
TAGO: Rethinking Routing Design in High
Performance Reconfigurable Networks

Min Yee Teh∗, Yu-Han Hung∗, George Michelogiannakis†, Shijia Yan∗,
Madeleine Glick∗, John Shalf† and Keren Bergman∗
∗ Columbia University, † Lawrence Berkeley National Lab
Email: ∗mt3126@columbia.edu, †[mihelog, jshalf]@lbl.gov

Abstract—Many reconfigurable network topologies have been
proposed in the past. However, efficient routing on top of these
flexible interconnects still presents a challenge. In this work, we
reevaluate key principles that have guided the designs of many
routing protocols on static networks, and see how well those
principles apply on reconfigurable network topologies. Based
on a theoretical analysis of key properties that routing in a
reconfigurable network should satisfy to maximize performance,
we propose a topology-aware, globally-direct oblivious (TAGO)
routing protocol for reconfigurable topologies. Our proposed
routing protocol is simple in design and yet, when deployed in
conjunction with a reconfigurable network topology, improves
throughput by up to 2.2× compared to established routing
protocols and even comes within 10% of the throughput of
impractical adaptive routing that has instant global congestion
information.

Index Terms—Adaptive Routing, Oblivious Routing, Reconfig-
urable Networks, Bandwidth Steering

I. INTRODUCTION

Recent trends in high performance computing (HPC) sys-
tems indicate a steady decline in the bytes-per-FLOP ratio for
interconnects because the available network bandwidth does
not keep pace with the massive increases in computational
performance over the past decade [1, 2]. This trend is ex-
pected to continue. Over-provisioning HPC system networks
to reverse this trend will be increasingly impractical because
network costs are becoming a larger fraction of overall system
cost [3, 4]. The continued drive towards Exascale computing
will further increase computational capacity and requirements
for low latency and low power networking [5], and may rapidly
shift the bottleneck in many applications from computation to
communication.

This challenge is further complicated by many HPC and
cloud applications that exhibit non-uniform communication
patterns, due to their inherent algorithm structure or system
effects such as fragmentation [4, 6, 7]. These non-uniform
communication patterns create “hotspots” of congestion due
to uneven network utilization. This has motivated research on
task placement [8, 9] and adaptive routing [10]–[13]. Over the
last decade, many different reconfigurable network architec-
tures have been proposed as an alternative method to han-
dle skewed traffic loads [4, 6, 14]–[23]. These reconfigurable
architectures aim to dynamically alter the network topology
to better match expected traffic and in many cases rely on
an enabling technology such as silicon photonics to make
topology reconfiguration more efficient.

Past works have shown reconfigurable networks to improve
the efficiency and flexibility of resource disaggregation [24],
which is a promising trend for future HPC to preserve perfor-
mance scaling for key scientific applications including deep
learning [25, 26]. Without efficient reconfigurable networks,
resource disaggregation may likely be impractical [27, 28].
Moreover, there are numerous indicators that optics are playing
an increasingly major role in modern networks, given the ever
growing list of optical component suppliers [29].

Therefore, continued success in network performance scal-
ing and resource disaggregation in future HPC is contingent
on making the best use of reconfigurable topologies. However,
these reconfigurable topologies typically do not investigate
routing algorithms in detail but instead default to deterministic
minimal routing to take advantage of reconfigured paths. Thus,
the impact of routing algorithms that are popular in static,
uniformly-connected networks is largely unexplored for re-
configurable topologies. While the high-level goals of routing
are similar across all topologies (i.e., high throughput, low hop
count, etc), there is currently little understanding of the key
properties a routing algorithm must satisfy to systematically
achieve these goals in a reconfigurable topology.

In this work, we re-evaluate a number of common design
principles for effective routing algorithms and see how well
they apply in reconfigurable network settings. To our knowl-
edge, this is the first focused study on routing for reconfig-
urable networks. We approach this using a theory-driven flow-
level analysis from which we derive several key properties
that high-performance routing schemes must satisfy when
applied to reconfigurable networks. Results from our flow-
level analysis indicate that under well-configured topologies
(i.e. topologies that are fitted to the traffic load with a low
mismatch), indirect routing through intermediate endpoints is
not a requirement to maximize network throughput. At the
same time, we also find that minimal-routing schemes, when
naively applied, will result in increased congestion due to poor
load balancing.

Based on these insights, we propose a novel routing
protocol that satisfies all desirable properties of reconfig-
urable network routing protocols called Topology-Aware
Globally-direct Oblivious (TAGO) routing. TAGO routing is
a lightweight oblivious algorithm, as routers do not need to
be aware of path congestion to make routing decisions. TAGO
is also globally-direct, meaning that packets traverse at most

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/31.00 ©2020 IEEE

one global link; this minimizes packet hop count and traffic
interference in the inter-group links. In addition, TAGO routing
is topology-aware, allowing it to load-balance the network
effectively for the current network topology.

We evaluate the performance of TAGO routing against
several routing schemes using system scale simulations driven
by real HPC applications and datacenter traces. Our eval-
uations show that TAGO performs close to that of a Uni-
versal Globally-Adaptive Load balance (UGAL) with global
knowledge of congestion – a theoretical ideal UGAL that
is impractical to implement. Simulation results indicate that
indirect routing alternatives like Valiant load balance (VLB),
or even adaptive ones like UGAL-L do not perform well in
reconfigurable networks.

In summary, the key contributions of this work are:

1. We reevaluate the important desirable properties of rout-
ing schemes on reconfigurable networks based on results
from rigorous theoretical analysis.

2. We propose a novel routing protocol called TAGO that
achieves high performance in reconfigurable networks.

3. We evaluate the performance of TAGO and other common
routing schemes with extensive simulations driven by
realistic HPC and data center application traces.

4. We implement TAGO on a small-scale testbed and vali-
date the performance experimentally.

II. BACKGROUND AND RELATED WORK

A. Adaptive Routing

Adaptive routing algorithms aim to load balance an oth-
erwise unbalanced (skewed) traffic pattern [30]. Unbalanced
traffic can be caused by imbalances in the application’s non-
uniform communication pattern, or by other system factors
such as fragmentation where tasks of the same application are
scattered across the system non-uniformly [4, 6, 7, 31, 32].

Some popular adaptive routing algorithms use indirect rout-
ing, where traffic can take non-minimal paths by selecting a
random intermediate destination. Valiant routing (VLB) [33]
does this for every packet, hence transforming any traffic
pattern into uniform random. Universal Globally-Aware Load
balancing (UGAL) decides on a per-packet basis by estimating
congestion based on buffer occupancy at neighboring routers.
More recent work has proposed techniques to measure con-
gestion that is farther downstream [11]. Other adaptive routing
schemes are either tied to specific topologies [10, 12, 34],
or make adaptive decisions at every hop but are restricted
to minimal (direct) paths, which limits their load balancing
capability [13, 30].

B. Reconfigurable Networks

Even though indirect routing can dramatically improve load
balance, it also increases packet hop count and consumes
additional network capacity [35]. Further, indirect routing
may cause congestion in other groups through job interfer-
ence [36]. This motivates reconfigurable topologies that can

dynamically allocate more links directly between frequently-
communicating blocks, so that more traffic may traverse direct
paths without risking link congestion.

One of the pioneering works in reconfigurable networks
using optical circuit switches (OCSs) is HFAST [20]. Several
subsequent works have also come out of the data center
community [18, 19, 22, 23, 37]. The core idea is to exploit the
high bandwidth of broadband optical switches, but the high
switching latency precludes fine-grained optical switching.
Another approach uses electrical four- or six-port converter
switches to configure the network as either a hierarchical
fat tree or a flat random graph [38]. Meanwhile, many prior
works would take a dual-plane approach to separate the per-
sistent “elephant” flows which traverse the optical plane from
the shorter “mice” flows which traverse the fixed electrical
plane [39]–[43].

More recently in HPC, researchers have similarly extended
the idea with Flexfly [6], on the Fat Tree (folded Clos) [4],
and on other topologies [44]. In addition, Flexspander [21] has
been proposed, which combines the principles of low-diameter
expander networks [45] with reconfigurable networks. Our
work is complementary and can apply to these approaches
to enable lightweight, high-performance routing.

In general, reconfigurable networks would configure their
connectivity based on an expected persistent traffic matrix
pattern. Past work has taken different approaches to allow
applications to communicate their expected traffic matrix. For
example, the MPI topology directives allow applications to di-
rectly communicate their intended communication graph [46]
for controlled job placement [47, 48]. Alternatively, application
traffic can be predicted by monitoring the network and using
neural networks [49, 50], deep learning [51], or other advanced
prediction techniques.

C. Hierarchical Block-Reconfigurable Topologies

In this paper, we base our analysis on the model of block-
reconfigurable network topologies. This means that only the
connectivity between blocks (groups of routers) can be ad-
justed. Packet switches that belong to the same block are stati-
cally wired. Fig. 1 shows a model network topology considered
in this work. This model fits many popular HPC topologies
such as the Dragonfly topology with one or more links be-
tween groups that is similar to Cray’s Aries interconnect [52],
Dragonfly+ [53], and the Flexfly [6] topology. In the case of
Flexfly, each block translates into a Flexfly group that connects
packet switches in a full-clique. Similarly, Flexspander [21]
is a block-reconfigurable topology with expander graphs for
block topologies. Our model can fit any topology that can
reconfigure channels between collections of routers, if we
define those routers as a block. For instance, in a fat tree,
a natural unit to be considered a block would be a pod (i.e., a
sub-tree), whereas in a HyperX [34], a natural block unit can
be routers that share a particular dimension.

Figure 1: Model of an example reconfigurable network with
m blocks. Each block wires packet switches statically in a
manner defined by the intra-block topology. All blocks are
interconnected in a reconfigurable manner via a layer of optical
circuit switches (OCS). Changing the switch configurations of
the OCS’s realizes a specific inter-block logical topology.

D. Routing on Reconfigurable Networks

The majority of prior works for routing on reconfigurable
topologies focuses on seggregated routing where fixed and
reconfigurable network components are disjoint [54, 55]. A
few works have also examined the synergy between routing
and reconfiguration in a non-seggregated fashion. Unfortu-
nately, optimal non-segregated routing on is NP-hard. Though
some polynomial time heuristics can be employed, their op-
timality scales inversely with complexity. This makes close-
to-optimal yet efficient non-segregated routing in large-scale
system impractical [55]–[57]. Other related work highlights
this by limiting reconfigurability to make designing efficient
adaptive [58] or oblivious [59] routing tractable.

Our work decouples network reconfiguration from the rout-
ing algorithm by establishing three key properties for high-
quality routing that we then implement in a simple and
efficient routing algorithm.

E. Routing Challenges for Reconfigurable Networks

Routing adaptively in a reconfigurable network has to
consider the topology’s configuration. Otherwise, it is prone
to poor load balance. For instance, Valiant routing [33] picks
an intermediate destination with an equal probability for each
packet. This causes an equal number of packets to each
destination, but in a reconfigurable topology the amount of
bandwidth available to each destination can be vastly different.
This has motivated tailored Valiant routing in a SlimFly [33],
as well as topology-specific adaptive routing algorithms such
as topology-custom UGAL (T-UGAL) [10] and similarly
OmniWAR and DimWAR that take advantage of structural
regularities in a HyperX [34]. However, a general solution for
any reconfigurable topology does not exist.

On the other hand, minimal-path adaptive routing algo-
rithms are not known to achieve good load-balance due to
their restricted path options except in a limited set of topolo-
gies [12, 13, 30]. Adaptive routing in a random graph has been
shown to be challenging in its general form [60], as the lack of

a regular structure in the network topology introduces tremen-
dous complexity to the routing algorithm. This means that even
the best state-of-the-art adaptive routing will likely yield sub-
optimal performance when applied directly to reconfigurable
networks.

III. DETAILED MOTIVATION ANALYSIS

Our goal in this work is to design routing protocols well-
suited to reconfigurable networks, built with principles derived
from strong theoretical results and thoroughly evaluated with
realistic, system-scale simulations and hardware demonstra-
tions. To do so, we need to rigorously answer the following
questions:

1) Can direct routing perform well under a wide variety of
traffic-topology mismatch? [Section III-C]

2) Can minimal routing work sufficiently well on a recon-
figurable network? [Section III-D]

To answer these questions, we need to investigate if indirect
adaptive routing can bring appreciable performance benefits
to reconfigurable networks under a variety of skewed traffic
loads. We introduce the idea of traffic skew in Section III-B.

A. Definitions and Mathematical Foundations

In this section we introduce the terminology used through-
out this work. Global links refer to inter-block links that
connect routers from different blocks. Direct routing allows
packets to hop over at most one global link before reaching
their destination. Indirect routing requires packets to be de-
flected to an intermediate block before being routed to the
destination block. Minimal routing refers to routing protocols
like MIN or ECMP that exclusively utilize shortest paths. Note
that direct routing does not imply minimal routing, as packets
that traverse only one inter-block link may still traverse non-
minimal paths within a block.

Next, we briefly introduce some essential mathematical
concepts. Table. I tabulates all the essential mathematical
symbols used in this work. A network graph, G = (V,E) has
link capacities c(u, v) for every (u, v) ∈ E. A traffic matrix,
T = [tij] ∈ Rn×n, for a network graph, G = (V,E), such that
|V | = n, is a matrix such that all diagonal entries are zero.
tij denotes the traffic sent from node i to node j. Without
any loss of generality, we assume that the traffic matrix is

`1-normalized, such that
n∑

i=1

n∑
j=1

tij = 1. We take the `1-

normalization of the traffic matrix to obtain the communication
probability matrix, where each off-diagonal entry represents
the probability of communication between two nodes.

The throughput, α, of routing traffic matrix, T , over a given
topology G, is defined as a the maximum α for which αT has a
feasible multi-commodity flow solution in G, with link capac-
ity constraints and flow conservation constraints satisfied. This
can be formulated as a maximum concurrent flow problem
(MCFP) and solved with a linear program [61, 62] in polyno-
mial time. We solve this linear program using Gurobi [63].

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Topology Skew, δt

1
.0

0
.9

0
.8

0
.7

0
.6

0
.5

0
.4

0
.3

0
.2

0
.1

0
.0

T
ra

ffi
c

S
ke

w
,
δ c

0.1 0.6 0.76 0.84 0.89 0.92 0.95 0.97 0.98 0.99 1

0.11 0.66 0.84 0.94 0.99 1 1.1 1.1 1.1 1.1 0

0.12 0.74 0.95 1.1 1.1 1.2 1.2 1.2 1.2 0.55 0

0.14 0.85 1.1 1.2 1.3 1.3 1.3 1.4 0.81 0.37 0

0.17 0.99 1.3 1.4 1.5 1.5 1.6 1 0.61 0.28 0

0.2 1.2 1.5 1.7 1.8 1.8 1.3 0.82 0.49 0.22 0

0.25 1.5 1.9 2.1 2.2 1.5 1 0.69 0.41 0.18 0

0.33 1.9 2.5 2.8 1.9 1.3 0.9 0.59 0.35 0.16 0

0.48 2.9 3.7 2.4 1.7 1.1 0.79 0.52 0.31 0.14 0

0.92 5.5 3.3 2.1 1.5 1 0.7 0.46 0.27 0.12 0

11 5 2.9 1.9 1.3 0.92 0.63 0.41 0.24 0.11 0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(a) Direct routes

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Topology Skew, δt

1
.0

0
.9

0
.8

0
.7

0
.6

0
.5

0
.4

0
.3

0
.2

0
.1

0
.0

T
ra

ffi
c

S
ke

w
,
δ c

1 1 1 1 1 1 1 1 1 1 1

1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0

1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 0.55 0

1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 0.81 0.37 0

1.6 1.6 1.6 1.6 1.6 1.6 1.6 1 0.61 0.28 0

1.8 1.8 1.8 1.8 1.8 1.8 1.3 0.82 0.49 0.22 0

2.2 2.2 2.2 2.2 2.2 1.5 1 0.69 0.41 0.18 0

2.8 2.8 2.8 2.8 1.9 1.3 0.9 0.59 0.35 0.16 0

3.7 3.7 3.7 2.4 1.7 1.1 0.79 0.52 0.31 0.14 0

5.5 5.5 3.3 2.1 1.5 1 0.7 0.46 0.27 0.12 0

11 5 2.9 1.9 1.3 0.92 0.63 0.41 0.24 0.11 0
0

1

2

3

4

5

(b) Direct + Indirect routes

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Topology Skew, δt

1
.0

0
.9

0
.8

0
.7

0
.6

0
.5

0
.4

0
.3

0
.2

0
.1

0
.0

T
ra

ffi
c

S
ke

w
,
δ c

90 40 24 15 10 7 5 3 2 0 0

89 39 23 14 9 6 4 2 1 0 0

89 39 22 14 8 5 3 1 0 0 0

89 38 21 12 7 4 1 0 0 0 0

89 37 19 11 5 2 0 0 0 0 0

89 35 17 8 3 0 0 0 0 0 0

88 33 14 5 0 0 0 0 0 0 0

88 29 9 0 0 0 0 0 0 0 0

86 21 0 0 0 0 0 0 0 0 0

83 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0

10

20

30

40

50

60

70

80

(c) Percentage throughput improvement (%)

Figure 2: Global (inter-block) throughput as a function of different traffic and topology normalized skews, shown as heatmaps.
(a) shows the throughput when routing considers only direct global paths. (b) shows the throughput when routing considers all
paths, direct and indirect. (c) shows the percentage of throughput improvement when considering all paths vs. when considering
only direct paths. Guide to heatmaps (a) and (b): each entry e(δt, δc) indicates the throughput of a traffic matrix (TM) with a
normalized skew δc in a topology with normalized skew δt (see Section III-C for definition). Warmer colors represent larger
values.

Notation Description
G = (V,E) Network graph. V is the set of all network nodes

and E is the set of all edges. (Section III)
T = [tij] ∈
Rn×n

Traffic matrix (TM) of a network with n nodes;
tij = 0 for all i = j. (Section III)

A = [aij] ∈
Rn×n

Adversarial one-hot TM, with a single entry
aij = 1 and 0 for other entries. (Section III)

U = [uij] ∈
Rn×n

Uniform TM, with uij = 1
n(n−1)

for i 6= j and
0 along the diagonal. (Section III)

σ(T) Absolute skew of traffic matrix T . (Section III)
δc, δt Normalized skew of traffic matrix and of topol-

ogy, respectively. (Section III)
Si Set of all switches in block i. (Section IV)
ωj(s) Weight of routing to block j via boundary

switch s. (Section IV)
lj(s) Number of inter-block (global) links connecting

boundary switch s to block j. (Section IV)
db Diameter of intra-block topology. (Section IV)

Table I: Table of mathematical notations, their descriptions,
and where they appear in this paper.

B. Quantifying Traffic Skew

Intuitively, a skewed traffic matrix is one that is highly non-
uniform, with some entries showing much more traffic than
others. Based on this intuition, our measure of skew is the
Kullback-Leibler (KL) divergence1 between a traffic matrix T
with respect to a uniform matrix.

Theorem 1. Given the uniform traffic matrix, U = [uij] ∈
Rn×n, the maximum attainable skew of a traffic matrix T
with n2 entries is log n(n− 1).

1The Kullback-Leibler divergence is often interpreted as the “distance”
between two probability distributions [64]. The larger the KL-divergence, the
more dissimilar two probability distributions are.

Proof. By definition, the skew of T , σ(T) is:

σ(T) =
∑

1≤i,j≤n

tij log(
tij
uij

)

=
∑

1≤i,j≤n

tij log tij + log n(n− 1)

≤ log n(n− 1)

(1)

Theorem 2. The one-hot traffic matrix, A, has the maximum
skew of log n(n− 1).

Proof. The maximum skew for any traffic matrix (TM), T , is
n∑

i=1

n∑
j=1

tij log tij = 0. The only TM that achieves this is one

with a single off-diagonal entry of 1 that maps the destination
of each source to a different block, and 0 for all other entries
(i.e. the one-hot matrix). The one-hot matrix is the most
adversarial traffic to route for a block-reconfigurable topology
because it maximizes the use of inter-block bandwidth.

Given these results, we can generate traffic matrices with
varying degrees of skew using the following equation:

T (δc) = δc A + (1− δc) U (2)

Where T (δc) denotes the traffic matrix with skew δc, U
denotes the uniform traffic matrix, A denotes an adversarial
one-hot traffic matrix, and δc ∈ [0, 1] denotes the normalized
traffic skew, which acts as a linear knob that controls the
relative portions of uniform and adversarial traffic in T . Eqn.
2 allows us to generate traffic matrices with varying degrees
of skew using just a single linear parameter.

Naturally, the definition for traffic skew can also be extended
to describe normalized topology skew, δt. Let X(T) = [xij] ∈
Rn×n be the optimal (inter-block) topology with n blocks,
configured for traffic matrix, T . The normalized topology
skew, δt describes the normalized traffic skew of T for which
the topology is optimized.

C. Is Direct Routing Robust Enough?

In situations where significant uncertainty in traffic predic-
tion exists, considering indirect paths in routing still offers a
richer set of routes for load-balancing, as shown in [65]. To
this end, we study how a variable traffic-topology mistmatch
affects throughput performance of reconfigurable topologies
when routing considers only direct paths compared to when
routing considers all (direct and indirect) paths.

Each block is represented as a graph vertex, thus abstracting
away the intricacies of the intra-block topology. In this exper-
iment, we assume the network has 15 nodes (blocks). Each
node has one unit of ingress and egress link capacity. A static
uniform topology would thus have uniform capacity connect-
ing every node pair, while the capacity between node pairs is
made variable in a reconfigurable topology. To compute the
throughput of a traffic matrix in a reconfigurable topology, we
simply make the topology itself an optimization variable in
the MCFP formulation. Details are omitted for brevity. Direct
routing requires traffic to traverse a maximum of one inter-
block link, while for indirect routing that becomes two inter-
block links.

Fig. 2 shows the throughput performance of a 15-block
reconfigurable topology under direct-only and direct + indirect
(i.e., all available paths) routing schemes. For each heatmap,
the x axis shows the normalized topology skew δt. The
normalized topology skew denotes the skew of the traffic
matrix (TM) used for topology-optimization. The y-axis shows
the normalized traffic skew δc of the actual traffic matrix (TM)
that ends up loading the network. The absolute difference
between δc and δt can be interpreted as the traffic-topology
mismatch.

For both routing schemes, the highest attainable throughput
for every traffic skew, δc, is achieved when δc = δt (i.e. under
zero traffic-topology mismatch). This is unsurprising, as when
δc = δt indicates zero traffic-topology mismatch, which means
that the configured topology is a perfect fit for the actual traffic
matrix. Under these conditions, considering indirect paths in
addition to direct paths when routing brings no appreciable
throughput improvements. As the difference between δc and
δt becomes greater, throughput steadily deteriorates. However,
the throughput drop due to the traffic-topology mismatch is
less severe when routing uses indirect paths. In practical
terms, this means that when traffic prediction contains high
levels of uncertainty, the topology may not be configured
optimally, thus considering indirect paths in routing could
improve throughput. As traffic is increasingly skewed, the
maximum attainable throughput decreases, even when δc = δt.
This is because as more traffic comes from a specific pair of
nodes, the throughput becomes limited by the source node’s
total egress bandwidth, which is a constant is our experimental.

That said, the most important insight of Fig. 2(c) is that the
improvements brought about by indirect routing diminish as
the topology becomes more skewed and as the topology fits
the traffic better (the traffic-topology mismatch reduces). For
instance, while indirect routing can improve throughput (with

Figure 3: A scenario where minimal routing falls short. If (path
1 + path 4) has shorter path length than those of (path 2 +
path 5) and (path 3 + path 6), then all traffic between Ssrc

and Sdst will be routed on link 1 under minimal routing, while
link 2 and 3 will be ignored.

respect to direct routing) by as much as 90% in a uniform
topology (δt = 0), it can only improve throughput by no more
than 7% in a topology with δt = 0.5. This means that by
reconfiguring the topology to better fit an expected TM, we
are also diminishing the impact of indirect routing. In many
cases, the additional complexity required to implement indirect
routing may even outweigh potential benefits.

We recognize that because our setup treats each block as
a network node, the effects arising from intra-block routing
on throughput, such as inter-group interference, are neglected.
This effect, however, will likely be insignificant in groups with
full connectivity and sufficient intra-group bandwidth. Further,
these experiments assume that the topology is infinitesimally-
reconfigurable2, which means that the number of links between
block pairs can take on fractional values.

D. Naive Minimal Routing Falls Short

Even though indirect routing may not necessarily improve
throughput in low traffic-topology-mismatch conditions, de-
faulting to shortest-path routing can also result in poor load-
balancing. This is because in block-reconfigurable topology,
there may be more direct paths between blocks that are
expected to communicate more intensively. However, those
paths may not appear to be the same length from the viewpoint
of a traffic source, depending on the intra-group topology.
In that case, minimal routing will only use the shortest
paths, rather than balancing traffic across all paths that the
reconfigurable topology has provided. This defeats the purpose
of reconfiguring. An example is shown in Fig. 3.

2This assumption is made to reduce the problem’s complexity from expo-
nential to polynomial.

IV. TAGO: OBLIVIOUS ROUTING FOR RECONFIGURABLE
NETWORKS

The analysis in Section III shows that when there is
little traffic–topology mismatch, oblivious direct routing can
achieve maximum throughput without relying on indirect
paths. Based on these observations, we surmise that a good
routing solution for reconfigurable networks must satisfy the
following properties:
• Property 1: Primarily utilize direct global paths.
• Property 2: Balance traffic among global channels.
• Property 3: Utilize intra-block path diversity.
First, to fully take advantage of the reconfiguration capabil-

ity of a reconfigurable topology, the routing protocol should
preferentially route traffic via direct channels that are the result
of configuration such as to serve more intensive communi-
cation between certain source–destination pairs. Second, the
routing protocol must effectively distribute the traffic evenly
among global channels; this is to minimize overwhelming any
particular global channel. Third, the routing protocol should
still utilize path diversity within a block to alleviate bottle-
necks. Many hierarchical topologies like the Fat Tree [66],
Dragonfly, or Dragonfly+ [53] are often oversubscribed at the
core (inter-group) level and possess much higher bisection
bandwidth closer to the network’s edge than at its core. The
routing protocol must therefore take this into consideration
and fully-utilize intra-group path diversity for load-balancing.
Table II summarizes qualitatively the desired properties that
are met by different routing protocols.

MIN routes packets exclusively along a single shortest path,
therefore it fails to load balance the global links. ECMP
splits traffic between multiple short paths, and thus can better
load-balance the global links than MIN. Meanwhile, VLB
relies exclusively on indirect global links, making it a poor
fit for reconfigurable networks. Both UGAL and PAR may
conditionally fulfill Property 1. When network is uncongested,
both UGAL and PAR resorts to direct routing is low. As
congestion increases, however, both UGAL and PAR will start
resorting to indirect routing. In the following, we propose a
routing protocol for reconfigurable networks called TAGO that
satisfies all of the aforementioned properties.

Protocol Property 1 Property 2 Property 3
MIN 3 7 7

ECMP 3 7 3
VLB 7 7 7

UGAL [3 7
PAR [11] [3 7

TAGO 3 3 3

Table II: Summary of the properties of different routing
protocols. 3 indicates a quality is satisfied, 7 indicates a
quality is strictly not satisfied, while [indicates a quality is
conditionally-satisfied, depending on specific topology classes.

A. Intra-block Routing

When routing packets between endpoints within the same
block, TAGO uses ECMP routing. This ensures that the

3

2
Source Block

Destination Block

 Route minimally to dest
 with multi-path

 If at boundary switch,
 route to destination block

1
 Randomly pick a boundary
 switch if

P PP

Some Other Block

Figure 4: An illustration of TAGO’s inter-block (global) rout-
ing logic. The source router, Ssrc, decides on a per-packet
basis which boundary switch is used for inter-block traversal.
The packet is then routed minimally to boundary switch,
before being routed minimally to its destination.

load is equally shared among multiple shortest paths. Most
commercial packet switches in the market today support
ECMP. To compute multiple shortest paths between network
switches, one can utilize variants of the Floyd-Washall [67]
or Dijkstra’s algorithms. In our model topology, the intra-
block topology does not change past deployment. Therefore,
the forwarding table entries to routers in the same block can be
programmed once prior to deployment and then kept constant.
Updating these entries is only needed upon physical rewiring
or a hardware failure. This effectively reduces the number of
forwarding table entries required to be reprogrammed every
time the topology is reconfigured, thus reducing the topology
reconfiguration overhead considerably.

B. Inter-block Routing

The inter-block routing logic is shown in Fig. 4. The source
router first inspects the block ID of the destination address.
If a packet has an IP address that is outside the current
block, the source router will randomly select a boundary
router to transit to the destination block. The block ID of the
chosen boundary router to be used as a destination ID can be
easily generated using schemes like address-space partitioning,
VLAN, etc. This is similar to other routing schemes like
UGAL and Valiant that need to encode intermediate destina-
tion IDs in packets. In order for TAGO to work, the topology
reconfiguration algorithm needs to ensure that every pair of
blocks is interconnected by at least one link, otherwise, some
topology configurations may have no direct paths between
specific block pairs. Satisfying this requirement, however, can
be easily accomplished by simply adding a constraint in the
topology reconfiguration algorithm to ensure that no fewer
than one link connects every block-pair. After the boundary
switch is selected, its ID is tagged onto the packet header. Any
intermediate switch the packet traverses will simply forward

the packet to the tagged boundary switch using shortest multi-
path routing.

The selection of boundary routers is governed by a set of
weights. Using Fig. 4 as an example, packets from Ssrc should
be twice as likely to be routed via S1 than via S2 or S3,
as it has twice the number of global channels connected to
the destination block. To formalize this idea, the weight for
selecting a boundary switch, s, to transit to a destination block,
j, must be proportional to the number of inter-block channels
connecting boundary switch s to the destination block; we
denote this weight as ωj(s). Let lj(s) be the number of global
channels connecting packet switch s in block i to switch in
block j. Si represents the set of all switches in block i. Then,
ωj(s) can be computed as follows:

ωj(s) =
lj(s)∑

s′∈Si
lj(s′) (3)

Note that while TAGO is a globally-direct routing scheme,
it is non-minimal, in that it may not always route packets to
their destinations via minimal paths. For instance, a source
router that is a boundary router to a destination block may
still send the packet to another boundary router. Even though
this may increase the hop count, we find it a necessary feature
for load-balancing global links (Section III-D).

C. Implementation Details and Analysis

1) Forwarding Table Complexity:
Given a network with m blocks and n switches per block,
TAGO reduces the number of entries in the forwarding table
from O(m× n) to O(m+ n). In our routing scheme, routers
do not require a notion of paths to all other routers, merely
to routers that belong to the same block, and which routers
are boundary switches to which other blocks. So, rather than
creating an entry for every router in the network, each router
simply needs to contain forwarding information for 1) all peer
routers in its block and 2) all other blocks and the boundary
routers that have global links to said blocks. Forwarding
entries to routers in other blocks simply map to a set of
possible boundary routers. m entries are maintained to identify
the boundary routers to every block. This can potentially
bring huge savings in large scale networks. For instance, a
network with 32 blocks and 31 routers per block requires
only at most 63 entries instead of 992 entries. Updating
a smaller forwarding table is faster, thus making topology
reconfiguration also faster.

2) Worst-case Path Stretch:
While intra-block packets are routed minimally, TAGO may
still route inter-block packets non-minimally in order to load-
balance the global channels. For instance, even if the source
router is a boundary router to the destination block, the packet
may still be routed to a different boundary router to even out
global link utilization. The worst-case (endpoint-to-endpoint)
path stretch3 is 2db+2

3 , where db is the diameter of the intra-

3Path stretch refers to the ratio of the path length traversed by a packet to
the path length of the shortest route.

block topology. This is still lower than the worst case stretch of
UGAL and Valiant load balancing, both of which have a worst-
case stretch of db + 2

3 . In a Flexfly network, where db = 1,
the worst-case stretch is 4

3 when using TAGO. Small control
packets that are latency-sensitive may bypass non-minimal
routing by having routers to send these packets exclusively
along minimal paths, perhaps by dedicating a virtual channel
(VC) to those packets.

V. SYSTEM SCALE SIMULATION

Simulator: We use Netbench, which is a discrete event
packet-level simulator [68]. The simulator was developed and
used recently for evaluating expander networks [69]. Our
software is made publicly-available on Github to facilitate
reproducibility [70].
Traffic Patterns: We use a variety of artificially-generated
and realistic trace-based traffic matrices. The synthetic traffic
patterns considered are the adversarial and 27-point stencil.
The adversarial traffic pattern is one where each block com-
municates exclusively with one other neighboring block, which
forces all inter-block traffic to traverse a small subset of global
links. We also use a 27-point stencil traffic pattern for two
reasons: 1) stencil codes are commonly used in many scientific
computing applications, and 2) the high spatial locality due to
the neighbor-intensive communication pattern is challenging
for minimal routing. We also run simulations driven by real
application workloads identified by the Exascale Computing
Project (ECP) [71], namely Nekbone with 1024 MPI ranks
and AMG with 1728 MPI ranks. Traffic traces are obtained
using DUMPI [72]. We mix these applications into the system
to better reflect conditions in a real system which could be
running many applications in tandem at any given time. For
the mixed Nekbone and AMG workloads, we use two types
of task mapping schemes: 1) contiguous mapping, and 2)
randomized mapping. Contiguous mapping prioritizes locality
by placing workers from the same application within the same
block, while randomized mapping places workers at random.
The mapping also ensures that a task is mapped onto at least
1 node of every switch. We also use cloud workload traces
obtained from a Hadoop cluster in one of Facebook’s data
centers [32].
Network Parameters: Each link has 100 Gbps bandwidth,
and 30 ns propagation delay between packet switches. To
prevent injection bandwidths from limiting performance, we
set the injection link bandwidths to 2× that of network links.
Topologies: We use three different network topologies in our
simulations, namely: Dragonfly, Flexfly, and Flexspander. All
topologies used for evaluations are identical in size in terms
of total number of endpoints. The Dragonfly is used to test
the versatility of TAGO in static networks. We then evaluate
different routing schemes on Flexfly and Flexspander networks
to see which routing protocol performs best in reconfigurable
networks.

The simulated Dragonfly instance has 17 blocks (groups),
each containing 32 electronic packet switches (EPS). Every
switch has 4 inter-group links and 15 links for connecting

20 40 60 80 100
0

5

10

Load Level (%)

A
vg

.T
hr

ou
gh

pu
t

(G
bp

s)

Adversarial

20 40 60 80 100
0

2

4

6

8

Load Level (%)

Stencil

20 40 60 80 100
2

3

4

5

Load Level (%)

Mixed (Contig.)

TAGO ECMP MIN VLB UGAL-L UGAL-G

20 40 60 80 100
0

2

4

6

8

Load Level (%)

Mixed (Randomized)

20 40 60 80 100
0

2

4

6

8

Load Level (%)

FB Hadoop

Figure 5: Average throughput performance of routing protocols under different traffic patterns on a Dragonfly topology. Higher
is better.

to endpoints. Each group pair is interconnected by 8 inter-
group (global) links. Modern HPC networks such as the
Aries interconnect in Cray’s XC40 also use multiple links per
group pair. These numbers support a total of 8160 endpoints.
Both Flexfly and Flexspander topologies used in simulations
similarly contain 17 blocks of 32 electronic packet switches
each. Blocks are physically interconnected to a layer of 17-
port optical circuit switches. Changing the optical switch
configurations switches the inter-block topology. EPSes within
the same block are statically-interconnected using electrical
links. The Flexspander intra-block topology is a random graph
with sparse connectivity, as each electronic packet switch only
has 20 links dedicated to intra-group connections.
Routing: We compare TAGO against 5 commonly-used
routing schemes: MIN, ECMP, VLB (Valiant), UGAL-L, and
UGAL-G. MIN routes all traffic along a single shortest path,
while ECMP splits traffic equally among multiple shortest
paths. VLB always deflects every packet to a randomly-chosen
intermediate block before routing to the destination block.
UGAL selects between Valiant (indirect) paths and minimal
(direct) paths based on estimated congestion at the source
switch. UGAL-L uses only local queue information, while
UGAL-G assumes up-to-date global knowledge of congestion.
Having instant global knowledge of congestion is infeasible
in practice, so UGAL-G represents the idealized “oracle”
performance case for UGAL.
Messages and Flows: The injected message (equivalent to
a flow) size of artificial, stencil, and mixed HPC workloads
is between 100 bytes and 20 Megabytes. Flows sizes for the
Facebook (FB) Hadoop traces are extracted from [32].
Metrics: Our performance metrics are average flow (message)
throughput and packet latency. The average flow/message’s
throughput is the number of bits sent per unit time in Gigabits
per second (Gbps), averaged cross all traffic flows.

Packet latency is a round-trip-time (RTT) latency measured
inside the network (i.e., injection queue time is not included).
We also show utilization of global links.

A. Uniform Dragonfly Performance

As shown in Fig. 5, the average throughput of TAGO under
adversarial traffic is comparable to that of UGAL-G at higher

loads but it is lower at lower traffic loads. That is because the
Dragonfly inter-group topology is non-reconfigurable and thus
cannot dynamically adjust its topology to fit estimated inter-
group traffic patterns. Due to the fixed inter-group topology,
indirect adaptive routing can better utilize all inter-group band-
width. However, as the network channels become saturated
at higher traffic loads, the average throughput for all routing
schemes converges. We notice that RTT latencies of UGAL-G
and TAGO are comparable, both of which are considerably
lower than the those of other routing schemes. This trend
persists across all tested traffic patterns with the exception of
adversarial traffic, for the same reason mentioned previously.

B. Flexfly Performance

As shown in Fig. 6, in a Flexfly the average throughput
of TAGO generally matches that of UGAL-G. Under ad-
versarial traffic, however, UGAL-G eventually outperforms
TAGO as load increases. This is due to saturating inter-group
bandwidth similar to a Dragonfly, though this effect is less
pronounced due to Flexfly’s reconfigurability. ECMP generally
outperforms MIN due to its ability to split traffic among a
larger set of multiple shortest paths. ECMP in the Flexfly
also performs better compared to ECMP in the Dragonfly
because of the presence of more short paths in a Flexfly after
topology reconfiguration. That said, TAGO still consistently
outperforms ECMP due to its ability to split traffic equally
among the global inter-block links, while ECMP makes no
conscious effort to load-balance the global links. These results
show that while globally-direct routing can yield, minimal
routing can still cause poor load-balancing.

Fig. 7 shows average and 99.9th percentile (tail) packet
latency. TAGO generally performs close to UGAL-G except
for adversarial traffic and to some degree 27-P stencil traffic.
VLB and UGAL-L exhibit much higher packet latencies than
other routing protocols. VLB extends average path length by
exclusively routing non-minimally. This not only incurs higher
latency, but also causes congestion and interference in the
intermediate block. UGAL-L requires stiff back pressure and is
prone to making sub-optimal global routing decisions based on
inaccurate local queue information. This also causes imperfect
load balance, which hurts throughput as shown previously.

20 40 60 80 100
0

5

10

Load Level (%)

A
vg

.T
hr

ou
gh

pu
t

(G
bp

s)

Adversarial

20 40 60 80 100
0

2

4

6

8

Load Level (%)

Stencil

20 40 60 80 100
2

3

4

5

6

Load Level (%)

Mixed (Contig.)

TAGO ECMP MIN VLB UGAL-L UGAL-G

20 40 60 80 100
0

2

4

6

8

Load Level (%)

Mixed (Randomized)

20 40 60 80 100
0

2

4

6

8

Load Level (%)

FB Hadoop

Figure 6: Average throughput performance of different routing schemes on a Flexfly topology. Higher is better.

20 40 60 80 100
0

10

20

30

A
vg

.L
at

en
cy

(µ
s)

Adversarial

20 40 60 80 100
0

2

4

6

8

10
Stencil

20 40 60 80 100
4

5

6

Mixed (Contig.)

TAGO ECMP MIN VLB UGAL-L UGAL-G

20 40 60 80 100
0

5

10

15

20
Mixed (Randomized)

20 40 60 80 100
0

5

10

15

20
FB Hadoop

20 40 60 80 100
0

20

40

60

Load Level (%)

Ta
il

L
at

en
cy

(µ
s)

20 40 60 80 100
0

20

40

60

Load Level (%)
20 40 60 80 100

0

5

10

15

20

Load Level (%)
20 40 60 80 100

0

20

40

60

Load Level (%)
20 40 60 80 100

0

20

40

60

Load Level (%)

Figure 7: Packet latency of different routing protocols on a Flexfly. Top row shows the average packet latency, while the bottom
row shows the tail (99.9th %-tile) packet latency. Lower is better.

C. Flexspander Performance

Fig. 8 shows throughput results for Flexspander [21]. Like
Flexfly, Flexspander can also dynamically adjust its global
connectivity using bandwidth steering. Unlike Flexfly, how-
ever, each Flexspander block has a random graph topology,
which lacks the clear structure that a full-clique Flexfly
group has. The random intra-block topology creates a more
challenging environment for routing protocols to load-balance.
As shown, TAGO yields throughput performance comparable
to that of UGAL-G. That is because TAGO load balances well
across groups even without using explicit congestion-based
heuristics. TAGO also outperforms shortest-path routing like
ECMP and MIN because it can more effectively spread traffic
among the global links. UGAL-L makes imperfect routing
decisions because it relies on local information. In fact, given
Flexspander’s sparser intra-group connectivity, the average
intra-group hop count increases. The increase in intra-group
hop count makes sensing distant inter-group link congestion

from the source router more challenging. As a result, UGAL-
L does not perform noticeably better than VLB, ECMP, and
MIN. These insights are confirmed by packet latency results
in Fig. 9.

D. Larger Scale Networks

We also verify TAGO’s performance using Flexspander
and Flexfly with 25 blocks of 96 EPSes each, compared
to 17 blocks of 32 EPSes per block used in our previous
experiments. EPSes have radix of 32, and OCSes have radix
of 17. Our simulations show that TAGO’s performance comes
within 5% that of UGAL-G at all traffic loads. We also found
that the trends observed previously are similar in the larger-
scale topology, indicating that TAGO’s performances scale
well with increasing network sizes.

E. Global Link Utilization

The utilization of global links is a good indicator of a
routing scheme’s load-balancing capability. We measure link

20 40 60 80 100
0

2

4

6

8

Load Level (%)

A
vg

.T
hr

ou
gh

pu
t

(G
bp

s)

Adversarial

20 40 60 80 100
0

2

4

6

8

Load Level (%)

Stencil

20 40 60 80 100
0

2

4

6

8

10

Load Level (%)

Mixed (Contig.)

TAGO ECMP MIN VLB UGAL-L UGAL-G

20 40 60 80 100
0

2

4

6

8

Load Level (%)

Mixed (Randomized)

20 40 60 80 100
0

2

4

6

8

Load Level (%)

FB Hadoop

Figure 8: Average throughput for all generated flows of different routing schemes on a Flexspander topology. Higher is better.

20 40 60 80 100
0

20

40

60

A
vg

.L
at

en
cy

(µ
s)

Adversarial

20 40 60 80 100
0

2

4

6

8

10
Stencil

20 40 60 80 100
2

3

4

5

6
Mixed (Contig.)

TAGO ECMP MIN VLB UGAL-L UGAL-G

20 40 60 80 100
0

2

4

6

8

10
Mixed (Randomized)

20 40 60 80 100
0

5

10

15

20
FB Hadoop

20 40 60 80 100
0

20

40

60

80

100

Load Level (%)

Ta
il

L
at

en
cy

(µ
s)

20 40 60 80 100
0

20

40

60

80

Load Level (%)
20 40 60 80 100

0

20

40

60

Load Level (%)
20 40 60 80 100

0

20

40

60

80

Load Level (%)
20 40 60 80 100

0

20

40

60

80

Load Level (%)

Figure 9: Packet latency of different routing protocols on a Flexspander. Top row shows the average packet latency, while the
bottom row shows the tail (99.9th %-tile) packet latency. Lower is better.

utilization as the fraction of time a link spends carrying traffic
over the course of the simulated time frame. A good routing
scheme should evenly utilize all global channels, while still
keeping the utilizations as low as possible.

Fig. 10, shows the distribution of global channel utilization
of routing protocols on Flexfly at a 70% injection load. Results
show that both TAGO and UGAL-G have low spreads in
their link utilization distribution, indicating fairer utilization
of global channels. However, UGAL-G has a higher average
utilization because it uses indirect routing in some cases,
whereas TAGO does not. Avoiding indirect paths reduces
the number of virtual channels (VCs) required to prevent
cyclic dependencies. The outlier points of VLB, ECMP, MIN,
and UGAL-L show that a subset of global links experience
overly high utilization of close to 100%. Links with 100%
become bottlenecks that limit the throughput of all flows
sharing these links. The outliers are especially pronounced in
UGAL-L, even though the majority of links experience lower
utilization than other routing schemes. These uneven, bimodal-

like link utilization distributions are strong indicators of poor
load-balancing, which partly explains UGAL-L’s overall poor
throughput performance.

VI. TESTBED EXPERIMENTS

A. HPC Testbed Description

We built a 16-node HPC testbed arranged as shown in
Fig. 11(a). Our testbed consists of a data plane and a control
plane. The data plane includes two blocks, each consisting of
8 servers and 4 electrical packet switches (EPSs). Each server
is equipped with Intel Xeon Processors E5-2430 with 6 cores,
24 GB RAM, and a 10Gbps Network Interface Card (NIC). As
shown in Fig. 11(a), for intra-block links, each EPS is attached
to two servers and three other EPSs with 10G SFP+ electrical
transceivers. For inter-block links, EPSs separated in the two
blocks are connected using 10G SFP+ optical transceivers in
C-band. Each optical transceiver is connected to a 1-meter long
Single-Mode Fiber (SMF). Such arrangements using silicon-
photonic switches are made to emulate reconfiguration of

0

0.2

0.4

0.6

0.8

1

U
til

iz
at

io
n

Stencil Mixed (random)

TAGO UGAL-G UGAL-L
VLB ECMP MIN

FB Hadoop

Figure 10: Distribution of global channel utilization of routing
protocols in Flexfly under a) stencil, b) AMG + Nekbone
(random placement), and c) FB Hadoop. Injection load is 70%.
The box lines capture the first quartile (Q1), median (Q2), and
third quartile (Q3). Upper and low whiskers mark the Q3 +
interquartile range and Q1 - interquartile range, respectively.
Outliers are marked by “×”.

Figure 11: (a) Network topology used in our HPC testbed. (b)
Photo of the testbed.

inter-block bandwidth. Fig. 11(b) shows a photo of our testbed.
The control plane receives the byte counts that indicate traffic
load in each link from the EPSs and implements TAGO by
programming packet-handling rules into the EPS flow tables
using a Ryu-based SDN controller via OpenFlow.

B. Experimental Results

We run the Gyrokinetic Toroidal Code (GTC) benchmark on
our testbed. GTC is a 3D parallel particle-in-cell code devel-
oped to simulate turbulent transport in fusion plasmas [73]. In
this experiment, we use a skeletonized GTC with its computa-
tional routines removed. MPI is used for the synchronization
of rank assignments over compute nodes. We designed two
different sets of flow tables, one using minimal routing and
one using TAGO. The performance of each routing protocol
is measured by the completion time of the skeletonized GTC
application. We keep the MPI rank assignments identical
across both experiments.

Figs. 12(a) and (b) show the throughput time series of all
inter-block links throughout the application’s execution for a)

Figure 12: Testbed link throughput time series of (a) minimal
routing and (b) TAGO routing for the GTC application.

MIN, and b) TAGO routing, respectively. Fig. 12(a) shows
that all inter-block traffic traverses only the link connecting
EPS 1 and EPS 7 instead of spreading among the three
other available inter-block links. As shown, the inter-block
communication occupies the majority of the full 10 Gbps link
capacity, indicating that traffic is mostly congested on just a
single inter-block link. As a result, application completion time
is 1250 seconds.

We then repeat the previous experiment with a second
flow table obtained using TAGO. Now inter-block traffic is
distributed among all four inter-block links. As shown in Fig,
12(b), all four inter-block links now carry traffic, indicating
that inter-block traffic is load-balanced well across all available
resources. The overall throughput of inter-block communica-
tion becomes around 30 Gbps, which is 3× that of the first
scenario (MIN routing). As a result, application completion
time shows a 66% improvement from 1250 seconds in the
first case to 410 seconds.

In addition to GTC, we also tested TAGO’s performance
using a distributed deep learning (DL) application called
MobileNetV2 [74] on the CIFAR-10 data set. When routing
with MIN, we observed the effective bandwidth of the DL
application to be around 0.1 Gbps, and a runtime of 10643
seconds. When using TAGO, the observed throughput of DL
application is approximately 1 Gbps, which is 10 times higher
than the throughput of MIN. The throughput improvement over
MIN leads to a 90% improvement in runtime from 10643 to
1148 seconds. Table. III summarizes the application speedup
results of our testbed experiments.

Applications Runtime (s) Performance
ImprovementMIN TAGO

GTC 1250 410 66%
MobileNetV2 10643 1148 90%

Table III: Application performances on the testbed.

VII. DISCUSSION

Our results confirm that TAGO meets the three desired
properties introduced in Section IV without requiring global

knowledge, as long as the traffic-topology mismatches is low.
In addition, our results indicate that those three properties
are a good predictor of performance in such topologies. Our
benchmarks contain a mixture of different payload sizes to
reflect realistic network conditions, so minor changes to the
payload sizes are unlikely to make a noticeable difference.

For our experiments, we compare against several popular
practical algorithms as well as UGAL-G, which is commonly
used as an high-performance albeit impractical adaptive rout-
ing algorithm to show a performance upper bound. Without
assuming instantaneous global knowledge of congestion, it is
highly unlikely for other more practical variants of adaptive
routing algorithms to outperform UGAL-G, and by exten-
sion unlikely to be substantially better than TAGO. Such
examples include, but are not limited to, progressive adaptive
routing (PAR) [53] and K-shortest path (KSP) [75], which
has shown promise on expander networks like Xpander and
Jellyfish [45, 69, 76]. In our preliminary studies on KSP, we
found that its performance can be highly sensitive to variations
in the number of paths per switch-pair (i.e. the k value).
Moreover, we found that KSP would at best perform equally
to ECMP, despite the additional complexity required to realize
KSP.

VIII. CONCLUSION AND FUTURE WORK

In this work, we reevaluate the common design principles
for efficient routing in the context of reconfigurable networks.
Using rigorous flow-level analysis, we identify the essential
properties that high-performance routing schemes should sat-
isfy. Based on the identified traits, we propose a novel routing
protocol called TAGO, a lightweight oblivious routing scheme
optimized for reconfigurable network topologies. We then
evaluate the performance of TAGO using extensive simulations
driven by realistic HPC and data center workloads. Finally, we
realize TAGO and validate its performance on a small scale-
experimental testbed.

For future work, we will extending TAGO’s capability by
considering cases when significant traffic-topology mismatch
is high. This is particularly important to make TAGO feasible
for less agile reconfigurable topologies, which may have
far less capability to react to changing traffic patterns over
time. As we have shown in Fig. 2 back in Section III,
incorporating indirect paths in routing may in fact be beneficial
to overall throughput when the traffic-topology mismatch is
high. Another topic for future work is to either limit the
possible network topology configurations so that the routing
algorithm may provide deadlock-free guarantees, or to grant
full freedom to all possible network topology configurations
while equipping the routing algorithm with deadlock-recovery
mechanisms.

ACKNOWLEDGEMENTS

We are grateful to the anonymous reviewers for their
constructive feedback and discussions, which have been in-
strumental in helping us improve the quality of this paper.
This work is partially supported by the ARPA-E ENLITENED

program project under the award DE-AR00000843. Min Yee is
currently supported by the Wei Family Foundation Fellowship.
This work was also supported by the Director, Office of
Science, of the U.S. Department of Energy under Contract
No. DE- AC02-05CH11231.

REFERENCES

[1] (2018, November) The Top500 HPC list. [Online]. Available:
https://www.top500.org/green500/lists/2018/11/

[2] K. Bergman, “Empowering flexible and scalable high performance
architectures with embedded photonics,” in 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), May 2018, p.
378.

[3] G. Georgakoudis, N. Jain, T. Ono, K. Inoue, S. Miwa, and A. Bhatele,
“Evaluating the impact of energy efficient networks on hpc workloads,”
in 2019 IEEE 26th International Conference on High Performance
Computing, Data, and Analytics (HiPC), 2019, pp. 301–310.

[4] G. Michelogiannakis, Y. Shen, M. Y. Teh, X. Meng, B. Aivazi, T. Groves,
J. Shalf, M. Glick, M. Ghobadi, L. Dennison et al., “Bandwidth steering
in HPC using silicon nanophotonics,” in International Conference for
High Performance Computing Networking, Storage, and Analysis (SC),
2019, pp. 1–25.

[5] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technology
challenges,” in Proceedings of the 9th International Conference on High
Performance Computing for Computational Science, ser. VECPAR’10.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 1–25.

[6] K. Wen, P. Samadi, S. Rumley, C. P. Chen, Y. Shen, M. Bahadori,
K. Bergman, and J. Wilke, “Flexfly: Enabling a reconfigurable dragonfly
through silicon photonics,” in High Performance Computing, Network-
ing, Storage and Analysis, SC16: International Conference for, 2016.

[7] F. Redaelli, M. D. Santambrogio, and D. Sciuto, “Task scheduling
with configuration prefetching and anti-fragmentation techniques on
dynamically reconfigurable systems,” in Proceedings of the Conference
on Design, Automation and Test in Europe, 2008.

[8] G. Michelogiannakis, K. Z. Ibrahim, J. Shalf, J. J. Wilke, S. Knight, and
J. P. Kenny, “Aphid: Hierarchical task placement to enable a tapered
fat tree topology for lower power and cost in hpc networks,” in 2017
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), May 2017, pp. 228–237.

[9] E. Jeannot, G. Mercier, and F. Tessier, “Process placement in multicore
clusters:algorithmic issues and practical techniques,” IEEE Transactions
on Parallel and Distributed Systems, vol. 25, no. 4, pp. 993–1002, April
2014.

[10] M. S. Rahman, S. Bhowmik, Y. Ryasnianskiy, X. Yuan, and M. Lang,
“Topology-custom UGAL routing on dragonfly,” in International Con-
ference for High Performance Computing Networking, Storage, and
Analysis (SC), 2019, pp. 1–15.

[11] N. Jiang, J. Kim, and W. J. Dally, “Indirect adaptive routing on
large scale interconnection networks,” in ACM SIGARCH Computer
Architecture News, vol. 37, no. 3. ACM, 2009, pp. 220–231.

[12] N. McDonald, M. Isaev, A. Flores, A. Davis, and J. Kim, “Practical
and efficient incremental adaptive routing for hyperx networks,” in
International Conference for High Performance Computing Networking,
Storage, and Analysis (SC), 2019, pp. 1–13.

[13] P. Geoffray and T. Hoefler, “Adaptive routing strategies for modern
high performance networks,” in 2008 16th IEEE Symposium on High
Performance Interconnects, 2008, pp. 165–172.

[14] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin,
H. Shah, and A. Tanwer, “Firefly: A reconfigurable wireless data center
fabric using free-space optics,” in SIGCOMM, 2014, pp. 319–330.

[15] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni,
G. Ranade, P.-A. Blanche, H. Rastegarfar, M. Glick, and D. Kilper, “Pro-
jector: Agile reconfigurable data center interconnect,” in SIGCOMM,
2016.

[16] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao,
and H. Zheng, “Mirror mirror on the ceiling: Flexible wireless links for
data centers,” in SIGCOMM, 2012.

[17] S. Kandula, J. Padhye, and P. Bahl, “Flyways to de-congest data center
networks,” in Proc. HotNets, 2009.

[18] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng,
M. Kozuch, and M. Ryan, “c-through: Part-time optics in data centers,”
in SIGCOMM, 2011.

[19] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subra-
manya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electri-
cal/optical switch architecture for modular data centers,” in SIGCOMM,
2011.

[20] J. Shalf, S. Kamil, L. Oliker, and D. Skinner, “Analyzing ultra-scale
application communication requirements for a reconfigurable hybrid
interconnect,” in SC’05: Proceedings of the 2005 ACM/IEEE Conference
on Supercomputing. IEEE, 2005, pp. 17–17.

[21] M. Y. Teh, Z. Wu, and K. Bergman, “Flexspander: Augmenting ex-
pander networks in high performance computing and data centers with
optical bandwidth steering,” Journal of Optical Communications and
Networking, Jan 2020.

[22] K. C. Webb, A. C. Snoeren, and K. Yocum, “Topology switching for data
center networks,” in Proceedings of the 11th USENIX Conference on Hot
Topics in Management of Internet, Cloud, and Enterprise Networks and
Services, ser. Hot-ICE’11. USA: USENIX Association, 2011, p. 14.

[23] G. Yuan, R. Proietti, X. Liu, A. Castro, D. Zang, N. Sun, C. Liu,
Z. Cao, and S. J. B. Yoo, “ARON: Application-driven reconfigurable
optical networking for hpc data centers,” in ECOC 2016; 42nd European
Conference on Optical Communication, 2016, pp. 1–3.

[24] B. Abali, R. J. Eickemeyer, H. Franke, C. Li, and M. Taubenblatt,
“Disaggregated and optically interconnected memory: when will it be
cost effective?” CoRR, vol. abs/1503.01416, 2015. [Online]. Available:
http://arxiv.org/abs/1503.01416

[25] M. Bielski, C. Pinto, D. Raho, and R. Pacalet, “Survey on memory
and devices disaggregation solutions for hpc systems,” in 2016 IEEE
Intl Conference on Computational Science and Engineering (CSE) and
IEEE Intl Conference on Embedded and Ubiquitous Computing (EUC)
and 15th Intl Symposium on Distributed Computing and Applications
for Business Engineering (DCABES), 2016, pp. 197–204.

[26] Y. Zhu, W. Yu, B. Jiao, K. Mohror, A. Moody, and F. Chowdhury,
“Efficient user-level storage disaggregation for deep learning,” in IEEE
International Conference on Cluster Computing (CLUSTER), 2019.

[27] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker, “Network requirements for resource
disaggregation,” in OSDI, 2016.

[28] H. Meyer, J. C. Sancho, J. V. Quiroga, F. Zyulkyarov,
D. Roca, and M. Nemirovsky, “Disaggregated comput-
ing. an evaluation of current trends for datacentres,”
Procedia Computer Science”, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050917306968

[29] “Optical networking for adaptive networks,” Enterprise Networking,
May 2019.

[30] W. J. Dally and B. P. Towles, Principles and practices of interconnection
networks. Elsevier, 2004.

[31] G. Bhanot, A. Gara, P. Heidelberger, E. Lawless, J. Sexton, and
R. Walkup, “Optimizing task layout on the blue gene/l supercomputer,”
IBM Journal on Research and Development, vol. 49, March/May 2005.

[32] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in SIGCOMM, 2015.

[33] L. G. Valiant and G. J. Brebner, “Universal schemes for parallel
communication,” in Proceedings of the Thirteenth Annual ACM
Symposium on Theory of Computing, ser. STOC ’81. New York,
NY, USA: Association for Computing Machinery, 1981, p. 263–277.
[Online]. Available: https://doi.org/10.1145/800076.802479

[34] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“Hyperx: topology, routing, and packaging of efficient large-scale net-
works,” in International Conference for High Performance Computing
Networking, Storage, and Analysis (SC), 2009.

[35] W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren, and
G. Porter, “Expanding across time to deliver bandwidth efficiency and
low latency,” in NSDI, 2020, pp. 1–18.

[36] M. Mubarak, P. Carns, J. Jenkins, J. K. Li, N. Jain, S. Snyder,
R. Ross, C. D. Carothers, A. Bhatele, and K.-L. Ma, “Quantifying i/o
and communication traffic interference on dragonfly networks equipped
with burst buffers,” in 2017 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 2017, pp. 204–215.

[37] K.-T. Foerster and S. Schmid, “Survey of reconfigurable data
center networks: Enablers, algorithms, complexity,” SIGACT News,
vol. 50, no. 2, p. 62–79, Jul. 2019. [Online]. Available:
https://doi.org/10.1145/3351452.3351464

[38] Y. Xia, X. S. Sun, S. Dzinamarira, D. Wu, X. S. Huang, and T. S. E.
Ng, “A tale of two topologies: Exploring convertible data center network
architectures with flat-tree,” in SIGCOMM, 2017, pp. 295–308.

[39] H. Eberle and N. Gura, “Separated high-bandwidth and low-latency
communication in the cluster interconnect clint,” in Proceedings of the
IEEE Conference on Supercomputing, 2002.

[40] K. J. Barker, A. Benner, R. Hoare, A. Hoisie, A. K. Jones, D. K.
Kerbyson, D. Li, R. Melhem, R. Rajamony, E. Schenfeld, S. Shao,
C. Stunkel, and P. Walker, “On the feasibility of optical circuit switching
for high performance computing systems,” in SC ’05: Proceedings of the
2005 ACM/IEEE Conference on Supercomputing, Nov 2005, pp. 16–16.

[41] G. Wang, D. G. Andersen, M. Kaminsky, M. Kozuch, T. S. E. Ng,
K. Papagiannaki, M. Glick, and L. B. Mummert, “Your data center is
a router: The case for reconfigurable optical circuit switched paths.” in
HotNets, 2009.

[42] Y. Tang, H. Guo, and J. Wu, “Ocbridge: An efficient topology reconfig-
uration strategy in optical data center network,” in 2018 Optical Fiber
Communications Conference and Exposition (OFC), March 2018, pp.
1–3.

[43] Y. Tarutani, Y. Ohsita, and M. Murata, “Virtual network reconfiguration
for reducing energy consumption in optical data centers,” IEEE/OSA
Journal of Optical Communications and Networking, vol. 6, no. 10, pp.
925–942, Oct 2014.

[44] Z. Zhao, B. Guo, Y. Shang, and S. Huang, “Hierarchical and reconfig-
urable optical/electrical interconnection network for high-performance
computing,” IEEE/OSA Journal of Optical Communications and Net-
working, vol. 12, no. 3, pp. 50–61, 2020.

[45] A. Valadarsky, G. Shahaf, M. Dinitz, and M. Schapira, “Xpander:
Towards optimal-performance datacenters,” in CoNEXT, 2016.

[46] T. Hoefler, R. Rabenseifner, H. Ritzdorf, B. R. de Supinski, R. Thakur,
and L. Jesper, “The scalable process topology interface of MPI 2.2,”
Concurrency and Computation: Practice and Experience, Mar 2011.

[47] A. H. Abdel-Gawad, M. Thottethodi, and A. Bhatele, “Rahtm: Routing
algorithm aware hierarchical task mapping,” in SC ’14: Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, Nov 2014, pp. 325–335.

[48] G. Almási, C. Archer, J. G. Castaños, C. C. Erway, P. Heidelberger,
X. Martorell, J. E. Moreira, K. Pinnow, J. Ratterman, N. Smeds,
B. Steinmacher-burow, W. Gropp, and B. Toonen, “Implementing MPI
on the BlueGene/L Supercomputer,” in Euro-Par 2004 Parallel Pro-
cessing, M. Danelutto, M. Vanneschi, and D. Laforenza, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 833–845.

[49] Y. Li, H. Liu, W. Yang, D. Hu, and W. Xu, “Inter-data-center network
traffic prediction with elephant flows,” in NOMS 2016 - 2016 IEEE/IFIP
Network Operations and Management Symposium, April 2016, pp. 206–
213.

[50] A. Azzouni and G. Pujolle, “Neutm: A neural network-based framework
for traffic matrix prediction in sdn,” in NOMS 2018 - 2018 IEEE/IFIP
Network Operations and Management Symposium, April 2018, pp. 1–5.

[51] L. Nie, D. Jiang, L. Guo, S. Yu, and H. Song, “Traffic matrix prediction
and estimation based on deep learning for data center networks,” in 2016
IEEE Globecom Workshops (GC Wkshps), Dec 2016, pp. 1–6.

[52] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,
T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard, “Cray Cascade: a
scalable HPC system based on a Dragonfly network,” in International
Conference on High Performance Computing, Networking, Storage and
Analysis (SC), 2012.

[53] A. Shpiner, Z. Haramaty, S. Eliad, V. Zdornov, B. Gafni, and E. Zahavi,
“Dragonfly+: Low cost topology for scaling datacenters,” in 2017
IEEE 3rd International Workshop on High-Performance Interconnection
Networks in the Exascale and Big-Data Era (HiPINEB). IEEE, 2017,
pp. 1–8.

[54] Z. Yang, Y. Cui, S. Xiao, X. Wang, M. Li, C. Li, and Y. Liu,
“Achieving efficient routing in reconfigurable dcns,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 3, no. 3, Dec. 2019. [Online]. Available:
https://doi.org/10.1145/3366695

[55] T. Fenz, K. Foerster, S. Schmid, and A. Villedieu, “Efficient non-
segregated routing for reconfigurable demand-aware networks,” in 2019
IFIP Networking Conference (IFIP Networking), 2019, pp. 1–9.

[56] K. Pan, H. Li, W. Liu, Z. Zhu, and B. Zhu, “On the optimal routing for
reconfigurable network architecture,” in 9th International Conference on
Communications and Networking in China, 2014, pp. 154–159.

[57] K.-T. Foerster, M. Pacut, and S. Schmid, “On the complexity of non-
segregated routing in reconfigurable data center architectures,” SIG-
COMM Comput. Commun. Rev., vol. 49, no. 2, p. 2–8, May 2019.

[58] Z. Qian, P. Bogdan, G. Wei, C.-y. Tsui, and R. Marculescu, “A traffic-
aware adaptive routing algorithm on a highly reconfigurable network-

on-chip architecture,” in IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis (CODES+ISSS), Oct
2012.

[59] M. H. Cho, M. Lis, K. S. Shim, M. Kinsy, T. Wen, and S. Devadas,
“Oblivious routing in on-chip bandwidth-adaptive networks,” in 2009
18th International Conference on Parallel Architectures and Compila-
tion Techniques, 2009, pp. 181–190.

[60] P. Basu, A. Bar-Noy, R. Ramanathan, and M. P. Johnson, “Modeling
and analysis of time-varying graphs,” CoRR, vol. abs/1012.0260, 2010.
[Online]. Available: http://arxiv.org/abs/1012.0260

[61] S. A. Jyothi, A. Singla, P. Godfrey, and A. Kolla, “Measuring and under-
standing throughput of network topologies,” in International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC), 2016.

[62] F. Shahrokhi and D. W. Matula, “The maximum concurrent flow
problem,” Journal of the ACM (JACM), vol. 37, no. 2, pp. 318–334,
1990.

[63] L. Gurobi Optimization, “Gurobi optimizer reference manual,” in
”http://www.gurobi.com”, 2019.

[64] O. M. Abusaid and F. M. Salem, “Kullback-leibler divergence min-
imization for competitive learning of self-organizing maps,” in 2017
International Conference on Engineering and Technology (ICET), 2017,
pp. 1–6.

[65] M. Y. Teh, S. Zhao, and K. Bergman, “Metteor: Robust multi-traffic
topology engineering for commercial data center networks,” in arXiv,
2020.

[66] C. E. Leiserson, “Fat-trees: universal networks for hardware-efficient
supercomputing,” IEEE transactions on Computers, vol. 100, no. 10,
pp. 892–901, 1985.

[67] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the
ACM, vol. 5, no. 6, p. 345, 1962.

[68] Netbench, https://github.com/ndal-eth/netbench.
[69] S. Kassing, A. Valadarsky, G. Shahaf, M. Schapira, and A. Singla, “Be-

yond fat-trees without antennae, mirrors, and disco-balls,” in SIGCOMM.
New York, NY, USA: ACM, 2017, pp. 281–294.

[70] M. Y. Teh, “Tago: Software simulator,” Jun 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.3870995

[71] Characterization of the DOE mini-apps. Accessed: 2019-02-16. [Online].
Available: https://portal.nersc.gov/project/CAL/doe-miniapps.htm

[72] H. Adalsteinsson, S. Cranford, D. A. Evensky, J. P. Kenny, J. Mayo,
A. Pinar, and C. L. Janssen, “A simulator for large-scale parallel
computer architectures,” Int. J. Distrib. Syst. Technol., vol. 1, no. 2,
pp. 57–73, Apr. 2010.

[73] S. Ethier, W. M. Tang, and Z. Lin, “Gyrokinetic particle-in-cell simu-
lations of plasma microturbulence on advanced computing platforms,”
Journal of Physics: Conference Series, vol. 16, pp. 1–15, 2005.

[74] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bilenetv2: Inverted residuals and linear bottlenecks,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

[75] J. Y. Yen, “Finding the k shortest loopless paths in a network,”
Management Science, vol. 17, no. 11, pp. 712–716, 1971.

[76] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-
ing data centers, randomly,” in NSDI, 2012.

