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ABSTRACT | Deep learning is revolutionizing many aspects

of our society, addressing a wide variety of decision-making

tasks, from image classification to autonomous vehicle con-

trol. Matrix multiplication is an essential and computationally

intensive step of deep-learning calculations. The computa-

tional complexity of deep neural networks requires dedicated

hardware accelerators for additional processing throughput

and improved energy efficiency in order to enable scaling to

larger networks in the upcoming applications. Silicon photon-

ics is a promising platform for hardware acceleration due to

recent advances in CMOS-compatible manufacturing capabil-

ities, which enable efficient exploitation of the inherent par-

allelism of optics. This article provides a detailed description

of recent implementations in the relatively new and promising

platform of silicon photonics for deep learning. Opportunities

for multiwavelength microring silicon photonic architectures

codesigned with field-programmable gate array (FPGA) for pre-

and postprocessing are presented. The detailed analysis of

a silicon photonic integrated circuit shows that a codesigned

implementation based on the decomposition of large matrix–

vector multiplication into smaller instances and the use of

nonnegative weights could significantly simplify the photonic

implementation of the matrix multiplier and allow increased
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scalability. We conclude this article by presenting an overview

and a detailed analysis of design parameters. Insights for ways

forward are explored.

KEYWORDS | Deep learning; microring resonator (MRR); neural

network; photonic integrated circuit (PIC); silicon photonics.

I. I N T R O D U C T I O N
Deep learning is an extraordinarily popular machine-
learning technique that is revolutionizing many aspects
of our society. Machine learning addresses a wide variety
of decision-making tasks such as image classification [1],
audio recognition [2], autonomous vehicle control [3], and
cancer detection [4]. Matrix multiplication is an essential
but time-consuming operation in deep learning computa-
tions. It is the most time-intensive step in both feedfor-
ward and backpropagation stages of deep neural networks
(DNNs) during the training and inference and dominates
the computation time and energy for many workloads
[1]–[3], [5], [6]. Deep learning uses models that are
trained using large sets of data and neural networks
with many layers. Since DNNs have high computational
complexity, recent years have seen many efforts to go
beyond general-purpose processors and toward dedicated
accelerators that provide superior processing throughput
and improved energy efficiency.

It has been known for quite a while that matrix–
vector multiplication can be performed by optical com-
ponents taking advantage of the natural parallelism of
optics to reduce computation time from O(N2) to O(1)
[7], [8]. Implementing these optical matrix–vector multi-
pliers (OMMs), however, required the use of bulky ineffi-
cient optical devices. In the last several years, the field of
silicon photonics has made major progress toward meeting
the massive needs of data centers and cloud computing.
With silicon photonics, optical components and photonic

0018-9219 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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integrated circuits (PICs) are fabricated leveraging CMOS-
compatible silicon manufacturing techniques to enable
small-footprint, low-cost, power-efficient data transfers.

OMMs based on silicon photonics represent a promising
approach to address the challenge of compute-intensive
multiplication in DNNs. An optimal solution must take
into account the advantages and drawbacks of the silicon
photonic technology along with the requirements of the
application. Silicon photonics offers excellent codesign
capabilities with off-chip control implemented by field-
programmable gate arrays (FPGAs) to achieve acceler-
ated computational gains. To analyze these capabilities in
detail, we present the codesign of a DNN in conjunction
with the OMM, developing an optical-electrical codesign
infrastructure using FPGA control. The FPGA is used for:
1) pre/postprocessing and 2) photonic device control.
We identify opportunities for OMM architectures based
on multiwavelength silicon microring resonators (MRRs).
We analyze and generalize the metrics of the microrings
for linearity and reduced sensitivity to perturbations. The
OMM can be used in the case of time-consuming, com-
putationally expensive matrix multiplication. In the case
of DNNs that are too large to be processed on a single
optical chip, we explore methods to share the computation,
by using the parallelism at the system level to enable
scaling to very large neural networks. In addition, we show
how DNNs based on nonnegative weights significantly sim-
plify the photonic implementation of the matrix multiplier
and allow increased scalability.

The remainder of this article is organized as follows.
In Section II, we present a brief background of advances
in deep learning and in silicon photonics. In Section III,
we provide an overview of and discuss tradeoffs in the
state-of-the-art research in the implementation of sili-
con photonics for deep learning. Based on the above-
mentioned analysis, in Section IV, we propose a codesigned
system for deep learning. We first present a detailed analy-
sis of the design parameters and metrics for a silicon PIC
that implements an optical matrix multiplier. We general-
ize the role and characteristics of the silicon microrings,
analyzing their limitations (including thermal sensitivities)
in order to explore opportunities for optimized OMM struc-
tures. We then discuss system-level approaches toward
electronic/photonic codesign for improved performance.
At the end of this section, we provide insights into future
directions and opportunities based on our analysis and
the current state-of-the-art and application requirements.
Section V concludes this article.

II. B A C K G R O U N D
A. Deep Learning

The fundamental concept of machine learning is that
the core computation algorithm is not fully provided by a
programmer, but automatically generated or improved by
a computer system through experience [9]. The learning
system explores a given class of computation models to

Fig. 1. MLP for handwritten digit classification. The network

consists of four layers (the input layers, two hidden layers, and the

output layer) where each layer contains a number of nodes (also

called neurons).

determine the most suitable model among them based
on the training data. One of the model classes that has
gained widespread popularity is the DNN, which is the
artificial neural network (ANN) with many layers in the
network [10]. Inspired by the human brain, the con-
cept of the ANN was first proposed in the 1940s [11].
More recently, with the increased volume of data, com-
puting capability, and research interest, numerous ANNs
have shown outstanding performance in machine-learning
tasks across various application domains [1]–[4]. Deep
learning refers to machine learning using deep ANNs,
also called DNNs. Two fundamental classes of ANNs are
multilayer perceptrons (MLPs) and convolutional neural
networks (CNNs).

MLPs, also known as fully connected networks (FCNs),
are the quintessential DNNs [10]. An MLP represents a
function defined by a network consisting of multiple layers
of nodes, which are also called neurons or perceptrons. For
example, Fig. 1 shows an MLP for the task of recognizing
a handwritten digit. The input image is represented as an
array of pixel intensity values which are often normalized.
The neural network behaves as a function that maps the
input image to the probability score for each of the ten
digits (0, 1, 2, . . . , 9). Let i0 denote the number of pixels
in the input image. Then, for an input array x ∈ R

io ,
the neural network (shown in the box in Fig. 1) outputs
y(x) ∈ R

10, as follows. The input layer x contains i0

nodes x1, x2, . . . , xi0 . This layer is fully connected to the
first hidden layer h1, which contains i1 nodes; each node
h1

k(1 ≤ k ≤ i1) is computed as

h1
k(x1, x2, . . . , xi0 ) = Act

�
g1

k (x1,x2, . . . ,xi0) + b1
k

�
(1)

g1
k (x1,x2, . . . ,xi0 ) = w1

k,1·x1 + w1
k,2·x2+· · ·+w1

k,i0
·xi0 (2)

where Act() denotes an element-wise nonlinear activation
function (e.g., ReLU, sigmoid, softmax, tan h), b1

k ∈ R is
a bias, and w1

k, j (1 ≤ j ≤ i0) represents the weight of
the connection between node x j and h1

k (see Fig. 2). Each
hidden layer is fully connected to the next layer, and the
last layer in the network is the output layer containing ten
nodes. The softmax function is often used for nonlinear
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Fig. 2. Computation for a single node (the first node in the

layer h1) in MLP.

activation of the output layer since it can be interpreted as
a probability distribution.

The process of computing the output of a neural net-
work as described above is called feedforward propaga-
tion. The information stored in the input layer propagates
toward the output layer. How it propagates depends on
the neural network structure, weights, biases, and acti-
vation functions. During the training phase of supervised
machine learning, given a large number of (input–output)
instances, the values of weights and biases are updated
through the gradient descent method, also called back-
propagation [12]. Then, in the inference phase, a trained
network is used to predict the output for a new input
instance. With this approach, MLPs were among the first
and most successful nonlinear learning algorithms [10].
The nonlinear activation plays a key role in ANNs. Without
the ANN, the function expressed by an MLP is a composi-
tion of linear functions (which is linear). By inserting the
nonlinear activation, such as ReLU or tan h, the resulting
function becomes a composition of nonlinear functions,
which can express much more complicated concepts.

In addition, the universal approximation theorem states
that any continuous function defined on a compact set
can be approximated by an MLP with a single hidden
layer [13], [14]. Nevertheless, it does not address how
many nodes are required in the hidden layer or how to
learn the weights and biases of such an MLP. Empirically,
the accuracy of the trained networks improves as the
number of nodes per layer increases, and as the number of
layers increases. This motivated the advancement of DNNs.

CNNs were first proposed by LeCun et al. [15] for
handwritten digit recognition, and they have outperformed
many proposed MLPs, especially for more complex tasks
such as colored image classification. Fig. 3 illustrates the
overview of a CNN for image classification. The input
image is stored across three channels, each representing
the red, green, or blue intensities. As shown in Fig. 4(a), a
convolutional layer (layer L + 1) usually contains multiple
channels, and the values of nodes in each channel are
computed using the information from all channels in the
previous layer (layer L). Fig. 4(b) gives a closer look at the
connection between an input channel from the previous
layer (channel A in layer L) and an output channel in

Fig. 3. CNN for image classification, consisting of convolutional

layers followed by fully connected layers. Convolutional layers are

elaborated in Fig. 4, and the computation for fully connected layers

is depicted in Fig. 2.

a convolutional layer (channel B in layer L + 1). A con-
volution kernel (of size 3 × 3 in the example) dedicated
to this connection defines how to obtain a value for each
node in the output channel from a small neighbor [of size
3×3 in the input channel; see Fig. 4(c)]. The kernel slides
both vertically and horizontally on the input channel to
cover all nodes in the channel, and the convolution result
is propagated to the node in the associated position in the
output channel. The amount by which the kernel slides
is called the stride and this is often set to 1. Around the
boundary of the input channel, additional nodes of the
value zero can be padded before the convolution. When
the kernel is of size R × R, a padding of size �R/2� is
commonly applied. At each node in the output channel,
bias and activation function are applied to the summation
of the corresponding convolution results. To summarize,
the value of a node zL+1,B

c,d at (c, d)-coordinate on channel

Fig. 4. Overview of convolutional layers. A convolutional layer

consists of one or more channels where each channel contains a

number of nodes. (a) Every channel in the previous layer is

connected to each channel in the next layer. (b) Connection between

one input channel (in layer L) and one output channel (in layer L+1).

The convolution between a set (in the black square) of nodes in the

input channel and the convolution kernel (k1, . . . ,k9) contributes to

one node in the output channel. (c) Computation for a single node in

the output channel. ΣA denotes the summation over all input

channels A.
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B in layer L + 1 is computed as

zL+1,B
c,d (zL,1,zL,2,

. . .zL ,NL ; kL,1;L+1,B , kL,2;L+1,B,. . .,kL ,NL ;L+1,B)

= Act
�
�NL

A=1vL+1,B
c,d (zL ,A; kL ,A;L+1,B) + bL+1,B

c,d

�
(3)

vL+1,B
c,d (zL ,A; kL ,A;L+1,B)

= �M
α=1�

M
β=1

�
kL ,A;L+1,B
α,β ·zL ,A

c−
�

M
2

�
+α,d−

�
M
2

�
+β

�
(4)

where Act() is an activation function, bL+1,B
c,d ∈ R is a bias

associated with this output node, zL ,A denotes channel A
in the previous layer L , NL represents the number of chan-
nels in layer L , and kL ,A;L+1,B refers to the convolution
kernel of size M × M defined for the connection between
the channel A in layer L and the channel B in layer L + 1.

Optionally, a convolutional layer may be followed by a
pooling layer that reduces the size of the representation
by pooling neighbors of R × R nodes, where R often takes
a small value such as 2, 3, 4, or 5. Most commonly used
pooling functions are maximum (i.e., taking the maximum
value from the R × R neighborhood), average, median,
and stochastic.

The network size and computational complexity of state-
of-the-art DNNs have generally increased over the decades.
Meanwhile, much research has also been conducted on the
accelerated and efficient computation of DNNs [16]. For
both MLPs and CNNs, the core computation requirements
during feedforward propagation are inner products of two
vectors, or matrix–vector multiplications [5], [6], [17].
Both the weight product function g() for fully connected
layers [in (2)] and the convolution function v() for con-
volutional layers [in (4)] can be naturally translated into
vector–vector or matrix–vector multiplications. Graphical
processing units (GPUs) have been extensively exploited
to accelerate this type of computation, mainly leveraging
their inherent feature of single-instruction–multiple-data
parallelism [18], [19]. In addition, there has been grow-
ing interest in designing custom hardware accelerators
and reconfiguring the DNNs for higher efficiency [20].
Haensch et al. [5] have proposed in-memory analog com-
putation for DNNs and have analyzed nonvolatile memory
material candidates. Amiri et al. [21] have proposed a
multiprecision CNN framework on an FPGA-CPU hetero-
geneous device.

B. Silicon Photonics

Although GPUs, FPGAs, and application-specific inte-
grated circuits (ASICs) have received extensive interest
for developing dedicated hardware accelerators in deep-
learning calculations [22]–[24], photonics has long been
recognized as a promising alternative to address the fan-
in and fan-out problems for linear algebra processors
[25], [26]. A few unparalleled features motivate the explo-
ration of a photonic implementation.

1) The power consumption for data transfer that
accounts for a large portion in electronic ASICs [16]

can be greatly reduced by leveraging state-of-the-
art optical transceivers. In addition, once a neural
network is trained, the matrix configuration can be
passive and optical signals can be processed with no
additional power consumption [27].

2) The operation bandwidth of such an OMM could
potentially match that of the photodetection rate
(typically in 100 GHz), which can be at least over an
order of magnitude faster than the electronic system
(typically restricted to the clock rate of a few GHz).

3) The OMM could have significantly lower latency,
since the electronic hardware accelerators still rely
on electronic transport that is bounded by the speed
and power limits due to RC parasitic effects. Early
demonstrations of photonic solutions were imple-
mented with bulky free-space optics [25], [26], which
required rigorous calibration for phase matching and
have extreme scaling difficulties. Current photonic
integration platforms provide opportunities for highly
scalable solutions that improve energy efficiency and
significantly reduce overhead of assembly, calibration,
synchronization, and management [28].

Over the last two decades, silicon has been shown to
be an excellent material platform for fabricating photonic
devices, and processes have been developed to permit
the reuse of CMOS manufacturing infrastructure to build
complex PICs. It is, therefore, not surprising that silicon
photonics is now widely accepted as a key technology in
next-generation communications systems and data inter-
connects [29]. On the one hand, following the example
of the electronic fabless semiconductor industry, process
design kit (PDK) libraries are being developed and stan-
dardization is being encouraged by the silicon photonics
industry and users for broader accessibility [30], [31].
On the other hand, component customization is driven
by a number of research groups and companies that
design a large variety of specialized photonic compo-
nents [32]–[34]. The ability to include increasing numbers
of a wide range of optical components at the wafer scale
has led to a powerful class of silicon-based PICs [35]. Such
integration technology fundamentally improves circuit-
level performance by reducing the complexity in assembly,
calibration, and synchronization. As it matures, sustained
increases in the functionality, performance, and reliabil-
ity of circuits are enabled. This, in turn, stimulates new
research directions leveraging the large-scale photonic
integration capabilities [27], [36]–[40]. Lightwave signals
have been manipulated in their intensity and phase at the
space, wavelength, polarization, and mode dimensions, for
data transmission [33], [41], switching [42]–[44], and
processing [27], [37], [40], in both digital [33], [41] and
analog formats [27], [39], [40].

In addition, in recent years the ecosystem of silicon pho-
tonics has been extended to enable further functionality.
The ability to add CMOS-compatible materials, such as
germanium (Ge), Ge-rich GeSi, and silicon nitride (SiN),
to the silicon-on-insulator (SOI) platform has significantly
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enriched the component library and enhanced circuit-
level performance. Notable examples include the Ge-on-Si
photodiodes (PDs) [45], high-speed GeSi modulators [46],
and the ultralow loss Si/SiN multilayer structure [47].
The development of heterogeneous integration [48], [49]
as well as breakthroughs on the direct growth of III–V
quantum dot materials on silicon substrates [50] further
completes the ecosystem, enabling a System-on-Chip.

The Mach–Zehnder interferometer (MZI) and the MRR
are two of the most common functional building blocks
in many photonic systems, such as modulators [32], [51],
[52], filters [34], [53], multiplexers [54], [55], switches
[56]–[58], and computing systems [27], [59], [60]. The
MZI was first proposed over a century ago to determine
the relative phase shift variations between two collimated
beams derived by splitting the light from a single source.
Later work extended this concept to manipulate the prob-
ability of light arriving at either port, by precisely con-
trolling the phase difference between the two arms [61].
Integrated MZIs generally consist of two 3-dB couplers
with phase shifters embedded in each of the two arms.
Detailed design considerations can be found in [52], [53],
and [62]. An MRR consists of an optical waveguide which
is looped back on itself and coupled waveguides. Reso-
nance occurs when the optical path length of the res-
onator is exactly a whole number of wavelengths and thus
multiple resonances are supported. The spacing between
these resonances is called the free spectral range (FSR).
Similarly, a phase shifter can be embedded in the resonator
to tune the optical path length in order to shift the reso-
nance spectrum. The properties of MRRs are extensively
described in the literature [63], [64], as well as their
design considerations, performance metrics, and potential
challenges [29], [32], [34], [54], [63], [64]. We discuss
the applications of the MRR in more detail below.

III. S I L I C O N P H O T O N I C S F O R
D E E P L E A R N I N G
This emerging area of research has been stimulated by
recent results in which silicon photonics has been utilized
to implement optical neural networks based on a spatial
multiplexing technique with coherent interference [27]
and a spectral multiplexing technique with wavelength
filters [60]. In this section, we give a detailed overview
of this recent progress in programmable silicon photonics
for deep-learning hardware accelerators.

A. Linear MZI-Based Meshing Optics With
Orthogonal Spatial Modes

Pioneered by the work of Reck et al. [65] showing that
a mesh of 2 × 2 beam splitters and phase shifters in the
form of an MZI can be programed to enable indepen-
dent control of amplitude and phase of light for a set of
optical channels, various novel architectures and design
principles based on a cascade of MZIs have been proposed
and demonstrated for both classical and quantum appli-
cations [27], [37], [39], [66]–[68]. These works are also
referred to as “programmable linear optic processors” [69].

Fig. 5. (a) Universal linear mesh network comprising two unitary

matrices and a diagonal matrix to set amplitude and phase,

as proposed in [68]. Universal unitary matrix proposed (b) by [65]

and (c) by [66].

Phase shifters that are embedded in the arms of MZI
units are used to control the interference of beams at the
combining stage, while a pair of external phase shifters is
employed in order to set a differential output phase. This
allows the control of relative amplitude and phase of the
beams at each stage and thus the programing of the mesh.
With specific interconnection patterns, universal linear
optical components can be obtained [66]–[68], [70], [71].

Whereas most of the mesh networks are explored as uni-
versal linear optics for unitary operations [37], [65]–[67],
[70], [71], Miller proposed a design method that
implements arbitrary, nonunitary matrices, as shown
in Fig. 5(a) [68]. This approach describes a self-
configuring universal linear mesh that employs a set of
orthogonal beams. The mathematics behind this design
demonstrates that any linear optical device can be factor-
ized using the singular value decomposition (SVD), as D =
V �U†, where V and U† are unitary matrices and � is the
diagonal matrix [68]. Theoretically, the universal unitary
matrices of V and U† can be implemented following the
designs proposed by Reck et al. [65] [see Fig. 5(b)] and
Clements et al. [66] [see Fig. 5(c)], and the diagonal
matrix � can be represented by an array of modulators
that can set amplitude and phase [68], as illustrated by
Fig. 5(a). The unitary matrices of V and U† can be further
decomposed to analytically define the values of beam
splitters, i.e., phase settings of MZIs [65], [66].

The recent work by Shen et al. [27] proposed a novel
architecture (see Fig. 6) for an optical neural network
that offers hardware acceleration for deep-learning appli-
cations. Vectors were encoded in the intensity and phase
of light and then fed into each layer of the network, which
comprised an optical interference unit (OIU) and an opti-
cal nonlinearity unit (ONU). Although the ONU function
was based on a computer to act as a saturable absorber,
the OIU was implemented using a silicon PIC to perform
the optical matrix multiplications following Miller’s design,
which leverages the SVD [68]. This optical device consists
of 56 programmable MZI units, each of which has two
50:50 power splitters and two pairs of phase shifters para-
meterized by (θ , ϕ). The power splitters/combiners are
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Fig. 6. All-optical architecture for integrated neural network [27].

realized by directional couplers and the π/2 phase differ-
ence between the two outputs ensures the unitary property
of its transformation. As a nonapplication-specific PIC,
one matrix transformation requires two passes through
the chip for: 1) V � and 2) U†. The required orthogo-
nal beams are implemented by a set of coherent spatial
modes. This device does not use on-chip detectors for self-
alignment. However, other generic approaches for setting
up meshes can be leveraged to enable the calibration of
phase disorders due to fabrication variations, such as the
one described in [72]. In addition, the broadband nature
of MZIs does not have a strong requirement for local phase
stabilization, although on-chip thermal crosstalk could be
a significant cause of phase errors.

Neural network training algorithms [73] can be lever-
aged to train the matrix parameters for different lay-
ers. Each layer contains a set of weights, which can be
decomposed into phase settings and then programed into
the OIU. By implementing a two-layer optical neural net-
work with four neurons per layer, a primitive task for
vowel recognition was executed and achieved an accuracy
of 76.7% [27]. Compared to the accuracy of 91.7% by
execution with a conventional 64-bit digital computer,
the key limiting factor for the accuracy of the optical neural
network can be attributed to the computational resolu-
tion. The phase-encoding noise and the photo-detection
noise are believed to be the primary factors causing
reduced resolution [27]. This is also reflected in the fidelity
analysis showing that the percentage error for each out-
put of the SU(4) unitary matrix core is approximately
2.24% [27], which bounds the system’s effective resolu-
tion. Suppressing on-chip thermal crosstalk and lowering
photo-detection noise would thus lead to a superior com-
putational resolution of the network.

The work described above shows an impressive example
of applying silicon photonics to deep-learning applications;
yet, three factors, in particular, might bound the practica-
bility of this approach.

1) Limited Scalability of Neurons: Let N denote the num-
ber of neurons. The optical depth (the number of MZI units
traversed through the longest path) for the unitary matrix
is given as 2N−3 and as N in the scheme by Reck et al. [65]
and by Clements et al. [66], respectively. This, therefore,
leads to a total optical depth of 2N − 1 (with output

reflected for a more compact layout [68]) and of 2N + 1,
respectively, for the optical device that implements the
arbitrary linear transformation using SVD encoding where
the diagonal matrix � is implemented by an array of MZIs.
Note that although the device using Reck et al. [65] design
has a slightly smaller optical depth, the Clements et al. [66]
layout is shown to be more tolerant to component loss
in realistic interferometers, maintaining high fidelity. The
optical depth increases linearly with the number of neu-
rons (N) by a factor of 2 which directly translates into
additional loss in silicon photonics integrations. This addi-
tional loss could quickly outpace the optical power link
budget and significantly deteriorate the system signal-to-
noise ratio, thus limiting the computational resolution.

2) Error Accumulation: Whereas the on-chip thermal
crosstalk can be suppressed, the finite encoding precision
on phase settings will remain as the fundamental limitation
for the optical neural networks with high computational
complexity. The phase errors, in particular, accumulate
when the lightwave signal traverses the MZI mesh with
an optical depth of 2N + 1. In addition, such errors prop-
agate through each layer of the network, which ultimately
restricts the depth of the neural network.

3) Complex Encoding Scheme of Matrix: The SVD method
provides a perfect solution to decompose an arbitrary lin-
ear transformation. However, mapping the trained matrix
parameters to the phase settings of the MZI mesh con-
sumes additional computational power.

B. Microring Weight Banks for Spiking Networks

Inspired by the field of neuroscience in which biologi-
cal neurons communicate by short pulses, spike process-
ing, with this integrate-and-fire neuron model, has been
proposed to exploit its massive parallelism potential in
computation [74]. The cornerstone of the communication
protocol is the spike coding scheme, which is digital in
amplitude and analog in pulse timing [75]. Input spikes
from multiple sources are multiplied by a set of weight
factors and temporally integrated to trigger a neuron firing
a single output spike if the threshold is satisfied [76]. It has
been recently recognized that photonics can be a power-
ful alternative to the microelectronic platform to imple-
ment such a spike processing system, given the significant
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Fig. 7. (a) Broadcast-and-weight spiking network proposed by

[60]. (b) Classification of semiconductor excitable lasers [77].

advancement in both excitable lasers for the nonlinear
processing, and analog PICs for the linear processing [77].

An on-chip optical architecture, named broadcast-and-
weight, was proposed by Tait et al. [60] to implement
scalable photonic spike processing networks to connect
parallel neurons. As illustrated in Fig. 7(a), each spiking
laser represents a neuron, and the optical neural network
connects the output of each neuron to multiple other
neurons making use of wavelength division multiplexing
(WDM). In contrast to the spatial multiplexing approach,
channelization of the spectrum can somewhat simplify
the interconnect network of neurons, as WDM channels
can coexist in a single bus waveguide channel without
interfering. The group of neurons that each utilizes a
distinct wavelength share a common bus waveguide, as
shown in Fig. 7(a). The broadcast can be simply realized
by passively splitting the bus waveguide to connect each of
the neurons, enabling the all-to-all connection [60]. Each
neuron is attached to a weight processing unit which is
used to execute the linear transformation function for the
N incident WDM signals that represent N neural nodes
including itself. In this case, being capable of indepen-
dently manipulating each weight is critical for creating dif-
ferentiation among WDM channels. The silicon add–drop
MRR is a natural choice due to its wavelength selective
nature, as well as its cascadability, and continuous power-
ratio-tunable feature [54]. The bank of cascaded MRRs,
as an array of reconfigurable add–drop filters, imprint the
weight coefficient to each corresponding channel. In a
network of N neurons with N wavelength channels, each
neuron incorporates a bank of N MRR filters, leading to
a total number of N2 MRRs. The through port and drop
port of the cascaded MRRs are, respectively, connected to

create two subsets of weighted power, each connected to
one of the balanced PD pair that performs the summa-
tion by incoherently aggregating the total incident optical
power. The layout of the balanced PD subsequently enables
subtraction between the two subsets of weighted powers
for inhibitory weighting. The weighted sum is then used
to excite a spiking laser neuron and three classifications of
semiconductor excitable lasers are shown in Fig. 7(b) [77].
When the temporal integration of weighted pulses can
push the gain above the lasing threshold, the neuron
releases a spike. Otherwise, the system stays at rest.

As a key constituent element, the MRR weight bank
has been carefully studied [78]–[81], since its scalability
and tunability are closely tied to the performance limits
of the optical neural network. Quantitative analysis was
provided to measure the scaling of channel count, N ,
for an MRR filtering bank, illustrating the limiting fac-
tors of interchannel crosstalk, insertion loss, and more
importantly, the bus length that causes coherent interac-
tions between adjacent MRRs [78]. Similar to the MRR
devices in data communication links, the interchannel
crosstalk and cascading loss are the two fundamental
constraints for system scale-up [54]. However, in contrast
to the (de-)multiplexing-oriented designs that have only
one common bus, the bus length becomes a key factor
in the weight bank design that brings about multi-MRR
coherent interactions due to the two bus configuration.
This inevitably introduces another dimension of design
complexity. Such interchannel interference also deteri-
orates the independent control of the WDM channels,
as the weights cannot be linearly separated. A more rig-
orous calibration process can be undertaken to improve
these impairments in the WDM channels. Any power
leakage or loss can be counter-balanced by adjusting the
corresponding MRR coupling ratio. However, the degrada-
tion of the MRR weight tuning range eventually becomes
irreparable [78]. For a given system error σ , the tuning
range is a critical factor that determines the network’s
computational resolution, as shown below.

A few efforts have been made to optimize the device
design and control plane for microring weight banks
in silicon photonic integration platforms [79]–[81].
A continuous range of complementary (±) weighting
has been demonstrated and recent work shows an
effective weight setting accuracy of 5.1 bits [81],
which is defined by log2[(μmax − μmin)/σ ], where
(μmax − μmin) is the tuning range and σ is the measured
system error. The chip performance in this experiment
is facilitated by photoconductive heaters which provide
online feedback of photo-induced resistance to estimate
the filter transmission. Considering that MRRs are
particularly sensitive to thermal drift [82], the real-time
feedback control loop, which tracks thermal fluctuations,
including ambient temperature change, self-heating
effects, and thermal crosstalk, plays a major role in such
a multiresonator system. It, therefore, provides superior
performance compared to the feedforward control scheme
[79], [80], which relies on fixed prebuilt references.
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Fig. 8. Overview of the proposed codesigned system for deep

learning.

Whereas a set of MRRs sandwiched by two buses that
drop power into a balanced photodetector offer comple-
mentary (±) weight factors, the closed WDM link makes
it difficult to monitor the isolated transmission state for
each wavelength channel. Altering the weight factor via
shifting the resonance spectrum of individual MRR unit
arranged in a cascading scheme would significantly con-
strain its tuning range, given that all channelized MRR
filters coexisting on the same bus have to tightly fit within
one FSR. The embedded photoconductive heaters within
MRRs provide a limited but adequate solution for neuro-
morphic applications [77], [81]. However, the adoption of
photoconductive effects in the analog computing system
may not sufficiently deliver the requirements for optical
matrix multiplication with higher resolutions.

C. Discussion

Both of the aforementioned approaches aim at process-
ing an entire ANN application or an entire matrix–vector
multiplication on a single optical device. Whereas those
approaches may have advantages in the processing speed,
the capability of the optical device strictly limits the size
of the ANN to be processed. For instance, the optical
neural network architecture proposed by Shen et al. [27]
consists of two layers, each with four neurons, for a prim-
itive machine-learning task of classifying four vowels in
speech. However, many machine-learning tasks in practice
involve learning more complex functions that take in a
large number of inputs. For a handwritten digit recognition
task, the number of input neurons is 28 × 28 = 784, one
for each pixel of the input image, and the number of output
neurons is ten, which equals the number of candidate
digits [15]. For breast cancer detection, an MLP with
30 input neurons, 500 neurons in each of the three hidden
layers, and two output neurons were used to achieve
the detection accuracy of 99% [83]. The computation for
this MLP includes the multiplication between a matrix of
size 500 × 500 and a vector of dimension 500. It is not
feasible or practical to fully optically implement such large
neural networks or matrix–vector multiplications using the
above approaches due to their limited scalability.

IV. S I L I C O N P H O T O N I C S C O D E S I G N
F O R D E E P L E A R N I N G
Codesign of silicon photonic and electronic circuits pro-
vides new opportunities for efficient computation of deep

learning. Silicon photonics has the potential for high-
speed analog matrix multiplication. However, the com-
putational requirement for ultra-large DNNs with high
accuracy demand may exceed the capability of a single
PIC, for high-complexity computing tasks. Our codesign
approach, described in this section, explores practical and
scalable solutions to process such large neural networks
while employing feasible optical devices.

Fig. 8 illustrates an overview of the proposed codesigned
system with the electronic circuitry that processes DNNs at
the system level, and a PIC that performs optical matrix–
vector multiplication of fixed-size inputs. The PIC takes in
a matrix K of size M × N and a vector x of size N , and
outputs a vector y of size M such that y = K · x .

A. Silicon Photonic OMM

Channelization in the wavelength domain avoids the
phase-sensitive designs that require the control of rela-
tive phases from different nodes for coherent interference
effects. Therefore, the wavelength multiplexing technique
provides an elegant solution to address the many-to-one
coupling (fan-in), which is a typical problem in neuron net-
works. Combined with tunable add–drop MRR technology,
the direct mapping from the weight matrix to the power
coupling ratio of wavelength filters can also eliminate the
complex encoding phase. Such simplicity would further
boost the validity of optical neural networks as hardware
accelerators for deep-learning applications.

The high thermo-optic coefficient of silicon
(1.8 × 10−4 K−1) creates a double-edged sword for silicon
MRR elements. While it allows effective manipulation of
light by the thermo-optic effect, due to its narrow-band
nature, this thermal susceptibility can be detrimental to
device performance. Therefore, accurate monitoring and
control mechanisms are normally required. A number
of energy-efficient yet precise locking schemes have
been demonstrated [84]–[88] for data communications.
The work by Tait et al. [81] sheds some light on the
feedback control of an analog MRR system, which
relies on an estimate of filter transmission. The plasma
dispersion effect via either carrier depletion or injection
can be leveraged to provide nanosecond-scale tuning
mechanism [29]. However, fabrication variations [89], in
addition to the self-heating effect and ambient temperature
change [82], most often require an additional thermo-
optic phase shifter. The electro-optic tuning mechanism
also requires attention to the induced electroabsorption
loss that compromises the extinction ratio of resonance,
thus the resolution of computation. This additional loss
disturbs the balance between the coupling power and the
round trip loss in the ring cavity from the critical coupling
point. The operation condition for critical coupling is
discussed in Section IV-A1.

In general, the on-chip thermal crosstalk is a primary
culprit of the system instability for MRR-based silicon
photonic circuits. Hereby, we start with an analytical model
of add–drop MRRs to provide an insight into constraints
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Fig. 9. (a) Weight definition of the through port of an add–drop

MRR for critical coupling condition with various finesse.

(b) Sensitivity of the weights for different finesse. (c) Optical phase

shift at maximum sensitivity point. (d) Maximum sensitivity of

weights as function of finesse. A linear trend is observed.

on weight resolution due to thermal crosstalk. We focus on
the thermo–optic phase shifting effect since it is a lossless
tuning mechanism but imposes the most thermal impair-
ments. We define the MRR weight sensitivity and discuss
an approach to increase system stability. The ability to
utilize only nonnegative values for training weight factors
opens new opportunities to refine the ring locking scheme
in the analog domain. A new class of highly accurate yet
scalable OMMs that are based on add–drop MRRs for deep
learning can thus be obtained.

1) Thermal-Crosstalk Restricted Weight Resolution:

a) Weight definition and sensitivity of add–drop MRR:
An add–drop ring resonator refers to a circular ring struc-
ture that couples to two straight waveguides, as schemat-
ically shown by the inset in Fig. 9(a). The optical transfer
function of the drop and through port can be expressed
as [64]

D(φ) =
�
�
�
�
�
−κ1κ2L0.25 exp(− jφ/2)

1 − t1t2
√

L exp(− jφ)

�
�
�
�
�

2

(5)

and

T (φ) =
�
��
�
�

t1 − t2
√

Lexp(− jφ)

1 − t1t2
√

L exp(− jφ)
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2
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where t1 and κ1, t2 and κ2 are the self-coupling and cross-
coupling coefficient for the input and drop coupling region,
respectively. L is the round-trip optical power attenuation
of the ring. We assume t2 + κ2 = 1 which allows the loss
introduced by the couplers to be included in L . φ is the
relative optical phase shift inside the ring

φ = (λ − λres)

FSR
× 2π (7)

where λres is the ring resonance wavelength and FSR is the
free spectral range of the resonance spectrum. We define
the weighting function, μ, using the through port of
the add–drop MRR, considering the negligible through
loss and its flexibility in cascading. Equation (6) can be
rewritten as
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where
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and F is the finesse of the ring, given by

F = π
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√
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√

L
≈ FSR

�λ3 dB
(10)

where �λ3 dB is the optical bandwidth of microring. Note
that the approximation in (10) holds only when F � 1.
Under critical coupling, the coupled power is equal to
the power loss in the ring cavity, i.e., satisfying the rela-
tion t1 = t2(L)1/2, hence the transmission drops to zero,
T0 = 0. Therefore, the design to operate at critical coupling
mode enables the maximum extinction ratio (i.e., dynamic
range) for the power transfer at the through port. The
weighting function, μ, can thus be given as

μ(φ, F)= T (φ)
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We define F as a variable of μ since finesse stands
out as a key parameter of both the ring sensitivity and
the scalability of number of neurons [77]. The finesse
is a measure of the sharpness of resonances relative to
their spacing (FSR) and represents, within a factor of 2π ,
the number of round trips made by light in the ring before
its energy is reduced to 1/e of its initial value [63]. There-
fore, from this point of view, the round-trip loss, L , as well
as the coupling coefficients in the coupling regions of the
ring, t1 and t2, are loss factors that can be manipulated
to alter F , which is also reflected in (10). For datacom
applications, MRRs are generally designed with radii in
the region of 5–10 μm to avoid undesired high bending
losses (i.e., radiation and scattering) while maintaining
reasonably large FSR, therefore limiting the finesse to the
order of tens [64]. Special designs, however, can lead to
finesse with values of a few hundreds [90], [91]. Further
details are discussed in Section IV-C1. In Fig. 9(a), we
plot the weight factor as a function of φ for F values in
the range of 10–100 (10, 20, 50, and 100), assuming the
critical coupling operation (T0 = 0).

It is not a surprise to see that a sharper resonance, i.e.,
larger F , gives rise to a more abrupt change in the weight
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as a function of φ. It has been shown that the thermo-optic
response (i.e., optical phase shift, �φ) of the microring is
a linear function of heating power (�P) [82]. However,
for a thermal perturbation (�P), �μ varies depending
on the weight μ, due to the nonlinear behavior of the
optical transfer function. We thus define the sensitivity of
the weights as the slope of the weight

�μ

�φ
≈∂μ

∂φ
= (1+a2)(1 − T0)

T0 + a2

0.5a2 sin φ



1 +



a sin φ
2

�2�2 (12)

where a = 2F/π . Combining with (11), we can plot the
sensitivity as a function of weight for various values of F as
in Fig. 9(b) for critical coupling (T0 = 0). One can see that
a lower sensitivity exists in the weighting function with a
smaller F , where the change in weight is milder over �φ.
This can be understood by realizing that a lower F results
in a wider resonance linewidth, hence the weight has a
smaller gradient as seen in Fig. 9(a). The optical phase
settings at the maximum sensitivity (i.e., ∂2μ/∂φ2 = 0) as
a function of F is further given by

φmax = 2 tan−1

�
3a2 + 2−√

9a4 + 4a2 + 4

a2 − 2+√
9a4 + 4a2 + 4

(13)

and illustrated in Fig. 9(c), indicating the weight variations
are most sensitive close to the resonance, which agrees
with the trend illustrated in Fig. 9(a) due to the nonlinear
power transfer in MRRs. Fig. 9(d) indicates that the maxi-
mum sensitivity of the weight has a linear dependence on
the finesse of the MRR, again showing that larger finesse
leads to worse sensitivity. To facilitate the quantitative
analysis on the bounded effective resolution, we use a first-
order Taylor expansion of ∂μ/∂φ assuming that a2 � 1
(see Appendix II) to show this. The result is

��
�
�
∂μ

∂φ

��
�
�
max

≈ 9

16
√

3
a = 3

√
3

8π
F = 0.2067 F. (14)

b) Thermal crosstalk induced weight error: Thermal
crosstalk occurs due to the proximity of rings to each other.
The linear dependence of the temperature changes on the
heater power results in a linear perturbation relation of the
ring’s temperature

�T x talk
i =

N


j=1, j 	=i

χ j PH, j (μ j ) (15)

where PH is the heating power of other rings for setting
their corresponding weights. This change of temperature
translates into a change in the optical phase inside the ring

|�φ| = |�λres| 2π

FSR
≈ 0.07 × |�T xtalk |× 2π

FSR
. (16)

We use 0.07 nm/K as the typical resonance thermal sensi-
tivity of silicon microrings [82]. Thermal crosstalk can be

Fig. 10. (a) Schematic of thermal crosstalk between adjacent

MRRs. R∞ denotes the boundary of the chip. Thermal crosstalk

arises from in-plane diffusion of heat and gets worse at closer

proximity. (b) Comparison of analytic 2-D equation for heat diffusion

with finite element results in COMSOL. The logarithmic behavior for

the heat diffusion is confirmed. Note that the heat density, q,

is proportional to the temperature change, ΔT, and can be

considered a measure of thermal crosstalk.

considered as a biased (deterministic) perturbation; hence,
it affects the average value of the error, |�μ|. Since the
optical phase shift due to thermal crosstalk is a direct con-
sequence of the weight of other rings whereas the weight
sensitivity is dependent on the weight of interest, these two
factors are uncorrelated and both can simultaneously occur
at their worst cases. Therefore, the maximum weight error
due to thermal crosstalk can be written as

max |�μ|=
�
�
�
�
∂μ

∂φ

�
�
�
�
max

× |�φ|max =0.091× |�T xtalk |max

�λ3 dB
.

(17)

Considering adjacent MRR elements as thermal
crosstalk sources and that the maximum phase shift inside
each adjacent ring is π , the maximum temperature change
due to thermal crosstalk from an adjacent ring can be
given as

�T xtalk
max ≈ 7.143 FSR × αT (18)

where αT is the fraction of the thermal energy from adja-
cent rings. The weight error then aggregates as

max |�μ| = 0.65 F ×



i

αT,i . (19)

The solution of heat diffusion in 2-D space of the chip has
a form of [82]

q(r) = qring ×
ln



R∞
r

�

ln



R∞
R

� (20)

where q is thermal energy density (proportional to the
change in temperature at each location), r is the distance
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to the crosstalk source, R is the radius of the ring, and
R∞ can be viewed as the boundary of the chip, as shown
in Fig. 10(a). Fig. 10(b) shows the validation of this
analytic equation with COMSOL simulation [82], [92] for
R = 10 μm and R∞ = 1 mm. As expected, the heat
density decreases at farther distances from the MRR’s
heater, but the 2-D heat diffusion shows a rather strong
thermal crosstalk impact (e.g., 50% at 100-μm proxim-
ity). Note that in an actual photonic chip the heaters
are most commonly located on top of the MRR so that
the heat can also diffuse vertically. Since the thickness of
the heater, tH , is typically much smaller than the foot-
print of the heater (≈100 nm [93]), most of the heat
generated by the heater diffuses vertically (out of plane)
instead of horizontally (in-plane). Therefore, the fractional
in-plane heat crosstalk from one ring to another can
be estimated by

αT ≈ tH

2R
×

ln



R∞
r

�

ln



R∞
R

� (21)

and thus

max |�μ| = 0.65F × tH

2R
×




i

ln



R∞
ri

�

ln



R∞
R

� . (22)

c) Weight resolution: The resolution determines the
minimum possible steps for setting weights with the high-
est certainty. If μ is the calibrated weight in the ideal
case and μ̂ is the weight in the presence of perturbations,
we can write

μ̂ = μ + �μ(t) = μ + �μ + δμ(t) (23)

where �μ(t) is the error of the weight. This error can
be decomposed into a stationary (deterministic) average
denoted by �μ and a random noise like term denoted by
δμ(t). We consider the resolution is set by the maximum
root-mean-square error given by max |�μ(t)| = max |�μ|+
σμ/2, where σ 2

μ = δμ2(t) is the standard deviation of the
noise-like error. The resolution is then written as

Resolution = 1

max |�μ(t)| = 1

max |�μ| + σμ

2

. (24)

In such a system, it is reasonable to assume the thermal
crosstalk induced error (i.e., �μ) is dominant over the
photo-diode noise, σμ. For an MRR element in an array, its
two adjacent rings are considered as the dominant sources
of thermal crosstalk. Therefore, referring to (22), we can
plot the contours of effective bit resolution for an MRR
unit as a function of both the unit pitch and its finesse for
R = 10 μm and R∞ = 1 mm, as shown in Fig. 11.

Note that this model is more accurate for small thermal
perturbations; however, the combination of (22) and (24)
still serves as a qualitative analysis on how the pitch size
of MRR weighting elements and their finesse bound the
effective resolution, even when the thermal crosstalk is
strong. Feedforward calibration can somewhat alleviate
the thermal crosstalk restrictions, yet the calibrated sys-
tem accuracy heavily depends on the weight settings of
adjacent MRR units. A scalable OMM with the capability
of high resolution thus calls for a new design approach
and the capabilities of computing using only nonnegative
weight factors open up a new design philosophy, as dis-
cussed in the following section.

2) Hitless Weight-and-Aggregation Architecture: We pro-
pose a codesigned architecture for optical matrix
multipliers which are specially customized for highly accu-
rate, scalable, and nonnegative weight matrices. The hit-
less weight-and-aggregation design essentially describes
an interconnect architecture that allows computational
nodes (neurons) to carry arbitrary input vectors and to
be independently weighted and summed. Such a many-
to-one network is formed on the basis of channelization
of the spectrum, creating physical and logical connections
between input and output vectors. We put forward a hitless
weighting structure by employing the colored channels in
parallel rather than cascading them. This design isolates
each weight on each connection and makes the tuning
of MRR filters truly independent, i.e., not interfering
with other channels. Such a hitless design also decou-
ples the weighting and summation functions by allocat-
ing dedicated functional blocks, both of which employ
MRR units, thus allowing independent optimization to
decouple the constraint between the scalability of neurons
and the weight sensitivity. The nonnegative weights are
defined using the optical transfer function of the MRR
through port, while the drop port is used as a monitoring
outlet to provide real-time feedback for the weight control
loop.

An M × N OMM consisting of M N × 1 vector multi-
pliers is illustrated in Fig. 12. Distinct continuous-wave
(CW) wavelengths (representing N neurons) can be imple-
mented by either M sets of N wavelength-multiplexed

Fig. 11. Contours of effective bit resolution for the weight of MRR

due to thermal crosstalk as a function of finesse and proximity.
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Fig. 12. (a) Hitless weight-and-aggregation architecture for M × N

vector–matrix multiplier. (b) One unit out of M for N× 1 vector to be

multiplied by 1 × N matrix.

laser arrays [94] or optical frequency comb lasers [33],
[95], or one set of lasers passively split into M copies.
The nonnegative weight factors obtained from the trained
matrix parameters are mapped to the coupling ratios and
imprinted to the CW signals using multiring weighting
blocks. The colored signals that carry the same set of
weights are routed to all outputs. The N input vectors are
then formed by a set of intensity modulators to the fanned-
in WDM signals, before combining to form the M output
vectors. The aggregation will be performed by another
dedicated set of N high-finesse MRRs that is critically
coupled to the WDM bus waveguide. The wavelength-
multiplexed data streamed into the bus are optically
summed by a PD, in which the photocurrent represents the
total optical power. The M output vectors are then sent
for nonlinear processing. Design considerations for each
functional block are detailed in the following sections.

a) Hitless architecture for nonnegative weight factors:
The design philosophy for the MRR-based weighting block
is different from the conventional approach, in which
tuning a filter in a link where WDM signals coexist controls
the power coupling of the desired wavelength. The drop
spectrum of such an MRR filter also sees other channels on
the bus and thus the tuning inevitably interferes with adja-
cent channels. Such interference not only limits the weight
tuning range but also acts as an unbiased perturbation to
the weight that bounds the resolution for the nonnegative
OMM system. Thus, a large channel spacing is required
which trades off the system scalability.

Instead of utilizing the cascading layout of MRRs,
the hitless design exploits a parallel arrangement of the
weighting filters, shown in Fig. 12. This strategy stabilizes
the weighting block within each wavelength branch before
multiplexing onto the WDM bus, ensuring full tuning
independence. Therefore, the design considerations for
the MRR weighting filters can be narrowed down to a
sole factor, i.e., sensitivity. As defined in (8) and Fig. 9(b),
a small finesse is favored. Note that a trade-off exists since
higher optical phase change is required to set the MRR
to a specific weight for smaller finesse, which translates
into higher heating power and, in turn, makes the thermal

crosstalk worse. However, (9) still provides the worst
possible scenario for the thermal crosstalk effects.

While the filter-through port is used to define the
weighting function, the drop port connects to a monitor
PD, shown in Fig. 13(a), providing a highly accurate feed-
back control loop for precise ring power locking. Fig. 13(b)
plots the normalized monitor power for this structure as a
function of φ, together with the corresponding weight fac-
tors. The locking accuracy could be compromised at power
levels approaching zero (weight factors approaching one),
given the existence of PD shot noise. To obtain a more
linear transmission response, the ring spectrum tail can
be omitted at the sacrifice of a slightly reduced weighting
range.

The precise locking scheme would require a calibrated
process, which sets up a lookup table (LUT) that maps
the weight factor to the monitored optical power for
each filter. By periodically polling the power monitor and
comparing it to the LUT, the locking scheme can effectively
offset thermal perturbations, including on-chip thermal
crosstalk, and ambient temperature fluctuations. The lock-
ing accuracy, which could translate into weight resolution,
can be limited by the PD shot noise, the finite precision that
offers by the digital-to-analog convertor/analog-to-digital
convertor (DAC/ADC), as well as the polling and locking
rate.

b) Multiring weighting block for reduced sensitivity: By
utilizing multiple MRR filters as illustrated in Fig. 13(c),
the weight sensitivity can be further relaxed. The overall
weighting function, μo, for n cascaded ring filters can be
given as

μo = μ1 · μ2 · · · μn . (25)

For simplicity, we assume μ1 = μ2 = · · · = μn = μ,
in which case μ is given by (11) and the phase settings
are the same for all MRR filters. Fig. 14(a) plots μo as a
function of φ, for n = 1 − 5, with F = 10. It can be seen
that the weighting function gets increasingly linear as n
increases.

We can analyze two cases for the weight sensitivity of
the multiring system: 1) one ring is perturbed thermally
and 2) all rings are perturbed thermally at the same time,

Fig. 13. (a) Single MRR weighting element with monitor PD.

(b) Normalized monitor power as well as corresponded weight factor

as a function of φ. (c) Multi-MRR weighting element.
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Fig. 14. (a) Weight as a function of φ, for n = 1 − 5, with F = 10.

(b) Illustration for one perturbed ring and all perturbed rings in a

multiring weighting block. Weight sensitivity as a function of φ with

thermal perturbation in (c) one ring and (d) all rings simultaneously.

shown in Fig. 14(b). When the OMM setting leads to
one or multiple heat sources on a chip, the dominant
thermal effect is considered to be from adjacent rings. It is
thus reasonable to take the one perturbed ring as the lower
boundary for weight sensitivity. We have

∂μo

∂φ
= ∂μ1

∂φ
·μ2 · · · μn . (26)

This can be readily solved by referring to (12). The weight
sensitivity with thermal perturbation in one ring can thus
be plotted and is shown in Fig. 14(c), in which the single
ring case is included for direct comparison. It can be
seen that the two-ring system suppresses weight sensitivity
significantly, but the trend continues with a decreasing
decrement when the number of rings increases. For the
case that thermal perturbation occurs in all rings, we have

∂μo

∂φ
=

n


i=1

μo

μi

∂μi

∂φ
= ∂(μn)

∂φ
. (27)

Fig. 14(d) plots this case representing the upper bound-
ary for weight sensitivity. It can be seen that the system
still gains tolerance to thermal perturbation compared
to the single ring case. Considering the additional cost,
footprint, and complexity introduced by the multiring sys-
tem, the lower number two is preferred. Therefore, for
the implementation of an M × N vector–matrix multiplier,
the total number of MRRs is 3M · N including both weight-
ing MRRs and aggregation MRRs. The total number of PDs
is M .

Although the multiring system exhibits lower weight
sensitivity, overcoming the limitation of the finite precision
for the DAC with which an optical phase can be set is still
a challenge. In an n-ring weighting block, the minimum
step in the weight, δμ, bounded by the DAC resolution
for setting the optical phase of each ring yields a weight
μ̂ = μ ± δμ; hence the overall weight is μ̂o = (μ±δμ)n ≈
μn(1±nδμ/μ). Therefore, the error given by nμn−1δμ can
be at its worst (i.e., nδμ) when μ is close to 1. A smaller
error than δμ is achieved only for weights for which
nμn−1< 1. For a two-ring weight block, the worst error is
2δμ which can occur for any weight.

c) Aggregation and summation: In contrast to the
MZI-based OIU for matrix multiplication where the input
vectors are imprinted before feeding into the OIU [27],
we process the vector imprint after the weighting stage.
This is because the weight factor, i.e., coupling ratio, is
locked by the dropped power as illustrated in Fig. 13, and
the streamed input vectors with power fluctuations would
deteriorate the locking accuracy. Therefore, the proposed
processing flow as shown in Fig. 12 resolves this issue.
The input vectors are imprinted via high-speed intensity
modulators [96]. A linear intensity modulator, such as the
Mach–Zehnder modulator, is favored [52]. As we analyzed
in the following section, high computation accuracy can be
obtained when the input vectors have the same resolution
as the weights.

The weighted input vectors can subsequently be aggre-
gated into the WDM bus through dedicated ring filters.
As shown in Fig. 15(a), the locking scheme for the aggrega-
tion MRRs operates differently, where the through power is
always locked at the minimum state for a total power drop.
This nontunable feature ensures the maximal spectral
efficiency regarding the number of wavelengths that can
reside in the WDM bus.

Since the aggregation ring filters act only as wave-
length multiplexers, a large finesse is favored in order
to achieve high scalability in the number of wavelength
channels, i.e., the number of neurons. For a given finesse,
the number of channels that can be carried within one FSR
is determined by the channel spacing. A tradeoff exists
for the channel spacing as it also determines the inter-
channel crosstalk when the dropped signals pass through

Fig. 15. (a) Operating principle of the aggregation MRRs.

(b) Through power ratio as a function of both finesse and number of

channels.
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neighboring rings toward the summation PD on the bus.
This leads to a through loss as illustrated in Fig. 15(a).
We can rewrite (7) as

φ = (λ − λres)

FSR
× 2π = 2π

Nλ
(28)

where (λ − λres) and Nλ are the channel spacing and
number of channels, respectively. A large portion of the
power loss gets dropped to the locking PD. This, however,
does not compromise the weighting resolution. If we limit
the through power ratio to η, we have

Nλ = 2π/cos−1

⎛

⎝1 − 2
4F2

π2

T0



1 + 4F2

π2

�
−



T0+ 4F2

π2

�
η



T0+ 4F2

π2

�
η−



1+ 4F2

π2

�

⎞

⎠ .

(29)

We can then plot a 2-D contour for η as a function of both
finesse and number of channels, as shown in Fig. 15(b).
Here, we assume the induced loss is dominated by the
adjacent channel. It can be seen that for η = 0.8, which
translates into ∼1 dB through loss, Nλ ≈ F . It should be
noted that the insertion loss for all wavelength channels
should be equalized by adjusting the individual input
power, in order to allow each neuron to have the same
maximum weight at summation. In addition, due to the
multiring weighting block, the system can achieve higher
order crosstalk suppression for the “0” weight.

B. System-Level Codesign

In order to take full advantage of both the optical
speedup and electronic manipulation of the parallelism
and memory, interactions between the two technologies
require careful attention, especially when one processes
digital signals and the other analog signals. We identify
the system-level challenges for the codesign as follows.

1) Computation breakdown to match the interface.
Processing a DNN may require matrix–vector multi-
plications for ultra-large matrices and vectors. The
electronic circuitry should preprocess the DNN, break-
down the computation to smaller matrix–vector mul-
tiplication instances, send the request to a silicon
photonic circuit, and post-process the results.

2) Minimization of the number of updates for the input
matrix to the OMM. For each instance of matrix–
vector multiplication requests, changing the values
represented by the OMM microrings introduces a
nonnegligible delay. Thus, to make the most of the
high capacity of optical interconnects, it is desirable
to have the elements of the input matrix to the OMM
constant over a sequence of matrix–vector multiplica-
tion requests sent from the electronic device.

3) Analyzing the computation precision and nonnega-
tive networks. As discussed in the previous sections,
photonics is most suitable with nonnegative weights

which can be directly mapped to the power ratios.
The capability of defining weights using only nonneg-
ative values would significantly simplify the design,
fabrication, and control for the optical program-
mable processers. However, conventional training
algorithms are developed using complementary (±)

weight factors. Thus, it is important to investigate
how the resolution level, nonnegative mode, and
network size affect the accuracy of a neural network
for a target task.

4) System-level scheduling and orchestration. To max-
imally utilize both types of devices, the latency of
each device should be taken into account during the
system-level scheduling and orchestration.

1) Fully Connected Layers: Computation Breakdown: For
a fully connected layer h j+1 of size i j+1 from the previous
layer h j of size i j , let W j+1 ∈ R

i j+1×i j denote the weight
matrix. Note that i j and i j+1 can be much larger than N .
Given an activation function Act() and bias b j+1, the layer
h j+1 can be computed as follows:

h j+1 = Act(g j+1 + b j+1) (30)

g j+1 = W j+1 · h j . (31)

To compute g j+1 using the aforementioned PIC, we can
partition the input into matrices of size N × N and vectors
of size N as follows for 0 ≤ k ≤ i j+1/N :

g j+1
k+1

g j+1
k+2
...

g j+1
k+N

=
i j
N


�=0

⎛

⎜
⎜⎜
⎜
⎝

W j+1
k+1,�+1 W j+1

k+1,�+2 · · · W j+1
k+1,�+N

W j+1
k+2,�+1 W j+1

k+2,�+2 W j+1
k+1,�+N

...
. . .

...

W j+1
k+N,�+1 W j+1

k+N,�+2 · · · W j+1
k+N,�+N

⎞

⎟
⎟⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎝

h j
�+1

h j
�+2
...

h j
�+N

⎞

⎟
⎟
⎟
⎟
⎠

. (32)

The overview of this approach is also depicted in Fig. 16.
The total number of multiplications required to compute

layer h j+1 from h j is i j+1·i j . With the above approach
using OMMs of width N , the total number of OMM
requests is �i j+1/N� · �i j/N�. This reduction by the fac-
tor of 1/(N2) is achievable because there is no waste of
operations associated with the partitioning.

2) Convolutional Layers: Minimization of the Reconfigura-
tion of OMM Input Matrices: Fig. 17 shows the convolution
part of convolutional layers computed using OMMs. The
total number of multiplications required in computing one
output channel is

iin_ch · (W − 2)·(H − 2) · N2 (33)
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Fig. 16. Computation for fully connected layers using OMMs.

(a) Fully connected layers hj (green) and hj+1 (blue). gj+1 is

obtained as a result of the inner products between hj and the weight

vectors. hj+1 is obtained by applying the bias and activation to

gj+1. (b) Matrix–vector multiplication between the weight matrix

(orange and gray) and hj to obtain gj+1. The superscripts are

omitted for simplicity. (c) Computation equivalent to that of (b) but

using OMMs with the input matrix size of 3 × 3.

where iin_ch denotes the number of input channels, W and
H denote the width and height of an input channel, and
N2 represents the size of the convolution kernel. With the
above approach, the total number of OMM requests for
computing one output channel is iin_ch · (W − 2) · (H − 2).

The above approach updates the matrix elements for
each OMM request. On the other hand, we propose
another approach illustrated in Fig. 18, which minimizes
the number of updates of the input matrix for the OMM.
This approach follows a similar direction to the weight

Fig. 17. Computation for convolutional layers using OMMs. The

first column of the output channel (nodes y11, . . .) and the first three

columns of the input channel (nodes x11, . . .) are shown in the above

illustration. (a) Convolutions on a single channel of the input layer.

The convolution results over all channels in the input layer will be

summed up and mapped to the output channel after the bias and

activation are applied. (b) Conversion of the convolutions to a

matrix–vector multiplication. The computation for one column in the

output channel can be performed by a single matrix–vector

multiplication for each input channel. (c) Computation equivalent to

that of (b) but using OMMs with the input matrix size of 3× 3, which

equals the size of the convolution kernel.

Fig. 18. Proposed computation of convolutional layers using an

OMM without updating its input matrix values.

stationary optimization technique of ANN accelerators,
where the weight values stay in the local register file of
processing elements of the hardware accelerators [97].
The fundamental goal of this optimization is to minimize
the time for processing elements to be reading the weights.
In our codesigned system, the weights must be converted
to analog signals and passed to the OMM to be set up for
the computation. Thus, we aim at reducing the latency of
the overall process by minimizing the number of OMMs
input matrix updates. This can be achieved by mapping the
convolution kernel itself to the OMM’s input matrix, when
the size of the OMM’s input matrix is larger than or equal to
that of the convolution kernel, which often ranges between
2 × 2 and 5 × 5. The convolution kernel weights form the
input matrix and the network nodes form the input vectors.
Then, the results of the first N = 3 matrix–vector multipli-
cation instances in Fig. 10 contain the convolution result
for y11. The second, third, and fourth matrix–vector mul-
tiplication results contain the convolution result for y21.
Consecutive N = 3 results contain the convolution result
for the corresponding output element. While processing
the entire input channel, the input matrix for the OMM
does not change. With this approach, the total number of
OMM requests for one output channel is iin_ch · (W − 2) · H .

3) Analysis of the Nonnegative Property and Resolutions:
Most neural networks used in practice have both posi-
tive and negative input values, weights, and node values.
Thus, feedforward propagation of these networks, either
during the training or inference, requires matrix–vector
multiplications with both positive and negative values.
Then, it is of interest to consider a mapping between
the values in the range of [−1, 1] and [0, 1] such that
matrix–vector multiplication is preserved by this mapping.
However, the theorem in Appendix I verifies that such
mapping does not exist. There have been approaches to
use only nonnegative input and weights to obtain a more
understandable network with a slight decrease in the accu-
racy [98]. Another approach performs nonnegative matrix
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Fig. 19. Test accuracy of MLPs for handwritten digit recognition

with varying resolutions and network sizes. (a) Networks trained in

the conventional mode using negative values, 0, and positive values

in the computation. (b) Networks trained in the nonnegative mode,

where only 0 and nonnegative values are used during matrix–vector

multiplications.

factorization of the weights in order to reduce the input
complexity, but the input values, in this case, can be both
positive and negative [99].

To avoid matrix–vector multiplication with negative val-
ues, we train the neural networks using nonnegative input,
weights, and nodes. In our experiment, we restrict not only
the sign of the input and weights to be nonnegative but
also the resolution used during inference. Fig. 19 shows
the estimated inference accuracy of two-layer MLPs over
a range of the resolution levels (the number of bits used
to represent the input values and weights in a fixed-point
format), and the network sizes (the number of nodes in the
hidden layer of the MLP) trained in two different modes
for the task of handwritten digit recognition: 1) conven-
tional mode that supports negative input, weights, and
nodes and 2) nonnegative mode that normalizes the input
to [0, 1], and constrains the weights and nodes to be
nonnegative. One network for each mode and each level
of the network size was trained using the MNIST train
data set [100], with 32-bit floating-point representation
[101]. The input image contains 28 × 28 pixel values
in the range of [0, 255], which were normalized to
[−1, 1] or [0, 1] depending on the training mode. For
activation functions, tanh was used in the hidden layer,
and softmax was used in the output layer. After activa-
tion in the nonnegative mode, all negative values were
rounded up to 0. All weights and biases were randomly
initialized, and the weights for the nonnegative mode
were initialized to [0, 1]. These weights and biases were
updated using ADAM, which is a state-of-the-art stochastic
back-propagation method [68].

Each of the trained networks was tested on the MNIST
test data set, with both the input values and weights con-
verted to the fixed-point representation for each resolution
level. We note that one instance of a trained network with
a given network structure does not represent the most opti-
mized network of that structure. Nevertheless, all networks
in this test case were trained using the same approach
with similar optimization efforts, aside from the training

Fig. 20. System-level overview for the proposed codesign

approach. The FPGA-based electronic system (on the top) invokes

and controls the optical system (in the bottom). The MRRs that

receive electrical signals from DACs act as electrical-to-optical

converters, whereas the summation PDs perform the

optical-to-electrical conversions. The summed signals are connected

to the FPGA via ADCs. Details regarding the memory systems, which

depend on the specific application, are abstracted in this figure.

time which increases for larger networks. Thus, we refer to
these networks in order to practically and roughly estimate
the performance trend over various network sizes, resolu-
tion levels, and the training mode. As shown in Fig. 19,
the test accuracy has generally improved as the network
width increased and as the resolution level was enhanced.
It turns out that the accuracy of networks trained in the
conventional mode was more affected by the restricted res-
olution, whereas the accuracy of those trained in the non-
negative mode was more affected by the network width.

The test accuracy achieved by nonnegative networks is
lower than that by the conventionally trained counterpart,
but a larger nonnegative network can sometimes outper-
form a smaller conventional network. During the training
in the nonnegative mode, the biases and activation func-
tions were allowed to take negative values because in this
codesign approach only the matrix–vector multiplications
will be offloaded from the electronic device to the optical
device. This seems to have enabled the network to cut
out less relevant, or negatively related connections and to
focus on positively related ones, resulting in comparable
accuracy for large nonnegative networks.

The issue of positive and negative inputs is an interest-
ing example of the approach to optimization required for
codesign. As mentioned in Section IV-A, photonics is imple-
mented more readily with nonnegative values. This initial
investigation indicates that, although in current practice
both positive and negative values are used, using only
nonnegative values for the matrix–vector multiplications
can actually be advantageous in some circumstances.
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4) System-Level Scheduling to Maximize the Throughput:
To accelerate the inference process of a trained neural
network with OMMs, an FPGA-based codesigned system
breaks down the computation, sends matrix–vector mul-
tiplication requests to OMMs, and performs the remain-
ing part of the computation including the nonlinear
activation (which could also be done optically or via
well-designed analog electronics as discussed in Section IV-
C4). Fig. 20 illustrates the overview of the proposed code-
signed system that contains three specialized processors:
the ANN processor, the input processor, and the output
processor. For each OMM request, the ANN processor
sends the input M × N matrix K to the MRRs via DACs,
and the input processor sends the input N -dimensional
vector x to the modulators via DACs. The output processor
collects the resulting M-dimensional vector y from the
PDs via ADCs, and it also applies the bias and nonlinear
activation function. The very recent demonstration on
a 1-to-56-Gb/s ADC/DAC-based transceiver [102] paves
the way for high-speed, low-energy ADC/DACs as the
interface between the OMM and FPGA, without harming
the throughput.

Although the computation complexity of an OMM is in
O(1), the DAC, MRR configuration, ADC, and the computa-
tion on the FPGA consume nonnegligible latency. The goal
of the system-level scheduling is to overlap these latencies
to maximize the throughput. Fig. 21 shows abstract timing
diagrams with pipelined executions by the ANN, input,
and output processors. Fig. 21(a) illustrates the case of
invoking a single OMM instance. As shown in Fig. 21(b),
the latency TL of a period between consecutive OMM
invocations can be expressed as

TL = TM + TD A + TAD (34)

where TM denotes the latency of the DACs and MRR con-
figuration, TD A the latency of DACs and TAD the latency
of ADCs. This holds as long as the ANN processor’s latency
TA does not exceed TD A + TAD , and similarly, the input
and output processors’ latencies TI and TO are less than or
equal to TM + TAD and TM + TD A , respectively.

When consecutive OMM instances contain the same
input matrix elements so that it is not needed to recon-
figure the MRRs, the latency TL of the period can be
expressed as

TL = TD A + TAD (35)

as shown in Fig. 21(c). In both cases of Fig. 21(b) and
(c), the asymptotic throughput is proportional to 1/TL

and the number of OMM devices that can be processed
in parallel, and is inversely proportional to the total
numbers of OMM invocations for fully connected or con-
volutional layers which have been discussed in the
previous sections.

C. Discussion

1) Silicon Ring Resonators (Finesse Versus Bandwidth):
Silicon ring resonators with high finesse (up to a few
hundreds) have been extensively demonstrated [90], [91].
However, these demonstrations aim for high-quality factors
and tend to have a relatively small 3-dB bandwidth. For the
aggregation ring filters in this OMM system, a large 3-dB
bandwidth is an equally important factor that allows high
data rate vectors to be fanned in, for high computational
speeds. It would be preferable for the operation bandwidth
of such an OMM to match that of the photo-detection rate
(typically at 100 GHz).

The recent demonstration of a submicrometer-scale
MRR shows great potential for the aggregation ring fil-
ters with high finesse and large bandwidth [103]. It fea-
tures a 3-dB bandwidth of 100 GHz and a finesse
of 116, supporting up to 116 wavelength channels given
a 1-dB through loss budget as discussed in Section IV-
A2c. This ultra-small ring resonator has the additional
benefit of reducing the thermal tuning power, which is
proportional to its size [103]. Another notable demon-
stration that combines an MRR-based filter with grating-
assisted contra-directional couplers frees the constraint
of FSR [104]. The addition of grating-assisted couplers
provides an extra degree of freedom for longitudinal
mode selectivity. This design, therefore, paves the way
for independent optimization of the 3-dB bandwidth, and
potentially enables full utilization of the transmission
window in the silicon platform, yielding an extremely
scalable OMM.

2) Optical Phase shifting Technology: Phase shifter tech-
nology is key in the OMM. Thermo-optic phase shift-
ing is preferred since it is the most commonly applied
lossless mechanism in the silicon platform. The induced

Fig. 21. (a) Timing diagram of invoking one OMM instance

containing an input matrix and vector. (b) Timing diagram of

invoking two OMM instances, each with an input matrix and vector.

More invocations can be added on the right in a similar pattern. The

latency of a period between consecutive invocations is denoted as

TL. (c) Timing diagram of invoking multiple OMM instances, where

the first instance contains a new input matrix and vector and

subsequent instances contain only new input vectors. The latency

TL has been reduced with respect to (b).
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on-chip thermal crosstalk can be reduced by adding iso-
lation trenches [105]. In addition, a selective silicon etch
can be applied to the silicon substrate to undercut the
waveguides. The selective etch localizes the heat and
improves heating efficiency [106]. The reduced heat-
ing power could, in turn, ameliorate on-chip thermal
perturbations. The limited thermal frequency response
(up to a few hundred kHz [82]) is, however, a limit-
ing factor in latency, when dynamic reconfiguration for
the OMM is required. For fast phase tuning, as afore-
mentioned, electrooptic phase shifting leveraging the
plasma dispersion effect is the most popular all-silicon
technology [96]. It offers nanosecond-scale reconfigura-
tion time, albeit with some performance penalty due
to the electro-absorption loss. The E-O phase shifters
would be straightforwardly included in the weighting
blocks with additional considerations for the excess
electro-absorption loss.

With the advances in heterogeneous integration tech-
nology, other materials can be introduced on the silicon
platform. Notable examples include III–V materials [49],
graphene [107], and nonvolatile phase-change materials
(PCMs) [108]. III–V materials exhibit high electrooptic
phase modulation efficiency, which can be effectively com-
bined with silicon waveguides using wafer-bonding tech-
niques [49]. Thin layers of graphene can be deposited on
top of the Si waveguide [107], forming a capacitor that
overlaps with the tail of the waveguide’s optical mode.
The application of voltage will then shift the Fermi level
of graphene and enable inter-band transitions of charge
carriers, and thus modulate the intensity of light traveling
through the waveguide. The PCMs can introduce gigantic
optical phase changes and most importantly, such phase
changes are nonvolatile. This nonvolatility adds the capa-
bility of self-holding, maintaining optical states even in the
absence of power input [109].

3) Power Consumption and Footprint of the OMM: The
power consumption of the OMM is dominated by the
tuning and locking of MRR elements. Current technology
features a thermo-optic tuning efficiency of 1 nm/mW
with doped-silicon micro-heaters [82], leading to small
power consumption of a few mW per weighting MRR.
Femtojoule-level depletion-mode modulators in vertically
doped micro-disk structures [32], featuring low operat-
ing voltage (0.5 VPP), offer the possibility for ultralow
power electrooptic OMMs. The power consumption would
then derive from the undesired leakage current, approx-
imately ∼6 μW per element [32]. In future implemen-
tations, the phases could be set using the nonvolatile
PCMs [109]. In that case, power would only be drawn
during state transitions. A recent demonstration on a
nonvolatile PCM-based photonic memory cell shows pro-
gramming energy and time of only 680 pJ and 250 ns,
respectively [110].

A number of wavelength locking schemes have been
proposed, including the use of the photoconductive

effect [87], small dithering signals [84], radio-frequency
(RF) detection [86], additional partial drop rings [88],
and monolithically integrated locking controllers in the
45-nm CMOS-SOI platform [85]. The locking power con-
sumption has been demonstrated to be in the range of
a few hundred μW [84], [85]. Furthermore, there has
also been noteworthy research progress on a thermal
MRRs that could significantly overcome the temperature
sensitivity [111]–[113]. Here, the key idea is to introduce
an upper cladding that has a negative thermo-optic coef-
ficient to counteract the T-O effect of silicon. Titanium
dioxide (TiO2) holds the most promise as it exhibits a
relatively strong negative thermo-optic coefficient and has
been included in the CMOS-compatible fabrication process
[112], [113]. This technique offers a path to extremely
power-efficient OMM units.

Current implementation of MRR-based PICs for ON–OFF

switching (two-state) applications normally features a
pitch size of 100 μm [29]. Hundreds of MRR ele-
ments have been monolithically integrated on a sin-
gle chip, within an area of a few tens of millimeter
squares [29]. The temperature-insensitive MRRs could
potentially reduce the footprint of the OMM significantly,
even for high-resolution operations, as the pitch limitation
due to thermal restrictions is offset. The size will then
be merely limited by the pitch size of electrical bonding
pads, which can be as small as 25–40 μm [114], thus
enabling the footprint shrink of the OMM by over an order
of magnitude.

4) Nonlinear Activation Function: To implement a full
neural network, as aforementioned, a nonlinear activa-
tion function is required in addition to the linear OMM
units. For a nonlinear activation function implemented in
optics, there are generally two types, implemented using:
1) electrooptic nonlinearity and 2) all-optical nonlinear-
ity. The former type requires first converting an optically
weighted signal into the electrical domain and then trig-
gering the nonlinear activation function to have an opti-
cal outcome. Examples include semiconductor excitable
lasers [type C in Fig. 6(c)] [77] and electro-absorption
modulators [115]. This type of solution might impair the
processing speed and cascadability of neural networks due
to the movement of charge carriers and the optical-to-
electrical conversion noise. The latter, all-optical solution
holds greater promise. The most commonly used optical
nonlinearities are saturable absorption, such as in the use
of monolayer graphene absorbers [116] and two-photon
absorption [117], and bistability in nonlinear photonic
crystals [118] and optical superlattices [119]. The non-
linearity of ring resonators can also be exploited [120].
Currently, the optical nonlinear activation function is an
important research topic which could be used in order
to enhance the throughput of an optical neural network,
thus lowering the system latency and power consump-
tion. However, the monolithic integration of these non-
linear units with OMMs, the efficiency of the nonlinear
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modulation, and the operational speed and accuracy are
open challenges [121].

While the development of an all-optical on-chip neural
network represents a longer term goal, implementing the
nonlinear activation function electrically is a promising
alternative in the short term. The very recent work of
building optical neural networks based on photoelectric
multiplication also proposes to implement the nonlinear
activation function in the electrical domain [122]. Very
low power (femtojoule-scale) consumption is feasible with
well-designed analog electronics.

V. C O N C L U S I O N
Larger DNNs, in general, have higher expressiveness as a
classification function. Theoretical analysis has also veri-
fied that both the depth and the width of neural networks
contribute to their expressive power. It has been shown
that complex functions expressed by DNNs cannot be
approximated by any shallow neural network whose size
is no more than an exponential bound [123], and also
that certain classes of wide neural networks cannot be
realized by any narrow network whose depth is no more
than a polynomial bound [124]. These observations lead
to the demand for the capability to efficiently process very
deep or wide neural networks. The codesign approach
addresses scalability (in terms of the size of neural net-
works) in two aspects: 1) the capability to decompose a
large matrix–vector multiplication into smaller instances
which significantly relaxes the requirement of photonic
integrations and 2) a path to construct ultra-large scale
OMMs using MRRs in the wavelength domain. This
reduces the system decomposition complexity and, in turn,
enables the handling of sophisticated concepts for future
applications. In addition, the approach to manage the
computation precision with nonnegative values can be
utilized in any photonic systems, in order to reduce the
implementation complexity and thus cost. This also facili-
tates the operation of different facets of validity in practical
terms for OMMs as hardware accelerators in deep-learning
applications.

In summary, efficient scaling of deep learning will
require dedicated hardware accelerators. We have pre-
sented an overview of silicon photonics applications for
deep learning and have analyzed opportunities for scalable
codesigned multiwavelength microring silicon photonic
architectures.

A P P E N D I X A
Theorem 1: Let �,� ⊂ R such that {−1, 0, 1} ∈ � and

� ⊂ [0, +∞]. Then there exists no function f : � → �

satisfying the following:

For any p1, p2∈�, f (p1) + f (p2) = f (p1 + p2) (A1)

For any p1, p2∈�, f (p1) · f (p2) = f (p1·p2). (A2)

This also holds if � ⊂ (−∞, 0).

Proof: If such a function f exists, it must satisfy the
following:

f (1) + f (0) = f (1) (A3)

f (1) · f (−1) = f (−1) (A4)

f (1) + f (−1) = f (0). (A5)

Equation (A3) implies that f (0) = 0, and (A4) implies that
f (1) = 1. Then, (A5) can be rewritten as

1 + f (−1) = 0. (A6)

Thus, f (−1) = −1 but this value is not in the range � of
function f . Therefore, such an f does not exist.

A P P E N D I X B
As discussed in Section IV-A1a, the maximum sensitivity of
the weight in (11) occurs when

tan
φmax

2
=

�
r(a)

s(a)
(A7)

where

r(a) = 3a2 + 2−
	

9a4 + 4a2 + 4 (A8)

and

s(a) = a2 − 2+
	

9a4 + 4a2 + 4. (A9)

Therefore

sin φmax = 2
√

r(a)s(a)

r(a) + s(a)
= 1

2a2

	
r(a)s(a) (A10)

cos φmax = s(a) − r(a)

s(a) + r(a)
= 1−r(a)

2a2 . (A11)

Plugging these back into the sensitivity function of (12)
and assuming T0 ≈ 0 immediately yields

�
�
��
∂μ

∂φ

�
�
��
max

= 1 + a2

a2

4
√

r(a)s(a)

(r(a) + 4)2 (A12)

Assuming that a2 � 1, we see that

1 + a2

a2 ≈ 1 (A13)

r(a) ≈ 3a2 + 2 − 3a2
�

1 + 2

9a2

�
= 4

3
(A14)

s(a) ≈ a2 − 2 + 3a2
�

1 + 2

9a2

�
≈ 4a2. (A15)

Therefore
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≈ 9

16
√

3
a. (A16)
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