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 
Abstract—Deep learning has been revolutionizing many aspects 

of our society, powering various fields including computer vision, 
natural language processing, and activity recognition. However, 
the scaling trends for both datasets and model size are 
constraining system performance. Variability of memory 
requirements can lead to poor resource utilization. Reconfigurable 
photonic interconnects provide scalable solutions and enable 
efficient use of disaggregated memory resources. We propose a 
photonic switched optically connected memory system 
architecture that tackles the memory challenges while showing the 
functionality of optical switching for deep learning models. Our 
proposed system architecture utilizes a “lite” (de)serialization 
scheme for memory transfers via optical links to avoid network 
overheads and supports the dynamic allocation of remote 
memories to local processing systems. In order to test the 
feasibility of our proposal, we built an experimental testbed with a 
processing system and two remote memory nodes using silicon 
photonic switch fabrics and evaluated the system performance. 
The optical switching time is measured to be 119 s and an overall 
2.78 ms latency is achieved for the end-to-end reconfiguration. The 
collective results and existing high-bandwidth optical I/Os show 
the potential of integrating the photonic switched optically 
connected memory to state-of-the-art processing systems.  
 

Index Terms— Deep learning, memory architecture, optical 
switches, silicon photonics  
 

I. INTRODUCTION 

eep learning is a branch of machine learning that has 
drastically improved the state-of-the-art in many 
applications that enhance our daily lives and impact 

various aspects of our society. The computational models used 
in deep learning, called deep neural networks (DNNs), have 
been successfully applied to various fields including image 
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classification [1], language processing [2], and activity 
recognition [3]. The DNNs consist of many processing layers 
whose computation is mainly defined by weights and biases. 
These weights and biases, called parameters of the DNNs, are 
learned during the training and used for the inference. 
Accelerators, such as graphics processing units (GPUs) and 
field programmable gate arrays (FPGAs), are used for 
accelerating these training and inference processes [4], [5]. 
Large convolutional neural network (CNN) architectures, such 
as VGG16 [1], ResNet152 [6], and NASNetLarge [7], contain 
millions of parameters and can require tens of gigabytes (GBs) 
of memory during the training phase for image classification 
applications [8]. More complicated deep learning architectures 
for image captioning [9] and video analysis [10] with recurrent 
neural networks (RNNs), can exacerbate the situation by 
requiring larger model and large-scale dataset size [11]. For 
inference, large embedding tables [12] in deep learning 
recommendation models can also easily exceed tens of GBs. 
Recent studies [13], [14], however, indicate that the deep 
learning datasets and models are continuously scaling, which 
will inevitably exceed the memory capacity in today’s systems 
and limit the performance of deep learning applications.  

While the maximum memory requirement keeps growing the 
real-time memory usage is application dependent and often 
requires on-demand solutions. First, different deep learning 
applications show varying memory requirements based on their 
architectures (for example CNNs, RNNs, CNNs+RNNs, and 
etc.). Second, the memory capacity requirement for various 
batch size [15] and optimization strategies [16] can change 
within a large range, but the method requiring a larger memory 
size does not always guarantee a better system performance 
[17]. Lastly, the size of embeddings that are used in 
recommendation applications is dependent on the entry size and 
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number of models [18]. Having fixed and preconfigured 
amount of memory in the local system for the maximum 
memory capacity requirement is inefficient and will become 
more so. A scalable and dynamic solution is required to address 
the memory challenges for future deep learning applications. 

Several approaches to tackle the memory capacity issue for 
large DNNs have been explored. Virtualizing the memory 
usage of DNNs such that both host and device memory can be 
utilized by a careful study on the data dependency and network 
topology of the DNNs is proposed in [8]. Parallelizing deep 
learning models across multiple GPUs can be another approach: 
data parallelism and model parallelism algorithms presented in 
[19] show how to distribute large networks among GPUs to 
relieve the memory capacity limitation. To reduce the 
communication overhead and achieve better resource 
utilization, in [20] a memory-centric architecture is 
demonstrated in simulation and proposed for future high-
performance computing systems. Memory modules are 
aggregated locally and connected with device nodes using 
NVLink. Ref.[21] proposed using non-volatile memory (NVM) 
for storing embeddings in deep learning models with caching 
data in volatile memory to relieve the constraints. The first three 
approaches tackling the memory capacity issue with 
preconfigured and fixed memory resources do not provide a 
scalable solution to the on-demand memory requirement while 
the last approach can still be limited by the NVM bandwidth. 

Photonic interconnects can enable disaggregated high-
bandwidth networks reconfiguring compute and memory 
resources to meet application requirements in a more efficient 
and scalable network [22] than those using fixed resource 
configurations. Memory resources can be pooled and connected 
to other resources using reconfigurable optical switch fabrics 
[23]. The system can then be adaptively configured, according 
to dynamic resource requirements of deep learning 
applications, to achieve high resource utilization and deliver 
required system performance. Optically connected memory 
technique has been demonstrated using custom network 
interface card [24] with the inevitable overheads in memory-to-
network conversions [20]. An optically connected system with 
emulated processors and a custom memory controller has been 
reported in [25], [26] without an end-to-end program-level 
demonstration. 

In this work, we investigate the feasibility of integrating 
photonic switched optically connected memory into processing 
systems to address memory challenges in deep learning. The 
proposed system architecture enables on-demand allocation of 
additional memory to processing systems with a constant 
reconfiguration time that is independent of the required 
memory size. A “lite” (de)serialization scheme, compatible 
with standard memory interface protocol, is proposed to 
eliminate the communication overheads and is applied to 
demonstrate memory transfers between the processing system 
and remote memory nodes at program-level. We built a testbed 
with a processing system node and two remote memory nodes 
to evaluate the system performance with memory read/write 
operations. This testbed experimentally demonstrates an end-
to-end reconfiguration latency of 2.78 ms and showed a step 
towards deploying photonic interconnects and optically 

connected memory for deep learning. Compared to the latency 
introduced by using storage devices for the DNNs, the proposed 
system achieves a significant speedup with remote memories.  

The remainder of the paper is organized as follows: Section 
II describes the system architecture and implementation details; 
Section III presents the testbed we built to evaluate the system 
performance. Section IV shows the experimental results. In 
Section V, we discuss optical switch requirements, limitations 
of our testbed and technologies to further improve the system 
performance. Lastly, the paper concludes in Section VI. 

II. SYSTEM ARCHITECTURE  

 Figure 1A left depicts the traditional system architecture. 
Each processing system is composed of CPU, memory, storage, 
accelerator, and network resources. In order to achieve better 
accuracy, larger datasets and more complex larger models are 
being used [13]. Adding more fixed memory modules to the 
processing system or to the accelerator for large DNNs is not 
an indefinitely scalable solution that will meet the scaling 
requirements. Furthermore, incorporating new more advanced 
hardware with fixed resources cannot guarantee an efficient 

 

 
 
Fig. 1. (A) On the left, the traditional system architecture with each processing 
system composed of preconfigured and fixed CPU, memory, storage, 
accelerator and network resources. In our proposed system architecture, on the 
right, each processing system using optical I/Os is also connected to a remote 
memory pool through photonic interconnects. (B) Detailed implementation of 
photonic switched system architecture with optically connected memory. The 
processing system includes additional (de)serialization and transceiver (XCVR) 
helper blocks for (de)serializing memory mapped transactions being transmitted 
through optical links. On the right, remote double date rate synchronous 
dynamic random-access memory (DDR) nodes, are also equipped with the 
(de)serialization and XCVR helper blocks, and the photonic interconnects 
physically connect remote memory nodes to the processing system.  
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utilization of compute and memory resources, as the memory 
capacity requirement for DNN models can vary significantly 
with applications [1], [10], [15], [18], [27]. We note, therefore, 
the traditional system architecture suffers from for deep 
learning applications is facing scaling and resource utilization 
challenges. In our proposed system architecture, as shown in 
Fig. 1A right, the reconfigurable photonic interconnects enable 
decoupling of additional memory modules from the processing 
systems and therefore enable flexible allocation of the 
additional memory capacity to systems or accelerators as 
required or on-demand. This system architecture breaks 
through the memory capacity limitation, improves the resource 
utilization, and is compatible with existing processing systems 
using designated (de)serialization and memory mapping 
schemes. Figure 1B shows more details of our proposed 
photonic switched optically connected memory system 
architecture. The processing system on the left is initially 
equipped with CPU, memory, accelerator, network, and storage 
resources. Based upon the memory capacity requirement of the 
deep learning applications, additional remote memory 
resources can be connected to the processing system using 
photonic interconnects through high-speed serial optical links. 
Helper blocks directly (de)serialize memory requests avoiding 
potential overheads introduced by network protocols and the 
NVMs.  

Disaggregated memory blocks can be assigned to the 
processing system using reconfigurable photonic interconnects 
for two cases. In the first case a processing system occupies the 
required memory blocks until it finishes the usage of the 
additional memory capacity. In this case, additional remote 
memory blocks can be assigned solely to that processing 
system. The second case occurs when multiple processing 
systems share remote memory nodes. This case depends on the 
fast switching capability of the photonic interconnects. Remote 
memory nodes can thus be dynamically selected while 
applications are running. The optical switching also enables the 
processing system to access remote memory nodes with limited 
optical transceiver ports. Examples of these two cases can be 
found in the following subsection B. In addition, the proposed 
system architecture can be integrated to current systems with 
minor modifications to current operating systems.  

In this work, we use Xilinx multiprocessor system-on-chip 
(MPSoC) devices to demonstrate the feasibility of integrating 
photonic switched optically connected memory into the 
processing system. Detailed system implementations: (A) a 
“lite” (de)serialization of memory transfers; (B) mapping 
remote DDR into the system address space; (C) Silicon 
Photonic (SiP) switch and control; and (D) accelerator design 
are presented in the subsections below.  

 

A. (de)Serialization of memory transfers  

The MPSoC system uses the AMBA AXI protocol [28] to 
perform memory read/write operations. To access a locally 
memory mapped slave device, master devices such as CPU and 
accelerators can simply launch requests through transaction 
channels, such as read address, read data, write address, write 

data, and write response, in order to finish the memory 
transactions. To access an optically connected remote memory 
slave, however, the AXI memory mapped channel signals have 
to be combined and serialized before being transmitted to the 
remote side through high-speed serial links. We leveraged 
existing IP blocks designed by Xilinx to achieve the “lite” 
(de)serialization of the remote memory transfers. Without using 
any network layer protocol, our scheme directly serializes the 
AXI channel signals and transfers the high-speed serial signals 
to the remote nodes through optical links. On the receiver side, 
the high-speed serial signals are deserialized back to the parallel 
AXI channel signals.  
 We primarily used two IP blocks, AXI chip2chip [29] and 
Aurora 64B/66B [30] IP cores in this system design. The AXI 
chip2chip core converts the AXI memory mapped channel 
signals into AXI streaming signals or vice versa and interfaces 
to the Aurora 64B/66B core. The latter core utilizes a link-layer 
protocol, including transceiver initialization, multi-lane 
handling, and link negotiation for the high-speed serial 
communication between our optically connected nodes. The 
AXI chip2chip core can be connected to the AXI interconnects 
that can be consequently accessed by CPU and accelerators. To 
achieve an error-free operation, specific transceiver control 
settings are necessary to be properly configured. These settings 
depend on the link characteristics. Further details are shown in 
Section IV.   
 

B. Map to Local System Address Space  

 The master CPU and accelerators can only see and 

Fig. 2. (A) An example of case 1, two remote memory resources mapped to two 
AXI chip2chip cores in the local processing system for the unswitched case after 
the resources are assigned. Each chip2chip core is assigned with a unique 
memory address offset (B) An example of case 2, the switching case. Both 
remote DDR #1 and remote DDR #2 are mapped to the AXI chip2chip #1 in the 
processing system. They share the same memory address offset.  
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communicate with the AXI chip2chip IP blocks in the 
processing system. In fact, the AXI chip2chip core exposes the 
remote DDR slave to the local system space. Memory address 
offsets of the AXI chip2chip and the remote DDR are set to be 
the same. In this way, CPU and accelerators can seamlessly 
access the remote DDR as a “local” device. For the case where 
the processing system occupies multiple memory blocks 
without optical switching during the application, the remote 
memory blocks are assigned with different memory address 
offsets (as they are connected to different chip2chip cores). An 
example of this case is shown in Fig. 2A. Remote DDR #1 node 
is projected by chip2chip #1 and remote DDR #2 is projected 
by chip2chip #2. Two remote DDR nodes have different 
address offset values because they are mapped to separate 
chip2chip cores.  However, for the switching case, the memory 
address offset of all the remote DDRs is set to be the same. This 
is due to the fact that CPU and accelerators are accessing the 
remote DDRs through the same AXI chip2chip core. An 
example of two remote DDR nodes projected by a single 
chip2chip core is shown in Fig. 2B. The mapping configuration 
for both cases is one of the modifications to the operating 
systems. 

 

C. SiP Switch and Control  

Lithography-based photonic integration technologies hold 
great promise for large-scale optical integrated switch fabrics 
by reducing the device footprint and also the overhead in terms 
of assembly and calibration [31]. Planar integrated optical 
switches have been developed on several material platforms, 
such as indium phosphide, lithium niobate, silica, and silicon 
[32]–[36].  

Silicon photonics, fabricated in high volume CMOS 
compatible foundries, is promising for low-cost, power-
efficient interconnects. The primary switching cells that are 
being explored are Mach-Zehnder interferometers (MZIs) [36], 
MEMS-actuated couplers [37], and microring resonators 
(MRRs) [38]. Whilst the former two have demonstrated higher-
scale integration [36], [37], the resonant devices have shown 
great potential for ultra-compact and energy-efficient 
applications [35], [39]. In addition, the wavelength-selective 
feature of MRRs can be utilized to route data spectrally and 
spatially [40], which significantly simplifies the device design 
and fabrication. In this work, we use silicon thermo-optic MRR 
based 1×8 switch fabrics as spectral-and-spatial de-
multiplexers for data routing. We use the MRR to select/drop a 
specific wavelength to connect communicating nodes. We note 
that our proposed architecture is agnostic to the choice of 
switching device, although the individual properties of the 
switch cell choice will have an effect on system performance.  

We choose to have an independent switch controller for 
future system scalability. Controlling high-radix SiP switches 
generally requires a large number of analog control pins due to 
the large number of switching elements that forms the switching 
matrix. A scalable solution is to have a separate switch 
controller with the required number of analog pins. The 
processing system will only be required to send configuration 
requests to the switch controller and the switch controller 
applies required analog control signals to the switching 

elements in the SiP switches. We apply this methodology to our 
proposed system architecture and use group peripheral I/O 
(GPIO) pins as the interface to the switch controller. These 
control pins contain 1 bit for triggering and a power of 2 bits for 
the configurations. Based on the physical configuration 
required by users or deep learning applications, the processing 
system will first stabilize the configuration bits and toggle the 
trigger bit from logic high to logic low to initiate the 
reconfiguration process. For the switch controller, the 
procedure is as following: (1) The control logic in the switch 
controller samples the triggering signal and the configuration 
bits; (2) if triggered, it reads registers that contain pre-stored 
digital voltage values associated with each switching element 
for required configurations and (3) applies the parallel digital 
voltage values to digital-to-analog convertors (DACs) that bias 
the switching elements of the SiP switches. 

 

D. Accelerator Design 

We designed a “vanilla” accelerator on the FPGA of the 
ZCU106 board to further evaluate the feasibility of our photonic 
switched optically connected memory system architecture. The 
accelerator uses the standard AXI memory interface and it has 
the access to remote memory nodes through the AXI chip2chip 
core. The accelerator functions as a data mover that can “copy” 
and “paste” data from local DDR to remote DDR or vice versa. 
Although it does not heavily process the fetched data from 
either local or remote memories, the functionality of accessing 
remote memory through a standard memory interface is 
achieved. The ARM CPU in the processing system initially 
comes with AXI interface and it does not require additional 
implementations. 
 

III. TESTBED  

 We built an experimental testbed to evaluate the optical links 
and switching characteristics, and to demonstrate the feasibility 
of integrating SiP switches and remote DDRs into the 
processing system for DNNs. It includes one processing system 
node dynamically connecting two remote DDR memory blocks. 

 

 
 
Fig. 3. SiP switches’ configurations for the dynamic access to remote DDRs. 
(A) Remote memory resources to the processing system direction. (B) The 
processing system to remote memory resources direction. 
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Two SiP switches connect the processing system to the 
remote DDR nodes. In this specific implementation of our 
architecture only a 1×2 switch and a 1×4 switch are required, 
although we used 1×8 SiP switches for the experiment. As we 
are only accessing the first MRRs, the experimental results are 
not impacted. Based on our system configurations, two MRRs 
in one of the 1×8 SiP switches are used for the direction from 
remote DDR nodes to the processing system and four MRRs in 
the other 1×8 SiP switch are used for the processing system to 
remote DDRs direction. We label them as 1×2 and 1×4 switches 
in the rest of the paper. In addition, each optical link contains 
two bundled lanes. 

Figure 3A shows the direction from remote DDR nodes to the 
processing system. If the processing system requires the 
connection to remote DDR node #1then MRR #1 and MRR #2 
in the 12 switch are tuned to select and forward 1 and 2 to the 
processing node. For the connection to the remote DDR #2, 3 

and 4 are selected. Figure 3B shows the other direction for data 
transactions. If the system is configured as remote DDR #1 node 
being connected to the processing system node, the first two 
MRRs connected to the remote DDR #1 node in this 1×4 switch 
will drop 5 and 6. When the remote DDR #2 node is acquired 
by the processing system, MRR #3 and MRR #4 in the 14 
switch are detuned from 5 and 6 to allow the light to pass 
through while MRR #5 and MRR #6 are tuned to drop and 
forward the light to the corresponding receiver ports of the 
remote DDR #2 node. 

Figure 4A shows the experimental setup. Two Xilinx 
ZCU106 and a Terasic TR4 evaluation boards are used to 
evaluate the system. One of the ZCU106 boards contains both 
the processing system and remote DDR #1 nodes. The physical 
connection is only through the optical link that can be steered 
by the SiP switches. The other ZCU106 only comprises the 
remote DDR #2 logics. Each remote DDR node contains a 2 GB 
64-bit wide DDR4 memory system. Six transceivers in total are 
used to support multi-lane optical communications. Each link 
contains two lanes and each lane operates at 10 Gb/s data rate. 
The maximum throughput for the serial link between the 
processing system and a remote DDR node can reach up to 20 
Gb/s. Four C-band SPF+ transceivers, with wavelengths at 
1545.32 nm (1), 1546.92 nm (2), 1553.33 nm (3) and 1554.94 
nm (4), are used for the two remote DDR nodes to transmit data 

to the processing system, and two wavelengths at 1554.94 nm 
(5) and 1556.56 nm (6) are used for the opposite direction. 
Optical signals are combined by the multiplexers (MUX) and 
then enter the SiP MRR based switch chips. The polarization 
controllers (PC) change the polarization of the light of each lane 
to maximize the optical power being coupled in to and out of 
the SiP chips. An erbium doped fiber amplifier (EDFA) is 
necessary to compensate the loss due to the grating couplers of 
the SiP switch chips. The processing system sends 
configuration requests to the switch controller FPGA, on the 
Terasic TR4 board, which configures each MRR by tuning the 
resonance of each MRR with bias voltage through DACs and 
electrical amplifiers (AMPs). The electrical amplifiers are used 
to provide sufficient voltage levels to the MRRs. The 
configuration and trigger signals are transmitted through GPIO 
pins from the processing system ZCU106 board to the TR4 
board. Figure 4B illustrates the key hardware components that 
enable the evaluation of the system. CPU, FPGA, remote DDRs, 
GPIO, optical transceivers, switch controller and DACs are 
used for the evaluation of optical link and switching 
characteristics. A packaged SiP chip on a printed circuit board 
with SMA interface is shown in Fig. 4C. 

IV. EXPERIMENTS AND RESULTS 

The proposed photonic switched optically connected 
memory system architecture is evaluated by the link 
characteristics and the system performance measurements of 
the physical layer switching time, the end-to-end 
reconfiguration latency, the loading time of the parameters of a 
VGG16 DNN from hard drive to local main memory, the 
execution time to classify an image on CPU, and the time for 
storing data to/loading data from the remote DDR nodes. We 
use the VGG16 DNN model which is a well-known and widely 
used image classification model [1] as an example of a large 
model used in deep learning.  
 

A. Optical Spectra 

We first demonstrate that the SiP MRR based switches are 
capable of supporting the multi-lane optical communications 
required for the two different physical memory access 
topologies. Figure 5A shows the optical spectra at the drop port 

 

 
Fig. 4. (A) Experimental setup demonstrating a case of photonic switched optically connected memory system with dynamic allocation of remote DDR resources 
to the processing system. (B) Key hardware components. One Xilinx ZCU106 board containing the processing system and the remote DDR #1 nodes, another 
ZCU106 board containing only the remote DDR #2 node, and the TR4 switch controller FPGA board. (C) A packaged SiP MRR based switch with electrical SMA 
interface. 
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of each MRR configured for prioritizing the physical 
connection between the processing system to the remote DDR 
#1 node. MRR #1 and MRR #2 are tuned to drop the optical 
wavelengths at 1545.32 nm (1) and 1546.92 nm (2) for the 
lane #1 and lane #2 from the remote DDR #1 node. The 
received optical power of the data signal at the corresponding 
receiver ports is -15.60 dBm and -18.32 dBm respectively. 
MRR #3 and MRR #4 are configured to select and forward the 
wavelengths at 1554.94 nm (5) and 1556.56 nm (6) from the 
processing system to the remote DDR #1 node. The received 
optical power for lane #1 and lane #2 are -17.48 dBm and -16.39 
dBm respectively. For the plots of MRR #1 to MRR #4, the 
highest peak is the optical data signal and other peaks are 
crosstalk from adjacent optical channels. For the plots of MRR 
#5 and MRR #6, the peaks show leakage power from previous 
MRRs, MRR #3 and MRR #4.  

Figure 5B shows the optical spectra at the drop output of each 
MRR for the second case where the remote DDR #2 node is 
connected to the processing system. The optical power received 
by the processing system at 1553.33 nm (3) and 1554.94 nm 
(4) is -14.96 dBm and -18.25 dBm respectively. MRR #3 and 
MRR #4 are detuned to allow the light to pass through these 
MRRs and the light can be dropped by MRR #5 and MRR #6. 
The received optical power at the receivers of DDR #2 node are 
-20.3 dBm and -18.3 dBm respectively. We ensured the 

received optical signal power is above the receiver sensitivity 
of -23 dBm.  
 

B. Eye Diagrams 

 Data transmission at 10 Gb/s non-return-to-zero (NRZ) on-
off keying (OOK) using 231-1 pseudo-random bit sequence 
(PRBS-31) was performed to extract transceiver settings for the 
Aurora 64B/66B IP core. With transmitter driver swing at an 
amplitude of 647 mVPPD, pre-cursor TX pre-emphasis of 0.68 
dB and post-cursor TX pre-emphasis of 1.16 dB, error-free 
operations over the optical links are achieved. All the connected 
paths for the two different configurations show clear eye-
openings as shown in Fig. 6.  

 

C. Switching Time 

We performed measurements of two switching cases 
between two configurations: (1) the remote DDR #2 node 
connected to the processing system, and (2) the remote DDR #1 
node connected to the processing system. The first switching 
case is changing from configuration #1 to configuration #2 and 
the second switching operation happens 330 s after the first 
switching operation, which is changing from configuration #2 
to configuration #1. In Fig. 7, we show the transient responses 
of the received optical power, normalized individually for each 
MRR.  

As shown in Fig. 7A, the first switching case starts at the time 
that approximately equals to 50 s. We notice that MRR #4 
experiences faster rise time than MRR #3 and becomes 
stabilized within a shorter time. The local maxima and the local 
minima of the orange curve are due to the fact that MRR #4 
passes through 1554.94 nm (5) during the first switching 
process. MRR #5 and MRR #6 are initially tuned at 1554.94 nm 
(5) and 1556.56 nm (6), and the control bias voltages are not 
changed during the process, thus the transient response of MRR 

 

 
Fig. 5. Optical spectra at the drop port of each MRR for two different 
configurations. (A) Two SiP switches configured as the processing system 
connecting to the remote DDR #1 node. (B) Two SiP switches configured as the 
processing system connecting to the remote DDR #2 node. (In this figure, the 
MRR numbers are consistent with the MRR numbers shown in Fig. 3.) 
  

 

 
 
Fig. 6. Screen shots of open eye diagrams of connected receiver ports at 10 Gb/s 
PRBS-31. (A) Two SiP switches configured as the processing system (PS) 
connecting to the remote DDR #1 node. (B) Two SiP switches configured as the 
processing system connecting to the remote DDR #2 node.  
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#5 is reciprocal to the superposition of the transient responses 
of MRR #3 and MRR #4. The transient response of MRR #6 is 
reciprocal to MRR #4 only. For the configuration #2 to 
configuration #1 case, MRR #3 and MRR #4 are detuned to 
allow the optical signals to pass through, and the transient 
responses can be observed at the time approximately equal to 
380 s. The limiting factor of the switching operation is the 
slowest transient response of all the responses. We can see from 
Fig. 7A that the rise time of MRR #3 for the switching from 
configuration #1 to configuration #2 is the slowest transient 
response and the latency is approximately 119 s. We have, 
however, shown that the thermo-optic switching time can be as 
low as 1.2 s with optimized driving circuitry [41]. 

Figure 7B illustrates the transient responses at the receiver 
ports for MRR#1 and MRR #2 in the two switching scenarios. 
Since both MRR #1 and MRR #2 are dropping optical signals 
for two configuration cases, the transient response of each 
individual MRR is expected to fall first and then rise back 
during the switching process. As we find from Fig. 7B, the 
slowest transient response is approximately 107.5 s at the 
receiver port for MRR #1 in the first switching case.  

 

D. End-to-end reconfiguration time 

The system end-to-end reconfiguration latency consists of 
(1) the time for AXI chip2chip and Aurora 64/66B cores to 
reset, (2) optical switching time, and (3) link re-negotiation 
time. To reconfigure the physical connections between the 
processing system and remote DDR nodes, the AXI chip2chip 
and Aurora 64/66B cores in the processing system are required 
to be put into reset state. This reset action will also be 
propagated to the remote DDR end to restart the link-
renegotiation process. The reset process and the link-
renegotiation process are described in [29], [30]. One 
requirement for this process is that the asserted reset state needs 
to last at least 128 user clock cycles and we chose to set the 
cores to be in reset state for 2 ms. The optical switching time 
shown in the previous section is approximately 119 s and we 
chose to wait 330 s to ensure the optical link is stabilized. The 
reset was then released and the link-renegotiation process 
started. This renegotiation time was measured to be 0.45 ms. In 
total, the end-to-end reconfiguration time was 2.78 ms. 
 

E. Application and Execution Time 

We built a Linux kernel image based upon the system 
implementation using Xilinx PetaLinux tool and booted the 
operating system with Ubuntu 18.04 filesystem on the Xilinx 
ZCU106 board. The kernel image is stored in the SD card boot 
partition while the filesystem is stored in the hard drive root 
partition. The hard drive is connected to the processing system 
through SATA interface. 

We evaluated the system performance by measuring the 
latencies of loading data from storage to local memory, storing 
data from local memory to storage, loading data from remote 
memory to local memory, storing from local memory to remote 
memory, and classifying an image on the ARM Cortex CPU. A 
VGG16 model was pretrained using TensorFlow in Python and 
its parameters, such as weights and biases for each layer in the 
network, are also saved in the hard drive. A feedforward 
implementation of the neural network including the 
convolutional and fully-connected layers is coded in the C 
programming language, thus the processing system is capable 
of running a C program to load the parameters and classify an 
image using the pretrained VGG16 model on the ARM CPU. 
The VGG16 model contains 13 convolutional layers and 3 
fully-connected layers with 138,357,544 parameters and we use 
32-bit floating point data type for each parameter. Thus, the 
total size of the VGG16 is approximately 528MB. The loading 
time from the hard drive to the local main memory is 5.70 s for 
the entire VGG16. The execution time to classify an image is 
63.34 s on the ARM CPU. 

To measure the latencies of using remote DDR for 
storing/loading parameters, i.e. weights and biases, we use our 
designed accelerator in a standalone design (without the 
operating system). The time for storing 528 MB data, the same 
size as the VGG16, from the local contiguous memory 
allocation (CMA) region to the remote DDR takes 1.40 s for the 
accelerator and loading the data from remote DDR to the local 
CMA region takes 1.34 s.  

The accelerator’s equivalent throughput for loading from the 
remote memory to local memory is 3.31 Gb/s, and 3.16 Gb/s 

 

 
Fig. 7. Transient responses at the receiver ports of all MRRs for two switching 
cases separated by a time duration of 330 s. (A) Transient responses of MRR 
#3, MRR #4, MRR #5 and MRR#6 in the 14 switch. (B) Transient responses 
of MRR #1 and MRR #2 in the 12 switch.  
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for storing. The limited throughput is due to the fact that the 
designed accelerator operates at 250 MHz with 32-bit AXI data 
channel width, which can theoretically achieve up to 7.8 Gb/s 
without overhead. In addition, the accelerator performs “copy” 
and “paste” operations which lead to an overhead factor of 
approximately 0.5 over the entire system. By increasing the 
clock frequency and data channel width of the accelerator, 
higher throughput can be achieved.  

During training, memory space is required to store each 
layer’s output and its corresponding gradients. This space 
required is the same size as the layer’s output for 
backpropagation when stochastic gradient descent (SGD) [16] 
optimization strategy and ReLu [42] activation function are 
used. To evaluate the feasibility of our proposed architecture 
for increasing the memory capacity for training, we performed 
a forward propagation of the VGG16 with a batch size of 1, 2, 
4, 8, and 16 images in the software. Based upon the memory 
requirement for training, we stored/loaded the intermediate 
layer results and randomly initialized gradients to/from both 
remote memory and the hard drive for the purpose. The 
intermediate results include the output of each convolutional 
layer, max pooling layer and fully-connected layer. There are 
15,087,080 elements of intermediate layer results per image to 
be stored for backpropagation. Considering the gradients, there 
are in total 30,174,160 elements per image that are being 
stored/loaded during the process. The time for storing to the 
hard drive is 1.14 s, 2.49 s, 4.98 s, 10.53 s, and 22.58 s, 
respectively. For loading from the hard drive, the latencies are 
1.26 s, 2.53 s, 5.24 s, 10.61 s, and 20.57 s, respectively. As 
expected, the latencies for storing/loading using remote DDR 
are less than using the hard drive in the testbed. The storing 
latencies using the remote memory are 0.31 s, 0.61 s, 1.23 s, 
2.45 s, and 4.92 s, while the loading latencies are 0.30 s, 0.60 s, 
1.21 s, 2.41 s, and 4.85 s, respectively. Figure 8 compares the 
latencies of using hard drive and remote DDR memory and 
shows that the required memory space for layer output and layer 
gradients grows with the batch size. We note that larger batch 
size will require more memory and the  memory requirement is 
also related to the use of other optimizers [16], but the 
functionality of our architecture and the remote memory 

remains the same. Table I lists the results for the system 
performance measurements.  

Figure 9 compares the three scenarios for the test case of 
inference: processing system loading from storage, processing 
system with remote DDR and optical interconnect, accelerator 
with remote DDR and optical interconnect. The total execution 
time consists of both compute time and the time for data access. 
For the latter, we can achieve a speedup of 4.3 when loading the 
data from remote DDR compared to loading from the storage 
device to the local DDR. The end-to-end reconfiguration 
latency we observed is much shorter than the loading time 
therefore we use 1.34 s as the total time for the processing 
system to load the data from the remote memory. In the case of 
the accelerator, the end-to-end reconfiguration time is the only 
one considered as the accelerator can directly access the remote 
memory without loading. We note that the optical 
reconfiguration time is a constant overhead independent of the 
data size. With increased data size the impact of the overhead 
is amortized.   

 

V. DISCUSSION 

Optical switching technology enables reconfigurable 
disaggregation allowing the processing system to dynamically 
access additional memory resources. In order to successfully 
integrate the photonic switched optically connected memory 
into the system, several requirements for the optical switches 
need to be taken into consideration including: optical power 
budget, reconfiguration time, power consumption and 
scalability.  

The optical power budget available is based on the receiver 
sensitivity and the optical power launched by the transmitter. 
The insertion loss of the optical switches should be well below 

 

 
Fig. 8. Loading/storing latencies using hard drive and remote DDR memory 

of different batch sizes.  
  

TABLE I 
SYSTEM PERFORMANCE MEASUREMENTS 

Operations Latency 

Optical switching 119 s 

End-to-end reconfiguration   2.78 ms 

Load VGG16 (528 MB) from hard drive to local 
DDR memory 

5.70 s 

Load 528 MB data from remote DDR to local DDR 
CMA region (accelerator) 

1.34 s 

Store 528 MB data from local DDR CMA region to 
remote DDR (accelerator) 

1.40 s 

Load intermediate results and gradients from hard 
drive to local DDR memory (batch size of 16) 

20.57 s 

Store intermediate results and gradients from local 
DDR memory to hard drive (batch size of 16) 

22.58 s 

Load intermediate results and gradients from remote 
DDR to local DDR CMA region (batch size of 16) 

4.85 s 

Store intermediate results and gradients from local 
DDR CMA region to remote DDR (batch size of 16) 

4.92 s 

Classify an image using VGG16 on ARM CPU 63.34 s 
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this if the system has no optical amplification. If the insertion 
loss of the switch and additional losses in the link go beyond 
this optical power budget, optical amplification is required, 
which is generally not desirable due to energy and cost 
considerations, although recent work with semiconductor 
amplifiers has shown promise [43]. The extinction ratio (ER) of 
the optical switch also depends on the optical transceiver. For a 
transmitter ER of 3.5 dB, we measured more than 10 dB power 
suppression ratio of the optical signal power to the optical 
leakage power which can guarantee error-free operation.  

End-to-end reconfiguration latency is an important network 
parameter. This parameter includes optical switching time, 
transceiver reset and link negotiation. In order to not introduce 
excessive overhead, the optical switch reconfiguration should 
not occupy more than ten percent of the entire reconfiguration 
latency. In this case we have shown that the optical switch 
reconfiguration time is not detrimental to the system 
performance. To decrease the overhead of the optical switching 
and link reconfiguration latency, advanced high-speed devices 
could be employed. Electro-optic switches and burst-mode 
transceivers can be deployed in the system. Electro-optic silicon 
photonic switches provide nanosecond-scale reconfiguration 
time [44] and sub-nanosecond clock and data recovery has been 
demonstrated in an optically switched link via clock phase 
catching [45]. The achievable end-to-end reconfiguration 
latency can thus be reduced to the nanosecond scale.  

The power consumption of the optical switch should be a 
small fraction of the power consumption of the entire system. 
The state-of-the-art GPU [46] can consume up to 280 W while 
reported silicon photonic switches [47], are in the range of 
Watts and are therefore relatively power efficient when 
integrated into the system to support dynamic memory resource 
allocation. For example a 3232 MZI-based switch consuming 
a power of 1.9W [36]. The switch fabric used in this experiment 
consumes approximately 10 mW per MRR. 

Although we demonstrated a 12 switching scenario in the 
testbed, larger NM optical switches in application dependent 
topologies would support the system requirements, depending 

on the number of compute/accelerator nodes (N) and the remote 
memory nodes (M) within the subsystem. Ref. [20] indicates a 
use case of 8 compute and 8 memory nodes. A full analysis of 
the relationship between the radix/topology of the optical 
switch and the overall system performance/cost can be 
performed using the same methodology as shown in our 
previous work [48], for specific applications and switch 
architectures. 

Our experimental testbed was designed to experimentally 
demonstrating the proof-of-concept functionalities of our 
proposed system architecture. Although we used legacy SATA 
based storage devices in our testbed, commercially available 
storage drives can support up to 2,375 MB/s throughput 
(Amazon Web Service [49]). In order for our proposed 
architecture to demonstrate comparable speedup using 
commercial high-end storage devices, one would build an 
optical system with comparable high-end bandwidth optical 
I/Os and optimized transceiver circuitry. Multiwavelength 
terabit optical links are under development with state-of-the-art 
silicon transceivers capable of modulating [50] and detecting 
[51] at over 100 GHz bandwidth.  

In summary, our proposed photonic switched system 
architecture demonstrates the concept of using dynamic 
allocation of memory to tackle the scaling challenge of deep 
learning. Our test cases demonstrate the capability of increasing 
memory capacity at the program-level using an architecture 
based on MRR optical switches, FPGA processing systems, and 
optically connected DDR memories. The designed “lite” 
(de)serialization and memory mapping scheme show a path 
towards lowering the system latency, a critical metric for 
disaggregated systems. The independent switch controller is 
scalable and is able to be applied in the systems requiring large 
number of switching elements as long as they are controlled by 
biasing voltages. The proposed system architecture shows a 
significant step toward deploying photonic interconnects and 
optically connected memory for deep learning applications. 
More generally, with specific optimizations the approach would 
also be applied to other workloads that face the same memory 
challenges. 

VI. CONCLUSION 

We demonstrate a proof of concept system architecture, 
showing the functionality of photonic switched optically 
connected memory for large DNNs in deep learning. It features 
dynamic allocation of additional memory to the processing 
system and a constant reconfiguration latency. The 
experimental testbed demonstrates real memory transactions 
between the processing system and remote memory nodes. We 
measured a 119 s latency for optical switching and an overall 
2.78 ms latency for the end-to-end reconfiguration. Our results 
and silicon-based high-bandwidth I/O capabilities show the 
feasibility of using photonic switched optically connected 
memory to solve the memory challenges in future deep learning 
applications.  
 

 

 
Fig. 9. Timelines comparing system latencies in different scenarios for 

switching case #2.  
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