not been widely deployed even

after a decade’s worth of research efforts. One of the most

daunting challenges is to perform ToE under bursty traf-

fic. Early works on ToE proposed reconfiguring topol-

ogy preemptively using a single estimated traffic matrix

(TM) [17, 55]. However, the bursty nature of DCN traffic

makes forecasting TMs accurately very difficult [4, 32]. An

inaccurate prediction may lead to further congestion. Even if

predictions were accurate, the forecast could still turn stale

if topology reconfiguration takes tens of milliseconds. Sub-

sequent works have thus focused on designing OCSs with

microsecond-level switching latency [20, 41, 42, 46], to en-

able faster reaction to traffic burst. However, these proposals

require changing topology and routing frequently, an act

that introduces significant complexity to the control plane,

thus hindering the adoption by large vendors.

We tackle bursty DCN traffic from a different perspec-

tive, using a robust optimization-based ToE framework

called METTEOR (Multiple Estimated Traffic Topology
Engineering for Optimized Robustness). While prior works

optimize topology for a single estimated traffic matrix [26,

55], our approach optimizes topology based on multiple traf-
fic matrices (TM). Traffic uncertainty is captured by a set of

multiple TMs. Optimizing topology using this set helps desen-

sitize the topology to traffic uncertainties. To our knowledge,

METTEOR is the first framework that tackles ToE from a ro-

bust optimization approach. The most compelling advantage

of METTEOR is that it does not rely on frequent OCS recon-

figuration to handle traffic changes, as long as the new traffic

is captured by a traffic set, thus reducing the management

complexity in commercial data centers. In fact, METTEOR

shifts the major complexity of ToE from the system control

aspect to the algorithm design aspect. Designing an optimal

topology for multiple TMs is an immensely challenging prob-

lem [19, 66]. We first formalize the overall problem in §5, and

discuss various techniques used for relaxing the algorithmic

complexity in §6.

We apply METTEOR to the core layer of data centers.

Based on traffic analysis of production data center traces,

we found that while pod-level traffic do not exhibit strong

temporal stability, they do exhibit a weaker form of temporal

stability, which we refer to as traffic recurrence. This recur-

rent behavior in traffic leads to a slow-varying clustering

effect, which is a novel observation in DCN traffic character-

istics. By optimizing topology based on these slow-varying
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Figure 1: Physical topology model, with pods fully-
interconnected via OCSs at the core layer.
clusters can achieve great performance without frequent re-

configuration. Because of the low reconfiguration frequency,

METTEOR requires minimal changes to the data center con-

trol plane, and thus can be viewed as a first step towards

fully optical circuit switched data centers.

We evaluate METTEOR’s performance under different

routing algorithms that minimize maximum link utilization

(MLU). Based on production data centers traces, METTEOR

increases the percentage of direct-hop traffic by about 80%

over a fat tree at comparable cost, and by about 35% over

a uniform mesh, at comparable maximum link utilizations

(MLU). (However, the tail MLU of METTEOR may suffer if

routing uncertainty exists.) Further, METTEOR with ideal

routing performs close to an idealized ToE that requires in-

stantaneous switching and frequent reconfigurations. Note

that using METTEOR, we can obtain this level of perfor-

mance with fortnightly OCS reconfiguration, making it de-

ployable with the current off-the-shelf OCSs
1
. Moreover,

METTEOR is less dependent on the frequency of topology

reconfigurations for good performance, when comparedwith

the ToE solutions that optimize topology based on a single

traffic matrix.

2 RELATEDWORK
2.1 Traffic-Agnostic DCN Topology
DCN topologies have been traditionally designed to be static

and traffic-agnostic, focusing on bisection bandwidth, scal-

ability, failure resiliency, etc. They can be divided into ei-

ther Clos-like and mesh-like topologies. Clos topology (e.g.,

Fat-Tree [1, 38]) is more widely-adopted in large-scale data

centers (e.g., Google [50], Facebook [16], Cisco [12], and Mi-

crosoft [24]), as its regular hierarchical structure simplifies

routing and congestion control. Mesh-like expander topol-

ogy [51, 54, 61] also shows great promise, as its flatter hierar-

chy saves cost by eliminating the spine layer in Clos, while

still offering rich capacity and path diversity.

However, DCN traffic is inherently skewed. A study from

Microsoft [31] showed that only a few top-of-rack (ToR)

switches are “hot” in a small (1500-server) production data

center. Facebook [48] reported that the inter-pod traffic in

1
To approximate ideal routing does require frequent routing update. Fortu-

nately, routing update can be much easier than OCS reconfiguration.

one of their data centers varies over more than seven orders

of magnitude. As a result, traffic-agnostic networks can be

inherently suboptimal under skewed DCN traffic.

2.2 Traffic-Aware DCN Topology
To handle fast-changing, high-skewed traffic patterns, some

researchers have argued for reconfigurable DCN topologies

based on optical circuit switches (OCS) [18, 35, 53, 67]. The

pioneering work, Helios [17], proposed reconfiguring pod-to-

pod topology using OCSs based on a single estimated traffic

matrix. However, reconfiguring Helios incurs a significant

delay (about 30ms), a problem that most commercial OCSs

today still face [9]. Given that 50% of DCN flows lasting

below 10ms [32], a 30ms reconfiguration latency could mean

that the topology optimized for pre-switching traffic may no

longer be a good fit for post-switching demands.

The need to cope with rapid traffic changes motivated sub-

sequent works aimed at decreasing reconfiguration latency

for OCSs. Some of these have focused on providing ToR-level

reconfigurability [36, 52, 55], potentially reducing latency to

microseconds level using sophisticated hardware. However,

these approaches might not scale to data centers with thou-

sands of ToRs, due to the low radix of ToRs and the finite size

of OCSs. Others have proposed scaling up reconfigurable

networks with steerable wireless transceivers [20, 27, 68],

but these architectures face serious deployment challenges

related to environmental conditions in real DCNs, and to

the need for sophisticated steering mechanisms. The Opera

architecture [40], built using rotor switches from [41], forms

a mesh-like expander topology by multiplexing a set of pre-

configured matchings in the time-domain. Unfortunately,

frequently changing OCS connections may overload the SDN

controller, and thus undermine data center availability.

Another line of work have looked into better algorithms

that schedule circuits more optimally in the presence of

reconfiguration delays [6, 37, 57]. However, the assumed

problem setups of these works fundamentally differs from

ours, as we are interested in designing a single topology

optimized for many possible traffic demands.

2.3 Traffic Engineering
To fully realize the potential of reconfigurable topologies,

traffic engineering (TE), is required. TE typically consists

of two phases: 1) the path-selection phase, and 2) the load-

balancing phase. The path-selection phase selects a set of

candidate paths for carrying traffic. Given a selection of

paths, the load-balancing phase then computes the relative

weights for sending traffic along the candidate paths.

Path-selection in data centers typically employs the K-

shortest-path algorithm [51, 54, 60]. As for load balancing,
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Figure 2: Percentage of TM snapshots with at least one his-
torical “lookalike”. Two snapshots are considered “looka-
likes” if their cosine similarity exceeds a given threshold.

nearly all the related works [17, 27, 55] on optical circuit-

switched data centers compute the relative weights by solv-

ing a multi-commodity flow (MCF) problem using a sin-

gle predicted traffic matrix. However, predicting a traffic

matrix accurately can be difficult, and an inaccurate traffic

prediction may incur unexpected congestion. Rotornet [41]

load-balances traffic using Valiant load-balancing (VLB) [65].

VLB has several desirable properties, such as being traffic-

agnostic and robust under demand uncertainties by routing

traffic via indirect paths, and having aworst-case throughput-

reduction of 2×. However, DCN operators tend to have a

strong sense of what traffic patterns may likely occur, based

on a wealth of historical traffic data. This makes VLB overly

conservative. Some TE literatures use robust optimization

to strike a balance between network performance and ro-

bustness to traffic uncertainty [10, 56, 62]. Although these

solutions are mainly designed for wide area networks (WAN),

the core ideas are equally applicable to DCNs.

3 MOTIVATING METTEOR
3.1 Recurrence-A Weaker Form of Stability
The conventional wisdom in ToE is to switch topology as

frequently as possible to handle demand changes. The belief

that DCN traffic lacks stability has driven much work on

designing faster OCSs and control planes. However, DCN

traffic is not entirely random, especially at the pod level. In

fact, while pod-level traffic matrices (TM) do not generally

exhibit strong stability over time, they do exhibit a weaker

form of temporal stability, which we refer to as traffic recur-
rence. This means that while most traffic snapshots may not

be close to the snapshot preceding them, it is very likely that

a similar TM has occurred in the recent past.

To quantify this phenomenon, we performed a simple case

study on recurrence using 6 months’ worth of TM snapshots

obtained from a data center. Each TM snapshot is a 5-minute-

average of inter-pod traffic. We present results from 1 data

center out of the 12 studied, though all other DCNs exhibit

similar results. A TM snapshot is considered recurrent if it

is close to at least one past TM within an observation period.

The “closeness” between two TMs is measured with cosine

similarity [58]. Fig. 2 plots the percentages of recurrent TM

(a) Multi-traffic ToE concept
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Figure 3: METTEOR concept illustration.

snapshots as a function of the lookback window (i.e., how far

back in the past we look). When closeness is loosely-defined

(i.e. similarity ≥ 0.95), almost all snapshots are recurrent

even with a 30-minute lookback window. When considering

closeness as similarity ≥ 0.99, over 96% of snapshots are

recurrent within a 30-minute lookback window. Regardless

of how closeness is defined, nearly all TMs are recurrent with

a 2-week lookback window. This property of weak temporal

stability may partially explain the slow-varying clustering

effects in traffic patterns, which we explore in §7.

3.2 Toy Example - METTEOR
Fig. 3a shows a proof-of-concept for METTEOR. Clearly, no

single TM can adequately represent all TMs properly in this

case, so single-traffic-based ToE approaches, as in [17, 27, 55],

may not work well. Our approach accounts for traffic un-

certainty by optimizing topologies based on multiple TMs.

When traffic is recurrent, many observed TMs will likely

reappear in the future. With topologies optimized for a few

representative TMs derived from historical snapshots, MET-

TEOR could perform well for future recurring traffic.

Using a simple experiment, we motivate the use of MET-

TEOR. In this example, we consider a network with 8 pods

interconnected via an OCS layer in a manner similar to that

in Fig. 1; each pod has 100 directed links of unit capacity. We

generate 30 traffic matrices at random. For METTEOR, we

find 3 traffic centroids using κ-means clustering algorithm,

and optimize topology based on the 3 TMs. For comparison,

we also optimize topology based on the average of all TMs.

Then, for each TM, we compute the maximum link utilization

(MLU) of routing each TM over the two topologies.

Fig. 3b shows the MLU performance. Cearly, METTEOR

performs better, as it is able to design topology that is well-

suited for most of the traffic snapshots. Under traffic uncer-

tainties, a multi-traffic optimization approach may improve

solution robustness by minimizing topology-overfitting to a

single predicted demand.

4 METTEOR - SYSTEM LEVEL OVERVIEW
4.1 Network Architecture
The assumed DCN topology is shown in Fig. 1, with a

layer of OCSs interconnecting all pods, each constructed
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Figure 4: Illustrating the complete software workflow of METTEOR.

from packet switches. This topology resembles a Clos typi-

cally seen in large scale data centers, although we replace

the core switches with OCSs. Like Helios [17], our work

employs inter-pod reconfigurability, which deviates from

some architectures that argue for inter-ToR reconfigurabil-

ity [20, 27, 46, 55, 68]. We chose inter-pod reconfigurability

over inter-ToR reconfigurability for the following reasons:

• Scalability: - Using pods with hundreds of uplinks to the

OCSs, and downlinks to ToRs for Θ(1000) servers, our ar-
chitecture can scale up to over 100k servers.

• Traffic stability: Inter-pod traffic shows more noticeable

locality [48], and is more stable than inter-ToR traffic [13, 32]

due to averaging effects from the aggregation switches.

• High fan-out2: Pods have much higher fan-out than ToRs.

Combined with multi-hop routing, every pod is reachable

within one or two hops, making it possible for one logical
topology to serve several, possibly dense

3
, TMs.

In this paper, we refer to the (fixed) physical connections

between the pod and OCSs as the physical topology. Topology
engineering reconfigures the OCSs to realize a specific logical
topology as an overlay on the physical topology.

4.2 Computing Logical Topology
Prior works have designed reconfigurable topology based on

a single estimated traffic matrix, obtained either from switch

measurements (e.g. Hedera [2]) or from end-host buffer oc-

cupancy [55]. However, due to the bursty nature of DCN

traffic [32], even inter-pod traffic can be difficult to predict

accurately, which fundamentally limits the robustness of

such an approach.

Therefore, we compute logical topologies based on mul-

tiple TMs instead. The first step is to obtain multiple TMs

that will be representative of future traffic (see Step 1 of

Fig. 4), based on historical traffic snapshots. Traffic snap-

shots can be easily obtained from flow-monitoring tools like

sFlow [45]. While we could get an accurate traffic estimation

directly from applications, this would require application

level modifications. Instead, we employ a simpler approach

that exploits the spatial-temporal traffic behavior of produc-

tion traffic to extract multiple representative TMs (see §7).

The next step is to optimize topology for the extracted TMs

2
Ability to form direct links with many destinations,.

3
While inter-ToR traffic matrices is quite sparse [20], inter-pod traffic ma-

trices tend to be dense, with mostly non-zero entries.

(see §5 and §6), which is the biggest challenge of this paper.

In fact, the topology optimization problem for even a single

TM is already NP-complete; having multiple TMs further

complicates this problem. Our goal is to design a polynomial-

time heuristic to this problem. The algorithm design must

be done carefully. Otherwise, a poorly-design topology can

easily nullify the potential benefits of ToE.

4.3 Reconfiguring Logical Topology Safely
Despite having shown great promise on paper, ToE has not

seen widespread commercial adoption. One key reason is

that existing reconfigurable architectures do not consider

high network availability. Network availability is generally

defined as a high-level service level objective (SLO), mea-

sured as a number of “nines” in service uptime [23, 28]. Under

the hood, however, availability is inextricably linked to fac-

tors like traffic volume, controller workload, hard/software

failure rates, and packet loss [43].

Performing ToE frequently, if not done properly, could

be detrimental to availability. For instance, high-frequency

switching places a tremendous workload on the SDN con-

troller. A poor-choice of switching configuration, or even a

bug, risks failing entire DCN blocks; an admittedly rare risk,

but one that increases with the rate of reconfiguration.

There are two major considerations when reconfiguring

topology. First, reconfiguration must be carefully sequenced

to avoid routing packets into “black holes.” For each recon-

figuration event, the SDN controller must first “drain” links

by informing packet switches not to route traffic through the

optical links that are about to be switched. Only upon veri-

fying that no traffic flows through these links can physical

switching take place. After switching completes, the SDN

controller can then “undrain” links and start sending traffic

through them again.

Second, topology reconfiguration needs to be staged to

maintain sufficient network capacity, especially when traffic

demands are high. For instance, if 40% of links need to be

reconfigured when network utilization is at 80%, the recon-

figuration process must take at least 2 stages (switching 20%

of links in each stage) to avoid congestion and packet loss

due to over-utilization.

4.4 Bootstrapping Greenfield DCNs
METTEOR requires a sufficient history of TMs to find the

right clusters. However, when a greenfield DCN is initially

4



deployed, or when new pods are added during DCN expan-

sion, there are not sufficient traffic data to locate the correct

traffic clusters. So, the initial configuration should aim for a

uniform logical topology, and route traffic evenly along both

direct and indirect paths. This reduces the risks of maximum

congestion due to traffic bursts, at the cost of poor bandwidth

tax performance as most traffic will traverse indirect paths.

Once sufficient historical traffic measurement is available,

then METTEOR can be triggered. Based on our experience,

one week’s worth of traffic snapshots should suffice.

5 FORMALIZING METTEOR
We now formalize the mathematics of METTEOR. All nota-

tions are tabulated in Table 1.

5.1 Logical Topology
Let S = {s1, .., sn} be the set of pods, O = {o1, ..,oy } be the
set of OCSs, and xki j be the number of links from pod si to pod
sj through OCS ok . We represent a logical topology using

X = [xi j ], i, j = 1, ...,n, where xi j =
∑y

k=1 x
k
i j is the number

of links between pods si and sj . The logical topologyX must
be feasible under a given physical topology, so it must satisfy

the following group of constraints.

OCS-level (Hard) Physical Constraints:

n∑
j=1

xkji ≤ hk
ig
(i),

n∑
j=1

xki j ≤ hk
eg
(i), ∀i = 1, ..,n,k = 1, ..,y;

xi j =

y∑
k=1

xki j , xi j and x
k
i j are all integers;

(1)

where hk
ig
(i),hk

eg
(i) are the number of ingress/egress links of

pod si through OCS ok .

5.2 Network Throughput
Let T = [ti j ], i, j = 1, ...,n be a TM, where ti j is the traffic

rate (in Gbps) from pod si to pod sj . Given a logical topology

X , we measure its throughput µ w.r.t. T , such that µT is the

maximum scaled TM that can be feasibly routed over the

topology X . Routing feasibility is defined as follows.

Let P = ∪(i, j)Pi j be the candidate path set for all pod

pairs (si , sj ), where Pi j is the set of candidate paths from

si to sj . We allow no more than two hops between pods,

so Pi j = {[si , sj ], [si , s1, sj ], . . . , [si , sn , sj ]}. The feasibility of

routing T over X can be verified using:

Find Ω = {ωp },p ∈ P such that (2)

1)
∑
p∈Pi j

ωp = ti j , ∀ i, j = 1, ...,n

2)
∑

p∈P,(si ,sj ) is a link in p

ωp ≤ xi jbi j , ∀ i, j = 1, ...,n

where bi j is the link capacity between si and sj , and ωp is

the traffic routed (in Gbps) via path p.
When computing throughput, we scale T until max link

utilization (MLU) hits 1, where link utilization is the ratio

of a link’s traffic flow rate to its capacity. As it turns out,

this problem (2) is related to that of minimizing max link

utilization (MLU) when routing an unscaled T over X . Thus,

a lower MLU implies that there is more room for T to grow

before MLU hits 1, which leads to higher throughput.

5.3 Design Objective
Givenm traffic matrices, {T1, ..,Tm}, let {µ1, .., µm} be the
throughputs of routing {T1, ..,Tm} over X . We aim to design

X such that min(µ1, .., µm) is maximized:

max

X
µ = min{µ1, .., µm}, s. t (3)

1) X is an integer matrix that satisfies (1)

2) (X , µτTτ ) satisfies (2), ∀ τ ∈ {1, ..,m}
3) The majority of traffic in Tτ is routed through

direct paths in X , ∀ τ ∈ {1, ..,m}

Note that (3)’s formulation ensures that the logical topol-

ogy maximizes all TM throughputs as evenly as possible.

Although we could maximize the total throughput of all

TMs, we avoid this as it gives the logical topology freedom

to selectively-optimize the throughputs of the “easier” TMs.

Solving (3) gives us the optimal logical topology. However,

the runtime complexity scales exponentiallywith the number

of pods and OCSs, which is too challenging for commercial

solvers like Gurobi [25]. Some prior work has studied traffic

engineering (TE) techniques based on multiple TMs [62, 63].

Unfortunately, those techniques cannot be applied here, as

ToE, unlike TE, requires integer solutions.

The complexity of (3) is imposed by the structure of the

physical topology. Since OCSs have limited radix, and the

OCS layer may involve ∼ 10k links, this layer must use mul-

tiple OCSs. Using multiple OCSs, rather than one giant OCS,

makes this optimization a strongly NP-complete combina-

torics problem [19, 66]. Since tackling (3) head on is infeasible,

we split the overall problem into smaller subproblems.

6 OVERALL METHODOLOGY
Next, we discuss the techniques employed to sidestep the

complexity of (3). Specifically, we split the overall problem

into steps 2 and 3 of Fig. 4.

First, we design a fractional logical topology (Step 2 in

Fig. 4) that optimizes throughput for all TMs, instead of

computing an integer solution directly. Without the integer

requirement, this step can be solved using linear program-

ming (LP). Next, we configure the OCSs such that the integer
logical topology best approximates the fractional topology

(Step 3 of Fig. 4). These steps are detailed in §6.1 and §6.2.
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S = {s1, .., sn } Set of all n pods

O = {o1, .., oy } Set of all y circuit switches

xki j Integer number of pod i ’s egress links connected to

pod j ’s ingress links through ok
X = [xi j ] ∈
Nn×n

Inter-pod topology; xi j denotes the number (integer)

of si egress links connected to ingress links of sj
T = [ti j ] ∈
Rn×n

Traffic matrix, where ti j denotes the traffic rate (Gbps)

sent from si to sj
D = [di j ] ∈
Rn×n

Fractional topology; di j denotes the number (frac-

tional) of si egress links connected to ingress links of

sj
hkeд (si ), hkiд (si ) Number of physical egress and ingress links, respec-

tively, connecting si to ok
r i
eg
, r i

ig
Number of egress and ingress links, respectively, of si

bi j Link capacity (Gbps) between si and sj
Pi j Set of all routing paths from si to sj
ωp Traffic (Gbps) on path p
µ Traffic scale-up factor

Table 1: Notations used in this paper
6.1 Computing Fractional Topology
Before proceeding, we need to define fractional topology.

Definition 6.1. Given a set of pods S = {s1, . . . , sn} and the
number of ingress & egress links r i

ig
, r i

eg
, D = [di j ] ∈ Rn×n is

a fractional topology iff it satisfies:

n∑
j=1

di j ≤ r i
eg
,

n∑
i=1

di j ≤ r j
ig

∀ i, j = 1, ...,n (4)

A fractional topology, D, simply describes the inter-pod

(fractional) link count, where each pod’s in/out-degree con-

straints are satisfied. This definition noticeably ignores the

OCSs; since the OCS layer will be considered when rounding

the fractional topology into an integer logical topology, ac-

counting for them here unnecessarily increases the number

of variables needed for representation
4
.

Our goal is to design a fractional topology, D, that leads
to good throughput for all the input TMs. Initially, we for-

mulated an LP that computes the optimal D for all TMs:

max

D satisfies (4)

µ, s.t.(D, µTτ ) satisfies (2),∀τ ∈ {1, ..,m} (5)

However, the above formulation scales badly due to the large

number of constraints when considering multiple TMs in

one LP. To achieve scalability, we use a two-step approach:

1) compute the optimal fractional topology for every TM,

and 2) combine the fractional topologies into one.

6.1.1 Fractional Topology for One Traffic Matrix.
We first compute a fractional topology for a single TM based

on two routing metrics: throughput and average hop count.

However, there is a tradeoff between these twometrics under

a given topology. For instance, throughput may be increased

4
As the number of ports of an OCS and a pod is comparable, the total

number of OCSs, y , must be in the same order as the total number of pods

n. Factoring in the OCS layer increases the variable space from O (n2) to
O (n2y), causing our solver to run out of memory for large fabrics.

if we allow non-shortest-path routing, but this can increase

hop count. We want to find a fractional topology that gives

a Pareto-optimal tradeoff between these metrics.

Given a TM,T , and a set of candidate paths,P, we compute

a fractional topology D in two steps. First, we compute D
that maximizes throughput µ for T as follows:

max

µ,D
µ s. t: (D, µT ) satisfies (2). (6)

Let µ∗ be the optimal value of (6). There could be many

fractional topologies that maximize throughput µ∗ forT . We

select the one that minimizes the usage of the non-shortest

paths. Let P ′
i j ⊂ Pi j be the set of non-shortest paths in Pi j .

The formulation is as follows:

min

Ω,D

∑
p∈P′

(
ωp

)
2

s. t: (D, µ∗T ) satisfies (2). (7)

Note that average hop count can be reduced implicitly

by minimizing the routing weights of non-shortest paths,

thus solving (7) helps D meet the third requirement in the

formulation (3). We opted for a quadratic objective function

in (7) over a linear one due to its “sharper” landscape, which

helps desensitize solution to slight TM input variations. In
our evaluation, we found this step instrumental in in-
creasing the amount of direct-hop traffic overall.

6.1.2 Combining Fractional Topologies.
Having computed Dτ

for every T τ ,τ = 1, ...,m, we then

linearly combine them into one, D∗
, which is then used to

map onto the OCS layer. This can be formulated as:

max

α>0,D∗
α , s. t: d∗i j ≥ α dτi j , ∀ i, j = 1, ..,n and τ = 1, ..,m.

(8)

The constraint in (8) guarantees that the throughput of rout-

ing T τ
in the combined fractional topology D∗

is at least

α times of that of routing T τ
in Dτ

. By maximizing α , D∗

achieves a good balance among different fractional topolo-

gies in terms of throughput.

6.2 Mapping D∗ onto the OCS Layer
We now map D∗

onto the OCSs such that the integer logical

topology, X , best approximates D∗
.

6.2.1 Problem Setup.
The goal here is to decide the total number of links xki j from
pod si to pod sj through OCS ok , for every i, j = 1, 2, ...,n and

k = 1, 2, ...,y. Since there are y OCSs, we split each d∗i j entry

inD∗
intoy integers xki j ,k = 1, ...,y, such that

∑y
k=1 x

k
i j ≈ di j ,

which can be formulated as

Soft / Matching Constraints⌊
d∗i j

⌋
≤

y∑
k=1

xki j ≤
⌈
d∗i j

⌉
, ∀ i, j = 1, ...,n (9)
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Then, a logical topology can be found by solving

Find {xki j } satisfying (1) and (9). (10)

Solving (10) strictly is NP-Complete, as 3-Dimensional

Contingency Table problem, proven to be NP-Complete [29],

can be reduced to our problem. Fortunately, unlike the phys-

ical OCS constraint (1), constraint (9) is “soft”, which can be

relaxed to reduce algorithmic complexity.

Initially, we tried two natural ideas for solving (10). The

first is to solve it directly using ILP. This naive approach

has an extremely high runtime complexity; it also cannot

gracefully relax the soft constraints when satisfying (9) is

infeasible. The second idea is to employ a greedy maximum

matching as in Helios [17], which maps each OCS to a max-

weight matching subproblem based on D∗
, and then greedily

solves these subproblems. However, this greedy approach

could violate so many soft constraints, such that the resulting

logical topology X may no longer be a good estimate of D∗
,

causing poor network performance.

We wanted an approach that (a) has low complexity, (b)

is mathematically sound, and (c) can gracefully relax soft

constraints when necessary. The ILP approach only achieves

(b), while the greedy algorithm only achieves (a). Inspired by

convex optimization theories, we developed two algorithms

that achieve all three criteria.

6.2.2 Algorithm Intuition.
One standard approach for relaxing hard-to-satisfy con-

straints is the Barrier Penalty Method (BPM) [8]. The idea is

to transfer all the soft constraints into an objective function

U (X ) that penalizes soft constraint-violation:

min

X satisfies (1)
U (X ) =

n∑
i=1

n∑
j=1

[ ( y∑
k=1

xki j−
⌊
d∗i j

⌋ ) ( y∑
k=1

xki j−
⌈
d∗i j

⌉ )]
(11)

Since xki j are all integers, it is easy to verify thatU (X ) ≥ 0

and U (X ) = 0 iff all the soft constraints in (9) are satisfied.

When (9) is not satisfiable, minimizingU (X ) provides a grace-
ful relaxation of (9). Still, computing an integer X directly

requires exponential runtime. We instead compute xki j for

each OCS k iteratively, while keeping xki j for all other OCSs

constant. Using first order approximation, computing xki j for
a given OCS k can be mapped to a min-cost flow problem,

which can be solved in polynomial time [15]. Unfortunately,

since BPM weighs every (i, j) soft constraint equally in its

objective function, we found that BPM suffers from an in-

creased soft constraints violation when D∗
is skewed. This

finding highlights the BPM’s limited adaptability to a wide

range of fractional topologies.

To address the shortcomings of BPM, we employ another

approach based on the Lagrangian dual method (LDM) [39].

LDM relaxes the soft constraints (9) with dual variables that

can adapt to the skewness of D∗
over multiple iterations,

leading to fewer soft constraint violations. Our METTEOR

implementation uses LDM precisely for its adaptability. The

full derivations of the LDM and the BPM are in B.1 and B.2,

respectively, followed by their optimality evaluation in D.

7 PICKING REPRESENTATIVE TRAFFIC
The first step in METTEOR’s workflow is to extract multiple

representative TMs. We show how to extract these TMs

purely from historical traces, while assuming no knowledge

of the underlying application mix.

Recall Fig. 2 in §3 showed that inter-pod traffic exhibits a

weak form of temporal stability, which we call recurrence.

This behavior causes TMs to form clusters that vary slowly

over time. But how exactly does traffic recurrence lead to

clustering behavior? We offer an informal reasoning as fol-

lows. Consider a traffic matrix snapshot as a point in high-

dimensional space. Over time, recurrent snapshots will begin

to “congregate” within the vicinity of one another to form

clusters, rather than scatter around uniformly in space.

The appearance of clustering effects is predicated of traffic

exhibiting both spatial and temporal locality. The spatial lo-

cality is inherent to data center job placement. Large DCNs

tend to assign different groups of pods to specific production

areas, so pods belonging to the same production areas are

more likely to communicate with one another. Meanwhile,

the temporal locality comes from traffic recurrence, and this

property is partially determined by user behavior. The regu-

larity of usage patterns from long-term customers in cloud

data centers, or the routine running of batched jobs (e.g. in-

tegration tests) in private data centers may all cause traffic

recurrence.

7.1 Traffic Clustering Effect
7.1.1 Visualization of Traffic Clusters.

Traffic matrices are high dimensional data points (each point

has Θ(pod num
2) dimensions), so visualizing their temporal

evolution is exceedingly difficult. To this end, we employ

principal component analysis (PCA) to reduce the dimen-

sionality of the TM snapshots, and project each snapshot

onto the plane formed by the first and second principal com-

ponents [21]. Since an optimal topology for a TM remains

optimal regardless of scaling, we should not distinguish TMs

differ only in their total traffic volume. Thus, we normalize

all TMs to 1.

Fig. 5 shows an example of traffic from one of the produc-

tion data centers, with this projection represented as a 2-D

heatmap, where brighter colors indicate areas with a higher

occurrence. The proportion of variance explained (PVE) by

the first two components is 91% of the total variation. Each

plot covers about 24 days’ worth of traffic snapshots. There

are noticeable clustering effects, which manifest as “clouds”
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Figure 6: TM clustering statistics of 12 production DCNs.
Six months of traffic snapshots are split into 10 segments
of ∼18 days each. The appropriate # of clusters of each seg-
ment is determined using silhouette method. Error bars de-
note the std dev, and asterisk marks denote max and min.

of bright patches. These clusters shift slowly over time, so

topology reconfiguration to handle these shifts is necessary.

The top row in Fig. 5 shows the traffic temporal variation

along the principal component. Note that while the clusters

change slowly over the course of weeks, the variation along

the principal component between snapshots is rather signifi-

cant. The maximum variation from peak to trough accounts

for about 5% of the total traffic, which is 85% of the largest

inter-pod traffic, and 25× the average inter-pod traffic.

7.1.2 Clustering Statistics Across 12 Data Centers.
Next, we study the clustering effect across a fleet of 12 produc-

tion DCNs. Using 6 months’ worth of historical traffic from

each data center, we compute the optimal number of clus-

ters for each 18-day period using the silhouette method [47].

This step repeats for 10 contiguous 18-day segments. Fig. 6

summarizes these statistics.

Across all 12 fabrics, the average “appropriate” number of

clusters for each 18-day period is below 4. The appropriate

number of clusters in each period, and how it evolves over

time, are generally artifacts of the DCN’s underlying appli-

cation mix and scheduler behavior. Therefore, the optimal

number of clusters has to be determined individually for

each fabric through traffic analysis.

The optimal number of clusters number changes from one

18-day segment to the next (see the error bar overlays in

Fig. 6), though the deviations are small (within a ±1 range
of the average). This suggests that network operators can

pick a consistent number of TMs used for METTEOR in all

reconfiguration epochs for each fabric.

7.2 Finding Representative TMs
In theory, we could consider using the set of all historical
TMs for optimization. Doing so guarantees coverage of any

future traffic that is recurrent, but the runtime and memory

complexity required to compute a topology for such a large

set of TMs would also increase astronomically. Hence, to

avoid adding significant computational complexity to MET-

TEOR, we need to pick the smallest set of TMs that is still

sufficiently representative of future traffic.

Though prior works have proposed effective methods for

selecting traffic matrix estimators (e.g. CritMat [64]), we em-

ploy a simple, yet effective, κ-means clustering algorithm

to find the centroids within the historical traffic snapshots.

Computing these cluster centroids gives us a compact repre-

sentation of historical traffic that retains much of the “fea-

tures” of the historical traffic. As long as a future traffic

snapshot is recurrent, there is a high probability it will be

well-represented by at least one of these cluster centroids.

7.3 Accuracy of Cluster-based Prediction
Next, we test how well traffic clusters predict future traffic.

First, we split 6 months’ worth of traffic into segments of

two weeks. In cluster-based prediction, we extract κ cluster

centroids from each 2-week segment, and use them to predict

traffic in the next segment. We compare cluster-based predic-

tion against two single-traffic-based predictions, namely ave
andmax , which pick the historical average and component-

wise max values, respectively.

We use cosine similarity (defined in [58]) to evaluate how

similar the predicted TM is to the actual TM. Given two

TMs’ vector representations, ®T1, ®T2, their cosine similarity

sim( ®T1, ®T2) measures how parallel (or similar) these two

vectors are. If sim( ®T1, ®T2) is close to 1, it follows that a ®T1-
optimized topology would also be close-to-optimal for ®T2.
For multiple representative TM cases, we pick the one that

is most similar to the evaluated traffic snapshot.

Fig. 7 shows that cluster-based prediction yields higher ac-

curacy than both ave andmax , as they can more effectively

capture long-term traffic behavior. The long tail of the κ = 1

curve indicates that fewer clusters may hurt worst-case ac-

curacy, showing an inability to cover outlier TMs. Choosing
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Figure 7: Accuracy of cluster-based v.s. single-traffic predic-
tors in estimating future traffic.

κ = 5 over κ = 3 shows a diminishing improvement in pre-

diction accuracy as κ increases.max has the lowest accuracy,

as it captures the maximum element-wise demand that may

not be representative in general.

8 PERFORMANCE EVALUATION
Wenow evaluateMETTEOR’s performance over an extended

timescale. The criteria we evaluate are: 1) performance com-

parison among different network topologies (§8.1), 2) perfor-

mance robustness under different reconfiguration frequen-

cies (§8.2), and 3) performance under routing uncertainties

(§8.3). We assume a fluid traffic model to help us evaluate

performance over extended periods, while still capturing the

essential macroscopic properties.

Dataset: Our evaluations are driven by production DCN

TM snapshots. Each snapshot captures inter-pod traffic over

5 minutes. The number of snapshots from each of the 12

simulated data centers totals up to 6 months’ worth of data

(i.e. slightly over 50k snapshots per data center). We present

a subset of our findings here; complete results are in A.

Metrics: The main metrics we look at are:

• Link utilization (LU) is a good indicator of link congestion,

so a lower LU is preferred. However, MLU only reflects

congestion at the busiest link, so we also look at the median

LU to gauge the average case link congestion. Although LU

cannot exceed 1 in practice because packets can be dropped,

we allow LU to be greater than 1 in our evaluation, as it

could reflect how severe the packet drop is.

• Bandwidth tax is the additional capacity on average needed

to route traffic [40]. For instance, if 60% of traffic traverses

indirect 2-hop paths and 40% of traffic traverses direct paths,

then the bandwidth tax is 0.6 × (2 − 1) + 0.4 × (1 − 1) = 0.6.
Since we allow a maximum of 2 inter-pod hops for each

packet in this paper, bandwidth tax is equal to the fraction

of 2-hop traffic. Clearly, a lower bandwidth tax is preferred

due to the following reasons. First, indirect paths increases

packet latency. Second, lowering bandwidth tax directly

lowers the number of concurrent flows going through each

switch. As DCN switches typically have shallow buffers,

lowering the number of concurrent flows through a switch

helps reduce the probability of incast [11].

8.1 Topological Comparison
We first compare METTEOR with other DCN topologies.

Topology: Our main contender is METTEOR with the fol-

lowing settings. κ = 4 representative TMs are extracted from

2 weeks’ worth of historical traffic preceding each reconfigu-

ration epoch, and the logical topology is reconfigured based

on these representative TMs every two weeks.

Routing: We use traffic engineering (TE) for routing. As

mentioned in §2.3, TE algorithms typically consists of a path-

selection step, and a load balancing step. For path selection,

we consider all paths between two pods that are within 2

hops. That is, in addition to a direct hop between the source

and destination pods, traffic is allowed to transit at another

intermediate pod before reaching its destination. For load

balancing, we compute the optimal routing weights that

minimizes MLU using an multi-commodity flow (MCF) for-

mulation, as done in [27, 30].

Versus fat tree: We first compare against fat trees, which

represent the industry standard in DCN topologies. Due to

cost reasons, most network operators tend to oversubscribe

to the aggregation or core layers [4, 16, 24]. Our evaluation

includes a 1:3 oversubscribed fat tree, which has comparable

cost to METTEOR, and a non-oversubscribed 1:1 fat tree. All

fat tree topologies use ECMP routing.

Fat tree networks perform poorly in terms of bandwidth

tax when compared against METTEOR’s topologies. A fat

tree network has an additional spine layer of packet switches.

Therefore, inter-pod traffic always consumes bandwidth of

2 hops (one between the source pod and the spine, and the

other between the spine and the destination pod). Under a

METTEOR topology, on average over 80% of traffic traverses

single-hop paths (OCSs are transparent to DCN traffic in

between adjacent OCS reconfigurations). In terms of MLU, a

1:1 fat tree, with its full bisection bandwidth, outperforms all

other topologies, barring ideal ToE. When compared against

a 1:3 fat tree of comparable cost, METTEOR reduces tail MLU

by about 3×.
Versus uniform mesh: We also compare with a uniform

mesh that directly connects pods without an OCS/spine layer.

Uniformmeshes are considered a class of expander networks,

offering large bisection bandwidth at a lower cost than fat

trees. Since METTEOR’s logical topology is also mesh-like

with non-uniform interpod connectivity, a uniform mesh

represents a natural baseline for comparison.

METTEOR consistently lowers bandwidth tax by ≈0.35 on
average over a uniform mesh, due to its strategic link place-

ment between hotspots. The lower bandwidth tax translates

into an average median-LU improvement of 50%, due to a

reduction in overall traffic load. In terms of MLU, METTEOR

performs comparably to a uniform mesh. This comparison
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Figure 9: Performance sensitivity to reconfiguration frequency, comparing METTEOR to single-traffic approaches. Boxes
represent the 95-th and 5-th percentile values; the whiskers represent the max and min values.

showcases the benefits of ToE, as we can reduce bandwidth

tax without sacrificing MLU.

Versus ideal ToE: Ideal ToE computes an offline optimal

topology that minimizes the MLU and bandwidth tax for

each traffic matrix, and thus it represents the performance

upper bound of topology engineering.

When paired with ideal load balancing, METTEOR’s MLU

performance is very close to that of ideal ToE. As our evalu-

ation traffic matrices are highly skewed, with a significant

amount of traffic comes from a small subset of pods, MLU

becomes limited by a pod’s total egress/ingress capacity.

Therefore, even ideal ToE cannot do much to improve MLU.

Still, ideal ToE lowers bandwidth tax over METTEOR by 0.08

on average, and 0.01 at the tail.

Versus single-traffic ToE: Finally, we compare METTEOR

against single-traffic ToE to showcase the benefits of using

multiple TMs. As an example of single-traffic ToE, MET-

TEOR (κ = 1) has a longer tail than METTEOR (κ = 4) for

all the metrics shown in Fig. 8. Indeed, it is generally very

difficult to predict future TMs with a single TM due to traffic

uncertainties. One may also propose using an element-wise

average, or maximum traffic estimator in single-traffic ToE.

We postpone the detailed comparison in §8.2.

8.2 Impact of Reconfiguration Frequency
Clearly, the frequency of topology-reconfiguration is a key

factor in not just performance, but also the implementa-

tion and management complexity. The evaluations on MET-

TEOR in §8.1 are based on biweekly reconfigurations. Here,

we study the interplay between topology reconfiguration

frequency and performance, by comparing METTEOR’s

to other single-traffic based methods used in prior ToE

works [17, 20, 27, 55]. As in §7.3, we compare METTEOR

against two other single-traffic ToE approaches: Ave and

Max . Ave derives its traffic estimator by taking the average

of its historical traffic snapshots, whileMax derives its traffic

estimator by taking the element-wise historical max.

Results in Fig. 9 show that in terms of tail MLU and band-

width tax, METTEOR generally outperforms other single

traffic-based ToE approaches given the same reconfiguration

frequency. As METTEOR optimizes topology based on multi-

ple estimated demands, it is more effective in covering future

demands that resemble at least one of the predicted traffic

used for topology-optimization. Furthermore, considering

multiple traffic matrices when optimizing topology makes it

less likely to overfit the logical topology to any single traffic

demand, thereby reducing the performance penalty due to

poor predictions. Note that METTEOR exhibits very little

change in tail performance even at lower reconfiguration

frequencies, further highlighting the topology’s robustness

to traffic changes over time. This feature allows DCN opera-

tors gain much of the benefits of topology engineering even

with sporadic reconfigurations.

8.3 A Discussion On Suboptimal Routing
Our evaluations so far have been based on ideal load balanc-

ing that can respond instantaneously to current traffic de-

mands with a set of optimal routing weights that minimizes

MLU. This allows us to analyze the merits of different topolo-

gies, irrespective of routing-induced suboptimality
5
. While

close-to-optimal TEs have been demonstrated in the past (e.g.

MicroTE [5]), they are all adaptive algorithms that operate

5
Evaluations based on ideal MCF load balancing that minimizes MLU have

been similarly done in [17, 27, 55].
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Figure 10: Percentile plot of network performance with different TE solutions. Solid lines denote METTEOR topology per-
formance, while dashed lines represent uniform mesh.

at very fine timescales (e.g. sub-seconds), which may inflict

huge management overheads to the SDN controller [33].

Since METTEOR operates on coarse timescales, this led us

to question whether it can be paired with a coarse-grained

TE to work well. As routing can no longer react to all TMs

optimally, this brings routing-induced suboptimality into

consideration. For this evaluation, we use 3 different load-

balancing schemes that represent a large class of TE algo-

rithms: 1) single-traffic TE, 2) Valiant load balancing (VLB),

and 3) multi-traffic TE, and compare their performance when

applied on uniform mesh and METTEOR (κ = 4) topologies.

Single-Traffic TE (TE-S): TE-S computes routing weights

using an MCF that minimizes MLU for a single predicted TM.

The TE-S results in Fig. 10 updates routing weights every 5

minutes, based on the average traffic matrix over the past

hour. We can see that TE-S performs well on average, but

clearly suffers at the tail for both MLU and bandwidth tax.

Valiant load balancing (VLB): As a traffic-agnostic load-

balancing algorithm, the canonical VLB derives its robustness

by splitting traffic among many indirect paths at random.

Our version of VLB splits traffic among direct and indirect

paths, weighted by path capacity. However, because VLB

sends a large portion of traffic via indirect paths, it exhibits

very poor bandwidth tax performance in Fig. 10. Clearly,

VLB’s indiscriminate traffic-splitting policy prevents it from

favoring the tax-free direct paths, which makes VLB a poor

choice of load-balancing for METTEOR.

Multi-Traffic TE (TE-M): TE-M is essentially a traffic en-

gineering analog of METTEOR. On a high-level, TE-M picks

multiple representative traffic matrices based on historical

measurements, and computes a set of routing weights that

minimizes MLU for all of the predicted traffic matrices. The

full formulation is in E. Fig. 10 shows the performance of

TE-M which updates routing weights every 5 minutes, based

on 4 representative TMs chosen from the past hour. Clearly,

TE-M retains an impressive bandwidth tax when used with

METTEOR, while achieving better tail MLU than TE-S and

VLB. This indicates that using multiple TMs can improve

routing robustness under uncertainty.

UniformMesh vs. METTEOR: Recall from §8.1 that MET-

TEOR improves bandwidth tax over static uniform mesh,

without sacrificing tail MLU. Unfortunately, this is no longer

true when TE is suboptimal. Based on Fig. 10, we can see

that while METTEOR still outperforms a uniform mesh in

bandwidth tax, it is more prone to a long MLU tail
6
. In fact,

there is a tradeoff between average bandwidth tax and tail

MLU. A “topology + routing” solution with better average

bandwidth tax, tends to have a longer MLU tail.

After analyzing the TM snapshots that caused long MLU

tails, we found that the leading cause to be the sudden traffic

bursts between pairs of pods thought to be “cold”, rather than

an increase in traffic at the hotspots. To improveMETTEOR’s

tail MLU, we need to over-provision some capacity to the

“cold” pod pairs. One interesting future work is to investigate

the possibility of improving the above tradeoff with proper

capacity-overprovisioning.

Impact of Routing Update Frequency: We found that,

without ideal routing, METTEOR’s MLU exhibit long-tailed

behavior, even if we use TE-M that updates routing weights

every 5 minutes. Readers may wonder if the tail MLU can be

improved with more frequent routing updates. However, we

do not have data finer than 5 minutes. Instead, we evaluate

TE-M under 4 different frequencies, ranging from once every

5 minutes to once every 2 days, and study the trend.

From Fig. 11, we can see that bandwidth tax is virtually

unaffected by the routing frequency, with METTEOR still

consistently outperforming a uniform mesh. Tail MLU does

improve as routing-update frequency increases. We also plot

Fig. 12 showing the percentage of TMs that can be supported

by the underlying topology. Clearly, METTEOR works better

with more frequent routing updates.

Summary: Under suboptimal TE, METTEOR still outper-

forms a uniform mesh in terms of bandwidth tax, though it

is more susceptible to long-tailed MLUs. Updating routing

weights more frequently helps the network respond better

to traffic bursts, and improve tail MLU. Adaptive TE may be

necessary to realize the full potential of METTEOR.

6
Note that the MLUs up to 99.9 percentile values are roughly the same as

those of the uniform mesh.
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Figure 12: Probability of traffic demands met, as a function
of TE update frequency.

Note: Due to restrictions on our access to the actual TM

traces, the evaluations in §8.3 were done using approximate

reconstructions of the TM traces used in §8.1 and §8.2. We

reconstructed each TM from the first 5 principle-component

projections from our PCA study, dropping higher-order

terms. This by itself yields only a normalized approxima-

tion to the actual traffic matrices, so we inferred the correct

scale factor based on MLU values from the ideal ToE results.

This is a lossy reconstruction.

9 PACKET LEVEL SIMULATIONS
The evaluations thus far have focused on macroscopic met-

rics like link utilization and bandwidth tax. As important as

these metrics are to DCN operators [14], their implications

on application-level metrics such as flow completion time

(FCT), are not immediately clear. To test how FCT at finer

timescales relates to macroscopic metrics, we use the Net-

Bench [44] packet-level simulator. The simulation emulates

2 seconds of real world time. The flow size distribution is

based on a data mining workload from previous works [3].

Flows arrive following a Poisson process. We assume that

the network links have capacity of 100Gbps, and the server-

to-server latency is 600ns. We choose at random a TM to

derive the communication probability between pods.

Our first set of simulations seeks to study the effects of

different MLUs on FCT. First, a production TM snapshot is

chosen at random. Next, 3 different logical topologies were

generated via random sampling, such that routing the same

traffic matrix over each logical topology with MCF results to

3 different MLUs. We enforce the routing weights obtained

from MCF such that the bandwidth tax is 0.2 for all 3 logical
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Figure 13: Flow-level performance for data-mining work-
load under different bandwidth taxes.
MLU 99th %tile FCT 99.9th % tile FCT 99.99-th% tile FCT
0.5 154ms 331ms 928ms

1.0 103ms 379ms Incomplete

1.5 118ms 414ms Incomplete

Table 2: Tail FCT performance of routing the same traffic
matrix with different MLU, but fixed bandwidth tax.

topologies
7
to remove confounding variables. Table 2 shows

that larger MLU leads to longer-tailed FCT. Intuitively, a

lower MLU means less link congestion, which ultimately

helps more flows to complete as more traffic may traverse

the network within a given amount of time.

We similarly study how differences in bandwidth tax may

affect flow level performance, given the same MLU of 0.45.

Fig. 13a shows the FCT as a function of bandwidth tax. Note

that while there is little difference in FCT for larger flows,

the small flows have shorter FCT when the bandwidth tax is

low. Small flows are more latency-sensitive, and hence their

FCTs are more likely to be affected by a high bandwidth tax.

Fig. 13b shows that packet drop could happen in shallow-

buffered data centers even before MLU reaches 1, and higher

bandwidth tax leads to higher occurrences of TCP resends,

which is detrimental to the throughput of small flows while

waiting for packet timeout. Hence, bandwidth tax is equally

important for DCN performance as MLU.

10 CONCLUSION
We present METTEOR, a robust topology engineering (ToE)

approach that works for off-the-shelf OCSs. Unlike previous

ToE solutions that react to every traffic change, METTEOR

designs logical topologies based on multiple representative

TMs extracted from the slow-varying traffic clusters. As a

result, METTEOR can obtain most of the benefits of an ideal

ToE, even with infrequent reconfiguration on the order of

weeks. Reconfiguring topology at such low frequencies will

lead to a lower technological barrier to ToE deployment,

paving a path toward the incremental adoption of reconfig-

urable networks in commercial data centers.

7
This can be easily done via MCF by constraining 20% of the total traffic to

traverse indirect paths.
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A ADDITIONAL SIMULATION RESULTS
Here, we show the complete set of simulation results in Fig.

14 , comparingMETTEOR against a uniformmesh expanders

and ideal ToE. Similar to the settings in §8.1, METTEOR re-

configures logical topology on a biweekly-basis, using 4 traf-

fic clusters (κ = 4) computed from 2-weeks’ worth historical

traffic matrix snapshots.

B ALGORITHMS FOR BPM AND LDM
Here, we fully flesh out the Barrier Penalty Method (BPM)

and Lagrangian Dual Method (LDM), and provide the nu-

merical algorithms needed for each method to work. Both

methods are iterative, and will save the solutions that yields

the lowest ratio of soft constraint violations encountered

up till the current iteration. First, we introduce a goodness

function for a feasible OCS switch configuration state, x used
to keep track of the best solution thus far:

Ψ(x) =
∑
i, j ∈S

ψi j
(12)

Where ψi j is an indicator variable that equals 1 when the

(i, j) pod pair’s soft constraints is satisfied, and 0 otherwise.

B.1 Detailed Walkthrough for BPM
Even though (11) has relaxed the soft constraints, solving it

to optimality directly is still challenging due to its quadratic

objective function. We want a low-complexity algorithm

with good objective value, rather than the optimal solution.

To achieve this, we use first-order approximation on the

objective functionU (x):

min

x
U (x) (13)

≈ min

x

{
U (x̂) +

K∑
k=1

n∑
i=1

n∑
j=1

( ∂U
∂xki j

����
x=x̂

)
×

(
xki j − x̂ki j

)}
= C +

K∑
k=1

{
min

xk

n∑
i=1

n∑
j=1

[ K∑
k ′=1

2x̂k
′

i j − (
⌈
d∗i j

⌉
+

⌊
d∗i j

⌋
)
]
xki j

}
where x̂ is an initial value of x, and C is a constant.

As the constraints in (1), and the approximation form of

U (x) in (13) are separable in k , we can solve for x iteratively,

one OCS at a time, as follows:

min

xk

n∑
i=1

n∑
j=1

[ K∑
k ′=1

2x̂k
′

i j − (
⌈
d∗i j

⌉
+

⌊
d∗i j

⌋
)
]
xki j (14)

s.t:

n∑
i=1

xki j ≤ hk
ig
(j),

n∑
j=1

xki j ≤ hk
eg
(i),

max{x̂ki j − 1, 0} ≤ xki j ≤ x̂ki j + 1 ∀ i, j = 1, ...,n

We add a range for every xki j because the approximation in

(13) only works in the neighborhood of x̂. (14) is easily solv-

able using min-cost circulation algorithms (see Appendix C).

Further, since all the bounds (i.e., hk
ig
(i), hk

eg
(i)) are integers,

an integer solution of xki j is guaranteed. Due to space limits,

Appendix B.1 provides the BPM pseudocode.

We have gone through the intuition of BPM in §6.2.2. Here,

we provide the detailed pseudocode in Algorithm 1.

Data:
• D∗ = [d∗i j ] ∈ Rn×n - fractional topology

• τmax - number of iterations

Result: x∗ = [xki j ∗] ∈ Zn
2K

- OCS switch states.

1 Initialize: x̂ := 0, x∗ := 0;

2 for τ ∈ {1, 2, ...,τmax } do
3 for k ∈ {1, 2, ...,K} do
4 Solve (14) based on Appendix C and let xk be

the integer solution;

5 Update x̂ in the k-th OCS by setting x̂k = xk ;

6 if Ψ(x∗) < Ψ(x̂) then
7 x∗ := x̂;
8 end
9 end

10 end
Algorithm 1: Barrier penalty method

Algorithm 1 is an iterative algorithm. Although only one

OCS gets updated in each step, we obtain a new solution after

combining other OCSs’ old states. The goodness function

Ψ(x) is used to track the best solution obtained so far. In our

implementation, we use use (12) as our goodness function.

Many alternative goodness functions exists, though their

relative merits are subject for future work.

B.2 Detailed Walkthrough for LDM
Lagrangian Dual method was motivated by the dual ascent

method in [7]. By introducing dual variables for soft con-

straints, LDM not only achieves graceful relaxation of soft

constraints, but also relaxes the original NP-hard problem

to a polynomial-time solvable problem. Nevertheless, LDM

differs from the dual ascent method due to integer require-

ment. In this section, we detail the steps required for LDM

to work.

B.2.1 Primal Problem.
Our goal is to find an integer solution of x = [xki j ] satisfying
the soft constraint (9) and the hard constraints in (1). In

theory, there is no need for an objective function of x in our

problem, since the problem itself is more concerned with

satisfiability of the soft-constraints. However, this will lead
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Figure 14: Additional simulations results, using 6 months’ worth of 5-minute-averaged traffic snapshots from 12 different
DCN fabrics.

to an algorithm with extremely poor convergence property.

To speed up convergence, we introduce a strictly convex

objective function for our primal problem, which is written

as:

P : max

x
U (x) =

K∑
k=1

n∑
i=1

n∑
j=1

U k
i j (xki j )

s.t : (1), (9), are satisfied

(15)

At first, we chose U k
i j (xki j ) = 0, which is not strictly

convex. As expected, the solution does not converge even

after running large number of iterations. We then chose

U k
i j (xki j ) = −(xki j )2, which introduces a sharper objective func-

tion landscape that facilitated superior convergence. How-

ever, this objective function will result in a solution of x that

connects as fewer links as possible in each OCS, which not

only wastes physical resources but also resulted in an overall

decrease in network capacity. Finally, we went with:

U k
i j (xki j ) = −

(
xki j − hki j

)
2

(16)

Where hki j = min

(
hkeд(si ),hkin(sj )

)
, taking advantage of the

fact that hki j ≥ xki j to ensure that the optimal solution maxi-

mizes the formation of logical links.

B.2.2 Dual Problem.
To relax the soft constraint (9), we introduce dual variables

p+ = [p+i j ] ≥ 0, p− = [p−i j ] ≥ 0, and the following Lagrangian

of the primal problem (15):

L(x, p+, p−)

=

n∑
i=1

n∑
j=1

[
K∑
k=1

U k
i j (xki j ) − p+i j

(
K∑
k=1

xki j −
⌈
d∗i j

⌉ )
+p−i j

(
K∑
k=1

xki j −
⌊
d∗i j

⌋ )]
.

Note that for every x satisfying constraints (1), (9), and

every p+ ≥ 0 and p− ≥ 0, the following inequality holds:

L(x, p+, p−) ≥
n∑
i=1

n∑
j=1

K∑
k=1

U k
i j (xki j ).

Let

д(p+, p−) := max

x
L(x, p+, p−) s.t. (1) is satisfied

We then have

д(p+, p−) ≥ max

x
L(x, p+, p−) satisfying (9), (1) (17)

≥ Optimal value of the primal problem (15)
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Next, we introduce the dual problem:

D : min

p+,p−
д(p+, p−) s.t p+ ≥ 0, p− ≥ 0. (18)

Since the inequality (17) holds for all p+ ≥ 0 and p− ≥ 0, we

must have

The minimum value of the dual problem (18)
≥ The maximum value of the primal problem (15).

Duality gap is then defined as the difference between the

minimum value of the dual problem (18) and the maximum

value of the primal problem (15).

If the primal decision variable x were fractional numbers

instead of integers, under mild constraints
8
, the duality gap

would be 0. In that case, the optimal primal solution can be

obtained by solving the dual problem instead. As we will

see shortly, the dual problem (18) is much easier to solve.

However, (15) is an integer problem with non-zero duality

gap, hence solving the dual problem (18) cannot give us the

optimal solution of the primal problem (15). Nevertheless, by

optimizing the dual problem, we can still obtain a good sub-

optimal solution to (15) that satisfies all the hard constraints

and a vast majority of the soft constraints.

B.2.3 Subgradient Method.
The key aspect of LDM the optimization of the dual problem

(18). Since the dual objective function is not differentiable,

the typical gradient descent algorithm cannot be applied

here. Hence, we use the subgradient method [49] instead,

whose general form is given as follows:

Definition B.1. (Subgradient method [59]): Let f : Rn → R
be a convex function with domain Rn , a classical subgradient
method iterates

y(m+1) = y(m) − αmγ (m),

where γ (m)
denotes a subgradient of f at y(m)

, where y(m)

is them-th iterate of y. If f is differentiable, then the only

subgradient is the gradient vector of f . It may happen that

γ (m)
is not a descent direction for f aty(m)

. We therefore keep

a list of fbest to keep track of the lowest objective function

value found so far, i.e.,

fbest = min{ fbest, f (y(m))}.

Computing subgradient is the key step of the above subgra-

dient method. The following lemma tells us how to compute

a subgradient for the dual objective function д(p+, p−).

Lemma B.1. For a given (p̂+, p̂−), let x̂ be an integer solution
that maximizes the lagrangian L(x, p̂+, p̂−), i.e.,

д(p̂+, p̂−) = max

x
L(x, p̂+, p̂−) = L(x̂, p̂+, p̂−).

8
For Slater’s Condition: see §5.2.3 in [8].

Then, [
⌈
d∗i j

⌉
− ∑K

k=1 x̂
k
i j ,

∑K
k=1 x̂

k
i j −

⌊
d∗i j

⌋
, i, j = 1, ...,n] is a

subgradient of д(p+, p−) at (p̂+, p̂−), i.e.,

д(p+, p−) − д(p̂+, p̂−)

≥
n∑
i=1

n∑
j=1

( ⌈
d∗i j

⌉
−

K∑
k=1

x̂ki j

)
(p+i j − p̂+i j )

+

n∑
i=1

n∑
j=1

( K∑
k=1

x̂ki j −
⌊
d∗i j

⌋ )
(p−i j − p̂−i j )

for any (p+, p−) in a neighbourhood of (p̂+, p̂−).

Proof. Consider an arbitrary (p+, p−). According to the

definition of д(p+, p−), we must have

д(p+, p−) = max

x
L(x, p+, p−) ≥ L(x̂, p+, p−).

Then,

д(p+, p−) − д(p̂+, p̂−)
≥ L(x̂, p+, p−) − L(x̂, p̂+, p̂−)

=

n∑
i=1

n∑
j=1

( ⌈
d∗i j

⌉
−

K∑
k=1

x̂ki j

)
(p+i j − p̂+i j )

+

n∑
i=1

n∑
j=1

( K∑
k=1

x̂ki j −
⌊
d∗i j

⌋ )
(p−i j − p̂−i j ),

which completes the proof. □

Remark 1. Note that for each (p̂+, p̂−), x̂ may not be the

only solution that maximizes the Lagrangian L(x, p̂+, p̂−),
because L(x, p̂+, p̂−) has integer variables x. It is thus pos-
sible to have multiple subgradients for д(p+, p−) at (p̂+, p̂−),
in which case д(p+, p−) is not differentiable at (p̂+, p̂−). If
д(p+, p−) were differentiable at (p̂+, p̂−), there would be only
one subgradient, which is the gradient of д(p+, p−).

According to Lemma B.1, the most critical part of calculat-

ing subgradient is to find a maximizer for a given Lagrangian.

By rearranging the dual objective function д(p+, p−), we ob-
tain the following:

д(p+, p−)
= max

x
L(x, p+, p−) s.t. (1) is satisfied

=

K∑
k=1

max

xk

[
n∑
i=1

n∑
j=1

(
U k
i j (xki j ) + (p−i j − p+i j )xki j

)]
+

n∑
i=1

n∑
j=1

(p+i j
⌈
d∗i j

⌉
− p−i j

⌊
d∗i j

⌋
) s.t. (1) is satisfied
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From the above equation, we can see that optimizing the

Lagrangian can be decomposed into K subproblems:

maxxk

n∑
i=1

n∑
j=1

(
U k
i j (xki j ) + (p−i j − p+i j )xki j

)
(19)

s.t:

n∑
i=1

xki j ≤ hk
ig
(j),

n∑
j=1

xki j ≤ hk
eg
(i) ∀ i, j

Although these subproblems have significantly fewer deci-

sion variables, they are still integer programming problem

with quadratic objective function, which can be hard to solve.

To further reduce complexity, we apply the same first-order

approximation (see Eqn. (14)) again to the nonlinear terms

in (19), and obtain

maxxk

n∑
i=1

n∑
j=1

(dU k
i j

dxki j
(x̂ki j ) + (p−i j − p+i j )xki j

)
(20)

s.t:

n∑
i=1

xki j ≤ hk
ig
(j),

n∑
j=1

xki j ≤ hk
eg
(i),

max{x̂ki j − 1, 0} ≤ xki j ≤ x̂ki j + 1 ∀ i, j

where x̂ is the previous estimate of x. The approximated

problem (20) can be solved in polynomial time using the

method in Appendix C.

B.2.4 Detailed Algorithm.
The detailed algorithm is shown in Algorithm 2. Note that we

update dual variables right after computing a configuration

for each OCS to hasten solution convergence. Another option

is to update dual variables after iterating through all the OCSs

for one round. The problem with this option is that OCSs

with the same physical striping will be configured exactly

the same way in the same iteration, causing the solution to

oscillate and slows down convergence.

Notice that the harmonic step size function δ (τ ) is chosen
because its sum approaches infinity as we take infinitely

many step sizes. This way, we ensure that p+, p−’s growth is

not handicapped by the step size if their optimal values are

large.

C MAPPING (14) TO A MIN-COST
CIRCULATION PROBLEM

In this section, we study a general form of (14) as follows:

min

a=[ai j ]

I∑
i=1

J∑
j=1

Ci jai j (21)

s.t:

I∑
i=1

ai j ≤ Pj ,

J∑
j=1

ai j ≤ Qi ,

Li j ≤ ai j ≤ Ui j ∀ i = 1, ..., I , j = 1, ..., J

Data:
• D∗ = [d∗i j ] ∈ Rn×n - fractional topology

• τmax - number of iterations

Result: x∗ = [xki j ∗] ∈ Zn
2K

- OCS switch states

1 Initialize: x̂ := 0, x∗ := 0, p+ := 0, p− := 0 ;

2 Build network flow graphs G1, ...,Gk based on each

OCS in O = {o1, ...,ok };
3 for τ ∈ {1, 2, ...,τmax } do
4 Set step size δ := 1

τ ;

5 for k ∈ {1, 2, ...,K} do
6 Solve (20) based on Appendix C, and let xk be

the integer solution;

7 Update x̂ in the k-th OCS by setting x̂k = xk ;

8 if Ψ(x∗) < Ψ(x̂) then
9 x∗ := x̂;

10 end
11 Update dual variables using

p+i j := max{p+i j − δ (
⌈
d∗i j

⌉
− ∑K

k ′=1 x̂
k ′
i j ), 0} and

p−i j := max{p−i j − δ (
∑K

k ′=1 x̂
k ′
i j −

⌊
d∗i j

⌋
), 0}.

12 end
13 end

Algorithm 2: Lagrangian duality method

where a = [ai j ] is an I × J integer matrix to be solved, and

C = [Ci j ], P = [Pj ],Q = [Qi ], L = [Li j ],U = [Ui j ] are pre-
defined constants. We would like to show that (21) can be

easily mapped to a min-cost circulation problem, which is

polynomial time-solvable with integer solution guarantees

as long as P = [Pj ],Q = [Qi ], L = [Li j ],U = [Ui j ] are all

integers.

C.1 Min-Cost Circulation Problem
Definition C.1. (Min-Cost Circulation Problem) Given a

flow network with

• l(v,w), lower bound on flow from node v to nodew ;

• u(v,w), upper bound on flow from node v to nodew ;

• c(v,w), cost of a unit of flow on (v,w),
the goal of the min-cost circulation problem is to find a flow

assignment f (v,w) that minimizes∑
(v,w )

c(v,w) · f (v,w),

while satisfying the following two constraints:

(1) Throughput constraints: l(v,w) ≤ f (v,w) ≤ u(v,w);
(2) Flow conservation constraints:

∑
u f (u,v) =∑

w f (v,w) for any node v .
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Note that all the constant parameters l(v,w),u(v,w) are
all positive and c(v,w) can be either positive or negative.

In addition, min-cost circulation problem has a very nice

property that guarantees integer solutions:

Lemma C.1. (Integral Flow Theorem) Given a feasible circu-
lation problem, if l(v,w)’s and u(v,w)’s are all integers, then
there exists a feasible flow assignment such that all flows are
integers.

In fact, for feasible circulation problems with integer

bounds, most max-flow algorithms, e.g., Edmonds-Karp al-

gorithm [15] and Goldberg-Tarjan algorithm [22], are guar-

anteed to generate integer solutions.

C.2 Detailed Transformation Steps

Figure 15: A flow graph example corresponding to
equation (21).

We first construct a flow network based on equation (21)

as follows (see Fig. 15 for graphical illustration):

(1) Create a directed bipartite graph. Note that a is an I × J
matrix. We create I nodes on the left hand side of the

bipartite graph, and create J nodes on the right hand

side of the bipartite graph. We add a directed link from

i to j, and set the bounds of this link as [Li j ,Ui j ] and
the cost of this link as Ci j .

(2) Add a source node, and for each of the I left nodes, add
a link that connects to this source node. The bounds

of the i-th link is set as [0,Qi ], and the cost is set to 0.

(3) Add a sink node and J links from the J right nodes
to this sink node. The bounds of the j-th link is set as

[0, Pi ], and the cost is set to 0.

(4) Add a feedback link from the sink node to the source

node. The bounds of this feedback link is set as [0,∞),
and the cost is set as a very small negative value −ϵ ,
e.g., −10−6.

We then assign flows to this flow network.

(1) For the link from the i-th left node to the j-th right

node, assign ai j amount of flow.

(2) For the link from the source node to the i-th left node,

assign

∑J
j=1 ai j amount of flow.
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Figure 16: Optimality of OCS-mapping algorithms, using
nearest neighbor (left col) and random (right col) traffic.

(3) For the link from the j-th right node to the sink node,

assign

∑I
i=1 ai j amount of flow.

(4) For the feedback link from the sink node to the source

node, assign

∑I
i=1

∑J
j=1 ai j amount of flow.

It is easy to verify that the above flow assignment satisfies

the flow conservation constraints in Definition C.1. Further,

by enforcing the throughput constraints in Definition C.1, all

the constraints in (21) are also satisfied. Further, the objective

function of this min-cost flow problem is

I∑
i=1

J∑
j=1

Ci jai j + ϵ

( I∑
i=1

J∑
j=1

ai j

)
. (22)

Since ai j ’s are all integers,
∑I

i=1
∑J

j=1Ci jai j cannot be take
on a continuum of values. Then, as long as ϵ is small enough,

minimizing (22) will also minimizes the objective function

in (21). The benefit of having a small negative cost ϵ is that
more flows can be assigned if possible.

D OCS MAPPING - OPTIMALITY
ANALYSIS

Although LDM and BPM are motivated by convex optimiza-

tion theories, our problem requires integer solutions and

is thus not convex. Therefore, neither LDM nor BPM can

guarantee optimality. Nevertheless, we found via simulation

that LDM and BPM show superior performance.

We generated 900 DCN instances with pod-counts be-

tween 12 and 66. Each DCN instance is heterogeneous, con-

taining pods with a mixture of 256, 512, and 1024 ports,

interconnected via 128-port OCSs. The greedy algorithm de-

scribed in Helios [17] acts as a baseline. All 900 instances are

tested using: 1) nearest-neighbor, and 2) random permuta-

tion TMs. For nearest-neighbor TM, each pod sends traffic

only to pods within ρ-units of circular index distance, where
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ρ is ∼ 1

8
th the fabric size; this imitates skewed, neighbor-

intensive traffic. Random TM is generated by treating each

off-diagonal entry as a uniform random variable.

Next, we compute a logical topologyw.r.t. to its TM.We use

two solution-optimality metrics: 1) soft-constraint violation

ratio, and 2) optimality loss. Soft-constraint violations counts

the number of (i, j) pairs where (9) is violated. Optimality

loss measures the throughput loss/gap as we approximate

the fractional topology with an integer one. This is measured

as 1 − µ∗int
µ∗f rac

; µ∗int and µ
∗
f rac denote the throughputs under

the integer and fractional logical topologies.

Fig. 16 shows LDM slightly outperforming BPM, due to

its adaptability afforded by its dual variables, which help

“coerce” the solution towards optimality. Both LDM and BPM

clearly outperform the greedy method in the optimality gap

and matching soft constraints.

E MULTI-TRAFFIC TRAFFIC
ENGINEERING (TE-M) FORMULATION

Given m representative traffic matrices, {T1, . . . ,Tm}, and
an integer logical topology, X , TE-M computes the optimal

routing weights, ωp∀p ∈ P, that minimizes MLU for allm
input demands. Here, ωp denotes the fraction of traffic sent

via path p, such that

∑
p∈Pi j

ωp = 1. Rather than solving this

MLU directly, however, we scale up each input traffic matrix,

Tτ , using µ
∗
τ until MLU reaches 1. This additional step en-

sures that the computed routing weights will account for all

traffic matrices. Once the scaling factor has been computed

for each input traffic matrix, we then solve for the optimal

routing weights that minimizes MLU, η for all the scaled

traffic matrices with the following:

min

Ω
η

s.t. 1)
∑
p∈Pi j

ωp = 1 ∀ i, j = 1, . . . ,n

2)
∑

p∈P,(si ,sj ) is a link in p

ωpµ
∗
τ t

τ
srcp,dstp

≤ ηxi jbi j

∀ i, j = 1, . . . ,n, τ = 1, . . . ,m,

(23)

where tτ
srcp,dstp

denotes the traffic demand (in Gbps) between

the source and destination pods of path p.
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