
Designing Data Center Networks Using Bottleneck
Structures

Jordi Ros-Giralt
1
, Noah Amsel

1
, Sruthi Yellamraju

1
, James Ezick

1
, Richard Lethin

1
, Yuang Jiang

2
, Aosong Feng

2
,

Leandros Tassiulas
2
, Zhenguo Wu

3
, Min Yee Teh

3
, Keren Bergman

3

Reservoir Labs
1
, Yale Institute for Network Science

2
, Columbia University

3

New York City, NY, USA
1

New Haven, CT, USA
2

New York City, NY, USA
3

giralt@reservoir.com

ABSTRACT
This paper provides a mathematical model of data center

performance based on the recently introduced Quantitative

Theory of Bottleneck Structures (QTBS). Using the model,

we prove that if the traffic pattern is interference-free, there
exists a unique optimal design that both minimizes maxi-

mum flow completion time and yields maximal system-wide

throughput. We show that interference-free patterns cor-

respond to the important set of patterns that display data

locality properties and use these theoretical insights to study

three widely used interconnects—fat-trees, folded-Clos and

dragonfly topologies. We derive equations that describe the

optimal design for each interconnect as a function of the traf-

fic pattern. Our model predicts, for example, that a 3-level

folded-Clos interconnect with radix 24 that routes 10% of

the traffic through the spine links can reduce the number

of switches and cabling at the core layer by 25% without

any performance penalty. We present experiments using pro-

duction TCP/IP code to empirically validate the results and

provide tables for network designers to identify optimal de-

signs as a function of the size of the interconnect and traffic

pattern.

CCS CONCEPTS
• Networks → Network performance modeling; Data
center networks; Network design principles;

KEYWORDS
Data center, design, model, bottleneck structure, max-min

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8383-7/21/08.

https://doi.org/10.1145/3452296.3472898

1 INTRODUCTION
Data centers are some of the largest centrally-managed net-

works in the world, responsible for storing, computing and

distributing large amounts of data. Driven by ever increasing

machine-to-machine workloads [28], network researchers

and architects have focused on identifying data center topolo-

gies and designs that are able to scale and deliver high-

performance at low cost [1, 18, 28, 30]. The steep cost of

building and operating these interconnects motivates data

centers to employ techniques such as oversubscription and

bandwidth tapering [1, 21], which allow them to optimize

the performance-cost trade-off. However, because little is

known about the mathematical principles that drive the per-

formance of data center interconnects, network architects

are forced to either take conservative approaches that waste

bandwidth and unnecessarily increase costs or to use trial-

and-error methodologies that are operationally very costly.

In this paper, we position a formal mathematical model of

data center networks. Our approach is analogous to the way

physicists study natural systems—by formulating a set of fun-

damental laws and using them to derive specific predictions

about the system’s behavior. We begin from the assumption

that the network is congestion-controlled.
1
Congestion con-

trol algorithms are designed to regulate traffic according to

the following principle:maximize the throughput of each flow
while ensuring fairness among flows. This principle ensures
that the resources of the network are not wasted (which

would not maximize throughput) and that no flow is entirely

starved of the bandwidth it needs (which would be unfair).

The recently discovered Quantitative Theory of Bottleneck

Structures (QTBS) [26, 27] builds on this assumption to create

a mathematical model of congestion-controlled networks.

In this paper, we use it to study the problem of designing

data center networks. Our model predicts how a data center

network will perform for a given traffic pattern. This allows

us to derive optimal network designs and identify wasteful

ones using our model alone, without resorting to costly trial-

and-error deployments. For instance, the model reveals that a

3-level folded-Clos interconnect [1] with radix 24 that routes

1
Congestion control is implemented as part of the TCP and Infiniband

protocols used in many data center networks.

319

https://doi.org/10.1145/3452296.3472898
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA J. Ros-Giralt et al.

10% of the traffic through the spine links can reduce the

number of switches and cabling at the core layer by 25%

without any performance penalty.

The contributions of this paper are as follows:

• We introduce a class of network designs called propor-
tional designs. We show that for traffic patterns that we

call interference-free, proportional designs achieve maxi-

mal throughput and minimal flow completion time for any

fixed cost (Section 2).

• We show that three widely-used types of data center topo-

logies—fat-tree (Section 3), folded-Clos (Section 4), and

dragonfly (Appendix G)—are interference free for common

traffic patterns that exhibit data locality properties.

• We derive optimal designs for these topologies and identify

designs that are wasteful and ought to be avoided (Sections

3 and 4).

• Through extensive simulations using production-grade

TCP/IP code, we demonstrate that the predictions of our

theory hold for the three studied topologies (Section 5).

2 THEORETICAL BACKGROUND
2.1 Network Model
In our network model, a data center consists of a set of hosts

that are interconnected using a set of links. Each link has a

finite capacity and hosts communicate with each other using

flows. A flow between a pair of hosts traverses a subset of

the links, which we call its path. We assume the network is

regulated by a congestion control algorithm that determines

the transmission rate of each flow according to the follow-

ing principle: maximize the throughput of each flow while

ensuring fairness among flows. More specifically, our mathe-

matical model assumes the congestion control algorithm de-

termines the rate of each flow according to the well-known

max-min fairness criterion [6, 8]. While we acknowledge

that production-grade congestion control algorithms do not

precisely act according to max-min fairness, recent work

[26, 27] demonstrates that the max-min assumption enables

a powerful mathematical model of the network that can be

used to analyze and predict network performance.

Our work builds on the quantitative theory of bottleneck

structures (QTBS) introduced in [26, 27]. QTBS provides a

general-purpose mathematical framework to model commu-

nication networks. Because of its predictive power, QTBS

can be used to address a wide variety of communication

problems such as traffic engineering, routing, flow schedul-

ing, network design, capacity planning, resiliency analysis,

network slicing, or service level agreement (SLA) manage-

ment, among others, by incorporating an understanding of

congestion control into its solution. In this paper, we use the

assumptions of the QTBS model to develop a formal frame-

work to design data center interconnects. Note that, while

the reader is encouraged to review the existing literature on

QTBS [26, 27], the present paper is self-contained and does

not require prior knowledge of it.

2.2 Designing Data Center Networks
In our framework, network architects are given a class of

topology (e.g., folded-Clos) and the required size of the in-

terconnect (i.e., the number of hosts to be connected). Their

objective is to set the capacity of each link so that the inter-

connect achievesmaximal performance at the lowest possible

cost. We refer to an assignment of capacity values to the links

of an interconnect as a design:
Definition 2.1. Network design. Let L be the set of links in

a given data center network. A network design (or simply a

design) is a function 𝑐 : L → R>0 mapping each link to its

capacity. We use the notation 𝑐𝑙 interchangeably with 𝑐 (𝑙).

Careful network design is increasingly important, as im-

proper allocation of bandwidth in an interconnect can lead to

wasteful capital and operational expenditures at the scale of

modern data centers [28, 30]. In performing our analysis, we

need two kinds of inputs: information about the topological

structure of the network and assumptions about the traffic

pattern that it needs to support. We describe the topologies

we study in detail in Sections 3 (fat-trees), 4 (folded-Clos) and

Appendix G (dragonflies), where the mathematical frame-

work for each specific interconnect is presented. As for the

traffic pattern, we characterize it as follows:

Definition 2.2. Traffic Pattern. Let H be the set of hosts

in a given interconnect. Then a traffic pattern is a function

𝑏 : H × H → R≥0 mapping each ordered pair of hosts to

the amount of data (e.g., in bits) to be transmitted from the

first to the second.

We say that the traffic pattern is uniform if all pairs of hosts

transmit the same number of bits, and skewed otherwise. We

use the shorthand F = H×H to denote the set of data flows

connecting every pair of hosts in the network. We assume

that for each ordered pair of hosts ℎ,ℎ′ ∈ H , there exists a

single data flow 𝑓 transmitting 𝑏 (𝑓) data from ℎ to ℎ′
. We

can now introduce our criteria for evaluating a network’s

performance:

Definition 2.3. Network completion time. Let L and F be

the sets of links and flows, and let 𝑏 be the traffic pattern.

Assume all flows start transmitting data at the same time.

For a given design 𝑐 , let fct(𝑏, 𝑐, 𝑓) be the time it takes for

flow 𝑓 to complete transmitting its 𝑏 (𝑓) units of data. Then,
𝜇 (𝑏, 𝑐) = max𝑓 ∈F fct(𝑏, 𝑐, 𝑓) is the completion time of the

network for the given traffic pattern and design.

Since network completion time refers to the time it takes

to complete the longest duration flow, minimizing network

completion time provides a mechanism for reducing flow

completion time tail. The latter is widely regarded as one of

the key performance metrics in data centers [2, 11, 23, 32],

2

320

Designing Data Center Networks Using Bottleneck Structures SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

because a large flow completion time tail causes latency and

jitter, harming application performance. In this paper, we

show that the optimal designs derived from our framework

equalize the completion time of all flows (see Theorem 2.10),

thus reducing to zero the tail of the flow completion time

distribution. Moreover, network completion time is closely

connected to network throughput, another key metric of

system-wide performance, as follows. Assume that instead

of just one flow 𝑓 between each pair of hosts, the traffic pat-

tern now contains 𝑛 identical copies of 𝑓 (or 𝑛 copies of the

original batch), each of which transmits the same amount

of data 𝑏 (𝑓). Unlike before, flows can be scheduled arbitrar-

ily, and flows from different batches may be transmitting

simultaneously. The throughput of a network measures the

average rate at which it can transmit data as the number of

batches grows:

Definition 2.4. Network throughput. For a given traffic pat-

tern 𝑏 and design 𝑐 , let bct(𝑏, 𝑐, 𝑛) be the smallest possible

time to complete transmitting 𝑛 batches when using the best

scheduling. Then, the network throughput of the design is

𝑇 (𝑏, 𝑐) = lim

𝑛→∞
𝑛/bct(𝑏, 𝑐, 𝑛).

Note that if the network completion time is 𝜇 (𝑏, 𝑐), the
throughput is at least 1/𝜇 (𝑏, 𝑐), since one can simply sched-

ule the batches sequentially. In some cases, it is possible to

achieve higher throughput by scheduling batches to partially

overlap. However, this scheduling harms latency; the first

batch takes longer to complete, since it must now share re-

sources with the second batch. Designers must balance the

goals of achieving high performance and low cost. Require-

ments differ from case to case, and so the best design depends

on context. However, some designs are simply wasteful in

that their cost is unnecessarily high for the level of perfor-

mance they achieve. Ideally, a network is designed so that all

of its capacity is utilized throughout the transmission of the

traffic pattern. Intuitively, this means that the resources of

the network are being used efficiently, as the operator is not

paying for bandwidth that is idle. In this case, scheduling

successive batches sequentially achieves optimal throughput

without sacrificing latency. Since no bandwidth is wasted

during transmission of the first batch, it is impossible to in-

crease throughput by packing in flows from the second batch.

The following definition and theorem capture this intuition

and relate it to the criteria discussed above:

Definition 2.5. Wasteless designs. For a given topology and

traffic pattern 𝑏, a design 𝑐 is wasteless if all the bandwidth

of each link is used throughout the transmission. That is,

∀𝑡 ∈ [0, 𝜇 (𝑏, 𝑐)], ∑𝑓 ∈F𝑙 𝑟𝑐,𝑏 (𝑓 , 𝑡) = 𝑐 (𝑙), where F𝑙 is the set
of flows that traverse 𝑙 and 𝑟𝑐,𝑏 (𝑓 , 𝑡) is the rate of flow 𝑓

at time 𝑡 for design 𝑐 and traffic pattern 𝑏 according to the

congestion control algorithm.

Theorem 2.6. Optimality of wasteless designs. For a given
topology and traffic pattern, if a design 𝑐 is wasteless, then it is
impossible to improve on the network completion time or net-
work throughput of the design without adding more capacity.
That is, if 𝑐 ′ is an alternative design for which 𝜇 (𝑏, 𝑐 ′) < 𝜇 (𝑏, 𝑐)
or 𝑇 (𝑏, 𝑐 ′) > 𝑇 (𝑏, 𝑐), then ∑

𝑙 ∈L 𝑐 ′(𝑙) > ∑
𝑙 ∈L 𝑐 (𝑙).

Proof. See Appendix A.1 □

Intuitively, for a given topology, awasteless design achieves

the best possible performance for a fixed cost, where cost

is a function of the total capacity of the network. Note that

in production networks, operators typically do not design

interconnects to be wasteless. Rather, networks are provi-

sioned with extra capacity to accommodate for potential link

failures and to protect latency-sensitive flows that can arrive

at arbitrary times. However, network designers must know

how to provision their networks before they can know how

to overprovision them. That is, they need to first identify

the optimal design they would use if link failures, latency,

and traffic variability did not exist, and then provision excess

capacity to accommodate for these factors on top of the base

design. Identifying the wasteless design first gives network

designers a principled, quantitative way to tell how much

they are overprovisioning each link. Our framework aims to

help operators identify this base design.

2.3 Proportional Designs
To address the data center design problem described above,

we introduce the following class of designs:

Definition 2.7. Proportional Designs. For a given traffic pat-

tern 𝑏, a design 𝑐 is proportional if each link’s capacity is

proportional to the sum of the sizes of the flows that traverse

it. That is,

𝑐 (𝑙) = 𝛼
∑
𝑓 ∈F𝑙

𝑏 (𝑓)

for some 𝛼 > 0, where F𝑙 is the set of flows that traverse 𝑙 .
A proportional design exists for any topology and traffic

pattern and is unique up to the scaling factor 𝛼 . By choosing

𝛼 , one can create a proportional design that achieves any

desired level of performance. Our main theoretical result mo-

tivates the use of proportional designs: proportional designs

are optimal in the sense that no other design can achieve

zero waste, as shown next.

Theorem 2.8. Non-proportional designs waste bandwidth.
If a design wastes no bandwidth on a given traffic pattern, then
it is the proportional design for that traffic pattern.

Proof. See Appendix A.2. □

The converse of this theorem is not true in general, be-

cause for some traffic patterns, it is impossible not to waste

bandwidth even if a proportional design is used. (For an ex-

ample, see Lemma 3.3.) The following definition and theorem

3

321

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA J. Ros-Giralt et al.

give a sufficient condition on the traffic pattern to ensure

that a wasteless design exists (and, by extension, that the

proportional design is wasteless):

Definition 2.9. Interference-free. For a given topology, a

traffic pattern 𝑏 is said to be interference-free if each flow

𝑓 traverses some link 𝑙 that is traversed by no flow that

transmits more bits than 𝑓 . That is, ∀𝑓 ∈ F , ∃𝑙 ∈ L s.t. 𝑓 ∈
argmax𝑓 ′∈F𝑙 𝑏 (𝑓 ′).

Theorem 2.10. Interference-free proportional designs are
wasteless. If the traffic pattern is interference free, then the
proportional design wastes no bandwidth and all flows finish
transmitting at the same time.

Proof. See Appendix A.3. □

To sum up, the above theorem shows that if a traffic pat-

tern is interference free, then proportional designs (and only

proportional designs) have all of the following optimality

properties: (1) no bandwidth is wasted; (2) all flows termi-

nate at the same time; (3) the network completion time is

the smallest possible without adding more capacity to the

network; (4) the network throughput is as large as possible

without adding more capacity to the network. Further, in the

following sections, we show that typical data center traffic

patterns that display locality properties are interference-free,

ensuring that proportional designs are optimal in these ways.

3 DESIGNING FAT-TREE NETWORKS
Fat-trees are a popular class of topologies first introduced

by Leiserson. As he demonstrated, fat-trees are universally

efficient networks in the following sense: for a given network

size 𝑠 , a fat-tree can emulate any other network of that size 𝑠

with a performance slowdown at most logarithmic in 𝑠 [20].

This property makes fat-tree topologies highly competitive

and is one of the reasons they are widely used in large-scale

data centers [1] and high-performance computing (HPC)

networks [21]. A fat-tree is a complete n-ary tree [9] that

satisfies the condition 𝑐𝑙 > 𝑐𝑙 ′ for pairs of links such that 𝑙 is

nearer to the root than 𝑙 ′ [20]. Fat-trees are said to be full if
every level has the same total capacity, that is:∑

∀𝑙 ∈L𝑖
𝑐𝑙 =

∑
∀𝑙 ∈L 𝑗

𝑐𝑙 , 𝑓 𝑜𝑟 1 ≤ 𝑖, 𝑗 ≤ 𝐿, (1)

where L𝑖 is the set of links at level 𝑖 of the tree and 𝐿 is the

tree’s total number of levels [10]. We will use the notation

𝐹𝑇 (𝑛, 𝐿) to denote a fat-tree in which each switch has 𝑛 chil-

dren and the total number of levels is 𝐿. (Note that 𝐿 is half

the diameter of the fat-tree.) For example, Fig. 1 shows the

topology of a 𝐹𝑇 (2, 2). We will also consider a generalization

of fat-trees in which nodes at different levels of the tree may

have different numbers of children, so long as all nodes at

a single given level have the same number of children. We

use the notation 𝐹𝑇 ([𝑛1, 𝑛2, ..., 𝑛𝐿]) to denote such a tree,

where each switch at level 𝑖 of the tree has 𝑛𝑖 children—thus,

Interpod
paths

Intrapod
paths

Pod 1 Pod 2

Sp
ine

 lin
ks

Le
af

 lin
ks

Switch

Host

l1 l2

l3 l4 l5 l6

Le
ve

l 1
lin

k
ca

p
ac

it
y

c1
Le

ve
l 2

lin
k

ca
p

ac
it

y
c2

Figure 1: A fat-tree with two levels and two children
per switch, denoted as 𝐹𝑇 (2, 2).

𝐹𝑇 (𝑛, 𝐿) = 𝐹𝑇 ([𝑛, 𝑛, . . . , 𝑛]). Note that because there is only
a single path between every pair of hosts, routing is trivial.

For the specific case of fat-trees with 2-levels (𝐿 = 2), we

adopt the common terminology of spine and leaf links to refer
to the upper-level links (connected to the root) and the lower-

level links (connected to the hosts), respectively. We also use

the terms interpod and intrapod paths to refer to paths that

traverse the spine links and paths that traverse only the leaf

links, respectively. Because every host communicates with

every other host, each path accommodates two flows, one in

each direction. For instance, the topology 𝐹𝑇 (2, 2), shown in

Fig. 1, has four hosts, two interpod links, four intrapod links,

four interpod paths, two intrapod paths, eight interpod flows

and four intrapod flows.

In our analysis, we will assume all links at level 𝑖 of a

fat-tree have the same capacity value 𝑐𝑖 , as is the case in

most production deployments [1, 30]. For the widely used

case of 2-level 𝑛-ary fat-trees (𝐿 = 2), we refer to the design

parameter 𝜏 = 𝑐1/(𝑛 · 𝑐2) as the tapering parameter of the
network. It is easy to see from Equation (1) that 𝜏 = 1 is

the case of a full fat-tree [10], providing the full bisectional

bandwidth in all fat-tree levels. In general, this parameter

is the ratio of the actual spine link capacity divided by the

spine link capacity of a full fat-tree network with the same

leaf link capacity as the given network. The tapering pa-

rameter 𝜏 determines the performance/cost trade-off of the

interconnect: increasing 𝜏 improves performance but it also

increases the cost of the interconnect, and vice versa. This

parameter also characterizes the degree to which the spine

links are oversubscribed, usually expressed with the notation

1/𝜏 :1 [1]. For instance, an 𝐹𝑇 (𝑛, 2) design with a tapering

parameter of 0.5 is oversubscribed by a factor of 2:1.

3.1 Design Equations for Uniform Traffic
We start by solving the fat-tree design problem under the

assumption of uniform traffic:

4

322

Designing Data Center Networks Using Bottleneck Structures SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Lemma 3.1. Optimal fat-tree with uniform traffic. Consider
a generalized fat-tree 𝐹𝑇 ([𝑛1, 𝑛2, ..., 𝑛𝐿]) and let 𝑐𝑖 be the ca-
pacity of its links at level 𝑖 , for 1 ≤ 𝑖 ≤ 𝐿. Then, if the traffic
pattern is uniform, it is interference-free and the following
design is optimal:

𝑐𝑖 =
𝜌𝑖

𝜌𝐿
𝑐𝐿 (2)

where

𝜌𝑖 = 2

(𝑖∏
𝑗=1

𝑛 𝑗 − 1

) 𝐿∏
𝑗=𝑖+1

𝑛2𝑗 (3)

Proof. See Appendix A.5. □

This equation comes from applying the definition of a pro-

portional design to a fat-tree with uniform traffic. Further-

more, since the uniform traffic pattern is interference-free,

Theorem 2.10 states that this design equalizes the comple-

tion time of all the flows. Under the assumption of uniform

traffic where all hosts send the same amount of data to each

other, this is equivalent to equalizing the throughput of all

the flows.

For example, the set of optimal two-level fat-trees 𝐹𝑇 (𝑛, 2)
can be derived by using Equations (2) and (3) while setting

𝐿 = 2 and 𝑛1 = 𝑛2 = 𝑛, where 𝑛 is the number of children of

each switch in the tree. Doing some simple algebraic manip-

ulations, this leads to the following optimal design:

𝑐1 =
𝑛2

𝑛 + 1

𝑐2 (4)

Fig. 2 represents the above designs using a red line. For a

fixed leaf link capacity, the capacity of spine links increases

quasi-linearly. Of special interest is also the set of designs

corresponding to the full fat-tree solution, represented by

the equation 𝑐1 = 𝑛 · 𝑐2 and shown in Fig. 2 as a black line.

We can see that a full fat-tree is not an optimal design when

traffic is uniform, because some of the bandwidth of the spine

links goes to waste. In other words, the network operator is

paying for bandwidth in the spine links that is never used.

In the next section, we generalize this analysis of fat trees to

skewed (non-uniform) traffic patterns.

3.2 Design Equations for Skewed Traffic
We now introduce the general equations of an optimal fat-

tree design for skewed traffic:

Lemma 3.2. Optimal fat-tree with skewed traffic. Consider
a generalized fat-tree 𝐹𝑇 ([𝑛1, 𝑛2, ..., 𝑛𝐿]) and let 𝑐𝑖 be the ca-
pacity of its links at level 𝑖 , for 1 ≤ 𝑖 ≤ 𝐿. Assume a traffic
pattern 𝑏 (𝑓) = 𝜎𝑖 , where 𝑓 is a flow that traverses a link in
level 𝑖 , but no link in level 𝑖 − 1.2 If 𝑖 ≤ 𝑗 =⇒ 𝜎𝑖 ≤ 𝜎 𝑗 for all
1 ≤ 𝑖, 𝑗 ≤ 𝐿, then the traffic pattern is interference free and

2
So a flow that goes through all levels of the tree transmits 𝜎1, and a flow

between a pair of hosts that are nearest neighbors in the tree transmits 𝜎𝑛 .

the following design is optimal:

𝑐1 = 𝜋1𝜎1 (5)

𝑐𝑖 = 𝜋𝑖𝜎𝑖 +
𝑐𝑖−1
𝑛𝑖

(6)

where

𝜋𝑖 = (𝑛𝑖 − 1)
𝐿∏

𝑗=𝑖+1
𝑛2𝑗 (7)

Proof. See appendix A.6. □

In addition to providing the equations of the optimal de-

sign, the above lemma characterizes the set of interference-

free traffic patterns in a fat-tree topology. In particular, a

traffic pattern is interference free if 𝑖 ≤ 𝑗 =⇒ 𝜎𝑖 ≤ 𝜎 𝑗 for

all 1 ≤ 𝑖, 𝑗 ≤ 𝐿. This corresponds precisely to the set of traf-

fic patterns that display locality properties—patterns where

hosts transmit more data to others hosts in their same pod

than to hosts in other pods. Because good design principles

dictate that operators should map applications onto a data

center by exploiting data locality, from a design standpoint,

we reason that interference-freeness is the property that

characterizes the set of interesting traffic patterns to achieve

best performance in data center networks.

Applying some algebraic manipulations on Equations (5),

(6) and (7), we can derive the set of optimal designs for a

2-level fat-tree 𝐹𝑇 (𝑛, 2) by setting 𝐿 = 2, 𝑛1 = 𝑛2 = 𝑛, and

letting 𝜎 = 𝜎2/𝜎1, which leads us to:

𝑐1 =
𝑛2

𝑛 + 𝜎
𝑐2 (8)

(Note that the above equation corresponds to Equation (4)

when traffic is uniform.) This leads to the following optimal

tapering parameter:

𝜏 =
𝑐1

𝑛 · 𝑐2
=

𝑛

𝑛 + 𝜎
(9)

Or, equivalently, an oversubscription of (𝑛 + 𝜎)/𝑛:1. For in-
stance, a FT(16, 2) in which intrapod flows carry ten times

more traffic than interpod flows (𝜎 = 10) has an optimal

tapering parameter 𝜏 = 0.61538 (an oversubscription of

1.625:1), yielding the design 𝑐1/𝑐2 = 9.8462. This design is

shown in Fig. 2 as a blue dot. Similarly, the same interconnect

with uniform traffic (𝜎 = 1) has an optimal tapering param-

eter 𝜏 = 0.94118 (an oversubscription of 1.0625:1), yielding

the design 𝑐1/𝑐2 = 15.0588. This design is shown in Fig. 2 as

a green dot.

The following lemma characterizes the design space of

fat-trees 𝐹𝑇 (𝑛, 2):3
Lemma 3.3. Design space of fat-trees 𝐹𝑇 (𝑛, 2). Consider

a fat-tree 𝐹𝑇 (𝑛, 2) and let 𝑐1 and 𝑐2 be the capacity of its
spine and leaf links, respectively. Without loss of generality, let

3
This lemma can be generalized to support 𝐹𝑇 ([𝑛1, 𝑛2, ..., 𝑛𝐿]) , we leave
this as an exercise to the reader.

5

323

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA J. Ros-Giralt et al.

8 10 12 14 16 18 20
n

6

8

10

12

14

16

18

20

De
sig

n
(c

1
/ c

2)

Efficient designs

Inefficient designs

Balanced fat-tree designs
Full fat-tree designs
Optimal design for n=16 and =10
Optimal design for n=16 and =1
Efficient designs for > 1
Efficient designs for 1
Inefficient designs

Figure 2: Design space for 𝐹𝑇 (𝑛, 2).

𝑏 (𝑓) = 1 for interpod flows, and 𝑏 (𝑓) = 𝜎 for intrapod flows.
Then,

(1) If 𝜎 ≥ 1, the optimal design satisfies 𝑐1 ≤ 𝑛2 · 𝑐2/(𝑛 + 1).
(2) If 0 < 𝜎 < 1, the proportional design satisfies 𝑛2 ·𝑐2/(𝑛+

1) < 𝑐1 < 𝑛 · 𝑐2, but every design wastes bandwidth.
(3) If 𝜎 = 0, the optimal design corresponds to 𝑐1 = 𝑛 · 𝑐2.

Proof. See appendix A.7. □

The above lemma is pictured in Fig. 2 as follows. The re-

gion of optimal designs for traffic patterns such that 𝜎 ≥ 1

(traffic patterns that are interference-free) is marked with

gray hash lines. It is delimited by the optimal design line for

uniform (𝜎 = 1) traffic 𝑐1 = 𝑛2 · 𝑐2/(𝑛 + 1), shown as a red

line. Note that the optimal designs for 𝜎 > 1 correspond to

oversubscribed interconnects. The region of optimal designs

for 𝜎 < 1 (traffic patterns that are not interference-free) is

marked with red hash lines, bordered by the full fat-tree

design line 𝑐1 = 𝑛 · 𝑐2 and the optimal design line for uni-

form traffic. These designs correspond to undersubscribed

interconnects. The design space lemma also shows that there

exists no traffic pattern for which a design in the region

above full fat-trees (𝑐1 > 𝑛 · 𝑐2) is optimal. That’s because for

any traffic pattern, such a design would require more band-

width in the spine links than a full fat tree with the same leaf

links would, but delivers exactly the same performance.

In practice, data centers tend to experience traffic skew-

ness (𝜎 > 1), as applications exploit data locality by sharing

more data with other hosts in their own pod than to hosts

in other pods [4, 5, 17]. Thus, for typical traffic patterns, full

fat-trees are inefficient interconnects too. Furthermore, a full

fat-tree’s inefficiency increases as 𝜎 increases. This result

may appear surprising since Leiserson demonstrated that full

fat-trees are universally efficient [20]. However, Leiserson’s

0 20 40 60 80 100
Traffic skewness ()

0.0

0.2

0.4

0.6

0.8

1.0

Op
tim

al
 ta

pe
rin

g
pa

ra
m

et
er

 (
)

Fat-tree(2, 2)
Fat-tree(16, 2)
Fat-tree(32, 2)
Fat-tree(48, 2)
Fat-tree(64, 2)
Fat-tree(80, 2)
Fat-tree(96, 2)
Fat-tree(112, 2)
Fat-tree(128, 2)
Fat-tree(144, 2)
Fat-tree(160, 2)
Fat-tree(176, 2)
Fat-tree(192, 2)
[n=32, =15]

Figure 3: Optimal tapering parameter as a function of
traffic skewness for various 𝐹𝑇 (𝑛, 2) designs.

interconnect assumes a best-effort message-based communi-

cation system without congestion control regulation
4
. The

presence of congestion control in modern interconnects has

the effect of shifting the optimal design depending on the

network’s traffic pattern. While full fat-trees are rarely used

in production networks due to their prohibitive costs [1], this

result reaffirms that it is wasteful to do so, since the presence

of traffic skewness implies that the optimal design is over-

subscribed, with an oversubscription factor that depends on

the degree of traffic skewness 𝜎 according to Lemma 3.2.

Fig. 3 shows the optimal tapering parameter 𝜏 as a function

of traffic skewness 𝜎 for a variety of 2-level fat-trees. Once

again, we see that all optimal designs correspond to oversub-

scribed interconnects (i.e., 𝜏 < 1) departing away from the

full fat-tree design (𝜏 = 1) as traffic skewness increases. We

also note that as the size of the interconnect 𝑛 increases, the

optimal tapering parameter increases. For example, suppose

that our goal is to design a fat-tree 𝐹𝑇 (32, 2) to transport a

traffic pattern with skewness 𝜎 = 15. By using the chart in

Fig. 3, we can identify the needed design (represented with a

yellow dot) at the intersection of the green curve (𝐹𝑇 (32, 2))
with the line 𝜎 = 15, resulting in a tapering parameter of

𝜏 = 0.68085.

Appendix D presents a chart that plots the traffic skewness

value needed to optimally operate a 𝐹𝑇 (𝑛, 2) as a function
of the number of hosts 𝑛2 supported by the interconnect

and for various tapering parameters 𝜏 . Appendix J includes

additional design tables for the more general class of fat-trees

𝐹𝑇 ([𝑛1, 𝑛2]) and various 𝜎 values derived from the general

equations in Lemma 3.2.

4
This is similar to the way the Internet operated prior to the invention of the

first congestion control algorithm. Jacobson published the first congestion

control algorithm for TCP/IP networks [14] three years after Leiserson’s

work [20].

6

324

Designing Data Center Networks Using Bottleneck Structures SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

4 DESIGNING FOLDED-CLOS NETWORKS
Our next goal is to apply QTBS to derive the equations that

drive the optimal design of folded-Clos networks. While of-

ten times folded-Clos are also referred as fat-trees [1], math-

ematically we treat them separately because they have topo-

logical differences that lead to different equations. Through-

out this section, we will use the notation introduced by Al-

Fares et al. in their influential paper [1] to describe and ana-

lyze the performance of this important class of interconnects.

We will assume the folded-Clos network is implemented

using switches of radix 𝑘 and identical link capacity that

are interconnected using a tree structure with 𝐿 levels as

described in [1]. These two parameters, 𝑘 and 𝐿, characterize

a class of folded-Clos topologies denoted as 𝐶𝑙𝑜𝑠 (𝑘, 𝐿). Con-
sider as an example the interconnect𝐶𝑙𝑜𝑠 (4, 3) illustrated in

Fig. 4. It consists of 20 switches with radix 4, 48 links, 4 pods

and 16 hosts interconnected via 120 possible paths. Links

are organized in three levels (𝐿 = 3), which are commonly

referred from top to bottom as the spine, the aggregation
and the leaf (or edge) levels. Folded-Clos interconnects with
three levels have three possible types of flows, as shown in

Fig. 4: interpod flows (red color) traversing the spine links,

long intrapod flows (blue color) traversing the aggregation

links but not the spine links, and short intrapod flows (yellow
color) only traversing leaf links. As shown in [1], a general

𝐶𝑙𝑜𝑠 (𝑘, 3) interconnect has 5𝑘2/4 switches of radix 𝑘 , 3𝑘3/4
links, 𝑘3/4 hosts grouped in 𝑘 pods, and 𝑘6/32−𝑘3/8 possible
paths. Finally, we will assume flows are routed according to

the algorithm presented in [1]. Note that this is done with-

out loss of generality, as we could apply our methodology to

other types of routing (see also Section 7).

Most production data centers introduce oversubscription

in the spine links as a mechanism to reduce the cost of the

interconnect. In this case, the oversubscription of a folded-

Clos topology corresponds to the ratio between the total

capacity of the leaf links across all pods and the total capacity

of the spine links, denoted as 𝜔 :1. Consider for instance the

𝐶𝑙𝑜𝑠 (4, 3) topology in Fig. 4. Because the total capacity of the
leaf and spine links is the same (each group has 16 links of

equal capacity), the oversubscription parameter is 1:1 (𝜔 = 1).

Suppose instead that we remove the two most-left spine

switches from the network (and their corresponding eight

links). Such a configuration yields an oversubscription of 2:1

(𝜔 = 2).
5

Because folded-Clos are discrete topologies, not all pos-

sible oversubscription values are available to a network de-

signer. In particular, for the class of 𝐶𝑙𝑜𝑠 (𝑘, 3) interconnects,

5
Note that the oversubscription parameter 𝜔 is equal to the inverse of

the bandwidth tapering parameter 𝜏 introduced in Section 3. The main

difference is that 𝜔 ∈ Z>0 while 𝜏 ∈ R>0, reflecting the discrete nature of
the folded-Clos interconnect.

oversubscription is implemented by grouping spine switches

into blocks—called spine blocks—consisting of 𝑘/2 switches
each. Since there are 𝑘2/4 spine switches, this leads to a to-

tal of 𝑘/2 possible oversubscription configurations of the

form 𝜔 :1, with 𝜔 = 𝑘
2𝛽

and 1 ≤ 𝛽 ≤ 𝑘/2. Note that here 𝛽
corresponds to the number of spine blocks deployed. With

this approach, network architects can decide to increase the

number of spine blocks in order to increase performance of

the interconnect or to decrease the number of spine blocks to

reduce its cost, providing an efficient and elegant mechanism

to control its performance-cost trade-off. For instance, for a

folded-Clos with radix 𝑘 = 4, we have that 𝜔 ∈ {1, 2} (since
𝛽 ∈ {1, 2}), which leads to two possible configurations, as

shown in Fig. 4: 1:1 deploying both spine blocks (for a total

of 4 spine switches) and 2:1 deploying only one of the spine

blocks (for a total of 2 spine switches).

4.1 Design with Optimal Oversubscription
We now introduce the general equations that determine an

optimal 3-level folded-Clos design for skewed traffic:

Lemma 4.1. Optimal 3-level folded-Clos with radix 𝑘 and
skewed traffic. Assume a traffic pattern 𝑏 (𝑓) = 𝜎𝑖 , where 𝑓

is a flow that traverses a link in level 𝑖 , but no link in level
𝑖 − 1.6 Assume that 𝜎1 = 1 and 𝜎2 = 𝜎3 = 𝜎.7 Then, the traffic
pattern is interference-free and the oversubscription parameter
𝜔 (𝑘, 𝜎) = 𝑘

2𝛽 (𝑘,𝜎) corresponds to the optimal design, where

𝛽 (𝑘, 𝜎) =
⌈

(𝑘4 − 𝑘3)
2(𝑘3 − 𝑘2) + 𝜎 (2𝑘2 − 8)

⌉
(10)

is the number of deployed spine blocks and ⌈·⌉ is the ceiling op-
erator. Equivalently, a𝐶𝑙𝑜𝑠 (𝑘, 3) with 𝛽 spine blocks is optimal
if 𝜎1 = 1 and 𝜎2 = 𝜎3 = 𝜎 (𝑘, 𝛽), where:

𝜎 (𝑘, 𝛽) =
{

(𝑘3−𝑘2) (𝑘−2𝛽)
2𝛽 (𝑘2−4) , 𝑓 𝑜𝑟 1 ≤ 𝛽 < 𝑘/2

1, 𝑓 𝑜𝑟 𝛽 = 𝑘/2
(11)

Proof. See appendix A.8. □

Using Equation (10), Fig. 5 plots the value of the optimal

number of spine blocks 𝛽 to deploy in a 𝐶𝑙𝑜𝑠 (𝑘, 3) intercon-
nect as a function of the inverse

8
of traffic skewness 1/𝜎 and

for various values of the radix parameter 𝑘 . For instance, for

a folded-Clos with radix 𝑘 = 48 and traffic skewness 𝜎 = 10

(𝜎−1 = 0.1), it is enough to deploy 𝛽 = 20 spine blocks, each

consisting of 𝑘/2 = 24 switches. Since the 𝐶𝑙𝑜𝑠 (48, 3) inter-
connect without oversubscription has a total of 𝑘/2 = 24

spine blocks, this yields a total savings of 4 spine blocks or,

equivalently, 96 spine switches (this optimal design is repre-

sented as a red dot in Fig. 5). As traffic becomes more skewed

6
So a flow that goes through all levels of the folded-Clos transmits 𝜎1, and

a flow between a pair of hosts that are nearest neighbors in the folded-Clos

transmits 𝜎3.
7
For simplicity, we assume all intrapod traffic is equally skewed, although

it is also possible to derive the equations for the general case.

8
Using the inverse of 𝜎 helps illustrate the asymptotic bounds in this plot.

7

325

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA J. Ros-Giralt et al.

l5

l3

l6

l7
l8

l9

l10

l11
l12

l13 l15 l25 l27 l37 l39

l17

l18

l22 l29

l30 l33

l34 l41

l42 l45

l46

l19 l20

l23

l24 l31 l35 l36 l43

l44 l47 l48

(Short) intrapod flow

l40l38l28l26l16l14l4l2l1

l21

(Long) intrapod flow
Interpod flow

l32
P

od
 1

P
od

 2

P
od

 3

P
od

 4

S
pi

ne

bl
oc

k
1

S
pi

ne

bl
oc

k
2

Switch

Host

Le
af

 /
E

dg
e

A
gg

re
ga

tio
n

S
pi

ne

(c)(b)
l1

Edge links

l1

E
dg

e
lin

ks

l7

S
pi

ne

lin
ks

l31

Aggregation links Spine links

UndersubscribedOversubscribed

l9 l5 l29l10 l7

l31

l25

l2 l4

l2 l4

l5l9 l10

A
gg

re
ga

tio
n

lin
ks

l25

l29

(...)

(...)

l26l28

l33 l34

(Short) intrapod flow

(Long) intrapod flow

Interpod flow

(...)

l28 l26

l33 l34

Aggregation links

(...) (...)

Figure 4: A folded-Clos network with 3 levels and radix 4, denoted as 𝐶𝑙𝑜𝑠 (4, 3).

(𝜎−1 → 0) fewer spine blocks are needed. Interestingly, Fig.

5 also reveals that as 𝑘 increases, the optimal skewness value

has an asymptotic bound, represented with dashed vertical

lines. The position of these asymptotic lines can be obtained

from Equation (11) by taking the limit of 𝑘 → ∞ and set-

ting 𝛽 = 𝑘
2
− 𝑖 , where 𝑖 corresponds to the number of spine

blocks that can be eliminated from the folded-Clos without

incurring any performance penalty:

lim

𝑘→∞
𝜎 (𝑘, 𝛽 = 𝑘

2
− 𝑖) = lim

𝑘→∞
(𝑘3−𝑘2) (𝑘−2(𝑘

2
−𝑖))

2(𝑘
2
−𝑖) (𝑘2−4) = 2𝑖 (12)

The above equation provides a simple but succinct rule

that all 𝐶𝑙𝑜𝑠 (𝑘, 3) interconnects should satisfy to avoid un-

necessary investment costs in the provisioning of the spine

layer, which we formalize as follows:

Corollary 4.2. Minimum oversubscription requirement of
𝐶𝑙𝑜𝑠 (𝑘, 3). If traffic skewness 𝜎 is larger than 2(𝑖 + 1), then
𝑖 spine blocks can be removed from the interconnect without
incurring any performance penalty, regardless of the radix
value𝑘 . Equivalently, the interconnect can be oversubscribed by
at least a factor 𝜔 = 𝑘

𝑘−2𝑖 without incurring any performance
penalty.

Note that the above rule provides a loose bound since it is

generally applicable to any radix value. For a known specific

radix, designers can directly use Equation (10) to compute

a more precise bound on the minimum oversubscription

requirement. Next, we state the maximum flow completion

time of a 𝐶𝑙𝑜𝑠 (𝑘, 3):
Lemma 4.3. Network completion time of a 3-level folded-

Clos with radix 𝑘 and skewed traffic. Assume that every host
sends 𝜎 bits of information to every other host located in the
same pod and 1 bit of information to every other host located
in a remote pod. The network completion time of a 3-level
folded-Clos with radix 𝑘 is:

𝜇 (𝛽, 𝜎) =
{
𝑘2+𝜎 (𝑘3−𝑘2)−4

2𝑐
, 𝑖 𝑓 𝜎 ≤ 𝜎 (𝑘, 𝛽)

𝜎 (𝑘4−𝑘3)
4𝛽𝑐

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(13)

where 𝑐 is the capacity of each switch port.

Proof. See appendix A.9. □

0.0 0.2 0.4 0.6 0.8 1.0
Inverse of skewness (1)

0

10

20

30

40

50

60

Op
tim

al
 n

um
be

r o
f s

pi
ne

 b
lo

ck
s (

)

1=0.51=0.25
1=0.166

k = 8
k = 16
k = 24
k = 32
k = 40
k = 48
k = 56
k = 64
k = 72
k = 80
k = 88
k = 96
k = 104
k = 112
k = 120
k = 128
[k=48, 1 = 0.1, =20]

Figure 5: Optimal number of spine blocks as a func-
tion of traffic skewness for various radix values (𝑘).

Fig. 6 shows the network completion time
9
of 𝐶𝑙𝑜𝑠 (4, 3)

as a function of the number of spine blocks deployed 𝛽 as-

suming a normalized link capacity of 𝑐 = 1 bps. (Note that

from Equation (13), to obtain the maximum flow comple-

tion time for arbitrary values of 𝑐 , we can simply scale the

vertical axis by a factor of 1/𝑐 .) This plot shows another
interesting property of folded-Clos interconnects: as traffic

skewness increases, the performance benefit of increasing

the number of spine blocks diminishes, and no benefit at all

is obtained after a certain threshold. In the case of𝐶𝑙𝑜𝑠 (4, 3),
this threshold is 𝜎 = 4, indicating that for all traffic patterns

with skewness 𝜎 ≥ 4, a network with one spine block is as

performant as one with two spine blocks. Later in Section

5.2 we empirically validate this result.

In Appendix Ewe provide a plot of the network completion

time as a function of the oversubscription parameter 𝜔 for a

production-scale folded-Clos [1] with radix 𝑘 = 48.

9
In this chart, network completion time has been normalized to (divided by)

𝜎 to better illustrate its assymptotic behavior, so the corresponding traffic

pattern is 𝑏 (𝑓) = 1/𝜎 for interpod flows and 𝑏 (𝑓) = 1 for intrapod flows.

8

326

Designing Data Center Networks Using Bottleneck Structures SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA
N

et
w

or
k

co
m

pl
et

io
n

tim
e

(s
ec

s)

0

10

20

30

40

50

1 spine block (β=1, ω=2) 2 spine blocks (β=2, ω=1)

σ = 20.0

σ = 6.66

σ = 4.00

σ = 2.77

σ = 2.00

σ = 1.66

σ = 1.42

σ = 1.25

σ = 1.11

σ = 1.00

Figure 6: In a 𝐶𝑙𝑜𝑠 (4, 3) network with skewness 𝜎 ≥ 4,
using one spine block constitutes an optimal design.

5 EXPERIMENTS
To experimentally demonstrate the accuracy of the QTBS

model, we use G2-Mininet [19], a network emulation frame-

work based on Mininet [22] with a set of extensions devel-

oped by our team to support the analysis of QTBS. Leverag-

ing software defined networking (SDN), G2-Mininet enables
the creation and analysis of topologies (such as fat-trees,

folded-Clos and dragonflies, among others) using production

TCP/IP code, including production-grade implementations

of congestion control algorithms such as BBR, Cubic or Reno.

(See Appendix H.) We are open sourcing G2-Mininet and
all the experiments presented in this paper, hoping this will

also enable the research community to verify our findings

and further experiment with QTBS. More than 600 network

simulations for a total of more than 800 hours of simulation

time were used to verify the correctness of the model. We

present a summary of these results in the following sections.

5.1 Experiments with Fat-Trees
In this first set of experiments our objective is to empirically

demonstrate the existence of an optimal fat-tree design—a

design that both minimizes network completion time and

maximizes network throughput for a given cost. We start by

simulating a 𝐹𝑇 (3, 2) interconnect—i.e., a fat-tree with two

levels (𝐿 = 2) and with each switch having three children

𝑛 = 3. We connect every pair of nodes with two TCP flows

(one for each direction), for a total of 𝑛𝐿 (𝑛𝐿 − 1) = 72 flows.

In the first set of experiments, we assume uniform traffic

(𝜎 = 1). Using Equation (4), we have that the optimal design

corresponds to 𝑐1 = 𝑛2 · 𝑐2/(𝑛 + 1) = 3
2 · 𝑐2/(3+ 1) = 2.25 · 𝑐2.

Fig. 7 shows the result of simulating a variety of designs

with 𝑐2 = 5 Mbps and 𝑐1 ∈ {2.5, 5, 7.5, 10, 11.25, 15, 20, 25}
Mbps—resulting in values for 𝑐1/𝑐2 of 0.5, 1, 1.5, 2, 2.25, 3, 4,
5. (Note that, without loss of generality, we could pick any

value for 𝑐2 and scale 𝑐1 accordingly). Results are shown for

the BBR, Cubic and Reno congestion control algorithms, and

for both experimental and theoretical (according to QTBS)

values. The network completion time corresponds to the

upper envelope of the curves—i.e., the maximum completion

time of the interpod and intrapod flows for any value of 𝑐1/𝑐2.
As predicted by QTBS, the plots show that the optimal de-

sign is found at 𝑐1/𝑐2 = 2.25. According to Theorem 2.10, this

design wastes no bandwidth, minimizes network completion

time and maximizes network throughput. For 𝑐1/𝑐2 < 2.25,

the completion time of the interpod flows increases while

that of the intrapod flows decreases. Choosing a design in

this region wastes bandwidth at the leaf links, increases net-

work completion time (due to the longer completion time of

the interpod flows) and decreases network throughput. As

shown also, a design in the region 𝑐1/𝑐2 > 2.25 achieves the

same network completion time and network throughput as

the design 𝑐1/𝑐2 = 2.25, regardless of how large the capacity

of a spine link (𝑐1) is. A design in this region wastes band-

width at the spine links and is more costly than the optimal

design, thus it should be avoided.

BBR almost perfectly follows the predictions by QTBS. Cu-

bic and Reno also follow them but not as accurately. This is

also reflected in Fig. 8 where Jain’s fairness index is presented

[15]. As shown in [27], this index captures how accurately

an experiment is able to match the behavior according to

the QTBS model. The index ranges from 0 to 1, with values

close to 1 indicating high accuracy. In Fig. 8, Jain’s index for

BBR is close to 1, while Cubic and Reno follow the model

slightly less accurately—although they still qualitatively be-

have according to the model. This finding is aligned with the

results in [27], and is explained by the advanced congestion-

based techniques used by BBR [7], which allow it to more

accurately infer the optimal transmission rate of each flow.

Fig. 9 shows the cumulative distribution function of all the

experiments run in Fig. 7a. The figure shows how increasing

𝑐1 helps reduce the maximum flow completion time until the

optimal value 𝑐1 = 2.25 · 𝑐2 is reached (green line). At this

point, all completion times are equalized (Theorem 2.10) and

increasing 𝑐1 beyond this value does not qualitatively alter

the completion time of the flows.

In Fig. 11 we present experiments with a skewed traffic

pattern consisting of 𝑏 (𝑓) = 1 for interpod flows and 𝑏 (𝑓) =
𝜎 for intrapod flows, where 𝜎 ∈ {2, 4, 10}. Using Equation (8),
we have that the optimal design satisfies 𝑐1 = 𝑛2 ·𝑐2/(𝑛+𝜎) =
9 · 𝑐2/(3 + 𝜎). This leads to three optimal designs, one for

each traffic pattern: 𝑐1 = 1.8 · 𝑐2 for 𝜎 = 2, 𝑐1 = 1.2857 · 𝑐2
for 𝜎 = 4, and 𝑐1 = 0.69231 · 𝑐2 for 𝜎 = 10. As shown in

the figure, the green and the red lines—which correspond to

the experimental average completion time of the interpod

and intrapod flows—cross each other right at the optimal

design point, marked with a vertical dashed line. As it was

shown in Fig. 3, the more skewed traffic is, the higher we can

reduce the capacity of the spine links. This is shown in Fig.

11 with the crossing points of the completion time curves for

9

327

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA J. Ros-Giralt et al.

0.5 1 1.5 2 2.25 3 4 5
C1/C2 value

1000

2000

3000

4000

5000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(a) BBR

0.5 1 1.5 2 2.25 3 4 5
C1/C2 value

1000

2000

3000

4000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(b) Cubic

0.5 1 1.5 2 2.25 3 4 5
C1/C2 value

1000

2000

3000

4000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(c) Reno

Figure 7: Flow completion time for 𝐹𝑇 (3, 2) and uniform traffic.

0.5 1 1.5 2 2.25 3 4 5
C1/C2 value

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fa
irn

es
s i

nd
ex

Fairness index (BBR)
Fairness index (Cubic)
Fairness index (Reno)

Figure 8: Jain’s fairness index for 𝐹𝑇 (3, 2).

interpod and intrapod flows shifting to the left as 𝜎 increases.

Once again the optimal design does not waste any bandwidth

(Theorem 2.10), since all flows terminate at the same time

and for the whole duration of the simulation every link is

saturated. A difference with the uniform case in Fig. 7 is that,

for 𝑐1 > 9 · 𝑐2/(3 + 𝜎), interpod flows continue to reduce

their completion time. However, intrapod flows’ completion

time stays flat, thus the network completion time stays flat

too. An interesting ripple effect is produced in the bottleneck

structure that leads to this behavior: as 𝑐1 increases, interpod

flows receive more bandwidth, but in doing so they need

to steal some of it from the intrapod flows, since they both

share the intrapod links. At the same time, the interpod flows

will finish sooner as they get more bandwidth, and so they

will free bandwidth for the intrapod flows sooner, creating

this time a positive impact for them. The two effects (one

negative, one positive) exactly cancel out, and thus intrapod

flows don’t see their completion time affected as 𝑐1 increases

beyond the optimal point.

5.2 Experiments with Folded-Clos
In this section we focus on empirically demonstrating the

behavior of an optimal folded-Clos design according to the

0 1000 2000 3000 4000 5000 6000
Flow completion time (secs)

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pe

rim
en

ta
l C

DF

c1 = 0.5 · c2
c1 = 1 · c2
c1 = 1.5 · c2
c1 = 1.875 · c2
c1 = 2 · c2
c1 = 2.25 · c2
c1 = 3 · c2
c1 = 4 · c2
c1 = 5 · c2

Figure 9: CDFs of flow completion time for 𝐹𝑇 (3, 2).

N
et

w
or

k
co

m
pl

et
io

n
tim

e
(s

ec
s)

0

5000

10000

15000

1 spine block (β=1, ω=2) 2 spine blocks (β=2, ω=1)

σ = 20.0

σ = 6.66

σ = 4.00

σ = 2.77

σ = 2.00

σ = 1.66

σ = 1.42

σ = 1.25

σ = 1.11

σ = 1.00

Figure 10: Experimental demonstration that an over-
subscripton of 2:1 is an optimal design for 𝐶𝑙𝑜𝑠 (4, 3)
and 𝜎 ≥ 4.

equations presented in Section 4. We use G2-Mininet to em-

ulate a 𝐶𝑙𝑜𝑠 (4, 3) (see Fig. 4), consisting of 20 switches of

radix 4, 48 links, 4 pods and 16 hosts. Every pair of hosts is

connected with two flows (one for each direction), for a total

10

328

Designing Data Center Networks Using Bottleneck Structures SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

0.6 1.0 1.4 1.8 2.2 2.6
C1/C2 value

2000

4000

6000

8000

10000

12000

14000

16000

18000
Co

m
pl

et
io

n
tim

e
(s

ec
s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(a) Traffic skewness 𝜎 = 2.

0.600 0.800 1.000 1.286 1.500 1.700
C1/C2 value

3000

4000

5000

6000

7000

8000

9000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(b) Traffic skewness 𝜎 = 4.

0.100 0.300 0.500 0.692 0.900 1.100 1.300 1.500
C1/C2 value

2500

5000

7500

10000

12500

15000

17500

20000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(c) Traffic skewness 𝜎 = 10.

Figure 11: Flow completion time for 𝐹𝑇 (3, 2) using BBR.

of 240 flows. Fig. 10 presents the results of running exper-

iments for the two possible 𝐶𝑙𝑜𝑠 (4, 3) designs—with 𝛽 = 1

and 𝛽 = 2 spine blocks—and for a skewed traffic pattern

consisting of 𝑏 (𝑓) = 𝜎1 for interpod flows and 𝑏 (𝑓) = 𝜎2
for intrapod flows, where 𝜎2 = 64 MB, 𝜎1 = 𝜎2/𝜎 Mbps

and 𝜎 ∈ {1, 1.11, 1.25, 1.42, 1.66, 2, 2.77, 4, 6.66, 20}. All exper-
iments in this chart were performed using BBR. As shown,

the interconnect behaves as predicted by QTBS in Fig. 6.

Using a 1-spine block configuration (thus reducing the cost

of the interconnect’s spine level by half) is an optimal de-

sign for 𝜎 ≥ 4, since using the 2-spine block configuration

does not improve the maximum completion time and wastes

bandwidth at the spine level. For 𝜎 < 4, both designs waste

bandwidth, so the choice for one design or the other has

to be based on the budget constraints and the performance

objectives of the application.

In Fig. 12 we compare the network completion time ob-

tained from the experiments against the value projected by

QTBS according to Equation (13) and for the case 𝛽 = 1 (a

𝜔=2:1 oversubscribed configuration). The plot shows that

the model is able to describe the actual behavior of the inter-

connect fairly accurately. The model always lays below the

experimental values due to imperfections of the congestion

control algorithm that regulates the transmission rate of each

flow, which leads to slightly higher network completion time

than the theoretical one. (This behavior of the QTBS model

is also explained in [27].) We present additional experiments

supporting the validation of the QTBS model in Appendix I.

6 RELATEDWORK
Data center networks have been the subject of intense re-

search in the networking community. While many different

topologies have been proposed and studied, in our work

we focus on three of the most widely used interconnects:

fat-trees, folded-Clos and dragonflies. Leiserson [20] demon-

strated that fat-trees are universally efficient interconnects.

His work, however, did not take into account the effects of

the congestion-control algorithms that are part of modern

σ

N
et

w
or

k
co

m
pl

et
io

n
tim

e
(s

ec
on

ds
)

0

5000

10000

15000

5 10 15 20

Experimental Theoretical (QTBS)

Figure 12: Comparison of experimental network com-
pletion time with QTBS model for 𝛽 = 1.

communication networks. In this paper, we show that, for

congestion-controlled networks, full fat-trees are only cost-

efficient when more traffic is sent between pairs of hosts that

are farther apart than between hosts that are closer together.

This implies that full fat-trees should not be used in inter-

connects that transport traffic with locality patterns. We also

contribute to the understanding of fat-trees performance

by identifying the set of link capacities that make a fat-tree

optimal for a given traffic pattern.

Folded-Clos is the dominant topology in large-scale data

centers. The influential work by Al-Fares et al. [1] demon-

strated the scalability and cost-effectiveness of this class of

interconnects. This and follow up work has produced an ex-

tensive literature around the subject of design and capacity

planning driven by empirical production-scale experiments

(e.g., [16, 28, 30]) . To the best of our knowledge, however,

our work is the first to provide a formal model that can

help network architects identify optimal oversubscription

configurations of a folded-Clos for a given traffic pattern.

In [31], Singla et al. provide an upper bound on network

throughput for homogeneous topologies with the assump-

tion that all switches are identical, and then experimentally

11

329

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA J. Ros-Giralt et al.

demonstrate that random graphs achieve throughput close

to the bound. Our work differs and complements this work

in two ways. First, we provide a general mathematical model

of data centers that is applicable to both homogeneous and

heterogeneous interconnects and reveals the designs that are

simultaneously optimal in throughput and latency. Secondly,

while in this work we focus on deterministic, well-structured

topologies that allow us to derive closed-form symbolic equa-

tions of the optimal designs, it is also possible to use QTBS to

perform non-symbolic numerical analysis [26]. Left as future

work, this opens up the possibility of using the proposed

framework to numerically model and study the performance

of unstructured topologies such as random graphs.

7 ASSUMPTIONS AND GENERALIZATIONS
In our model, an optimal design is one that outperforms (in

network completion time and throughput) any other design

with the same or less cost, where cost corresponds to total

capacity. That is, it is impossible to outperform the optimal

design by shifting capacity from one region of the network

to another, or by reducing the total aggregated link capacity.

QTBS however is general, and it could also be applied to

identify optimal designs based on other definitions of cost.

Our model also assumes that routing is fixed. We see our

work as a first step towards enabling future generalizations

that accommodate for dynamic routing. In production net-

works, the global optimal routing solution can change every

time a new flow arrives or departs from the network. It is

interesting to note that for interference-free traffic patterns,

the optimal design has all flows terminating at the same time.

Thus, optimal routing remains static in this case through-

out the full execution of a batch. We leave for future work

the problem of extending the QTBS model to account for

dynamic routing of non-interference free traffic patterns.

We currently assume that the traffic pattern is stable. In

production networks, traffic instead consists of the superpo-

sition of many different traffic patterns. In this case, network

operators may approximate their problem by a represen-

tative or average traffic pattern to take advantage of the

power of our formal model. In addition, while the analysis

presented in this paper is purely symbolic, in future work

QTBS could also be used to develop numerical methods and

broaden the applicability of our work to explicitly take into

account variation in the traffic pattern, much as physicists

do to make calculations when no closed-form solution exists.

Finally, we can use our framework to design optimal overlay

networks in addition to the underlying hardware network.

This would allow us to handle multiple jobs with different

traffic patterns by assigning each to a different overlay and to

address changes in the workload of the network by reconfig-

uring these overlays. This opens up the possibility of using

QTBS to address the muti-tenancy bandwidth allocation and

network slicing problems (see for instance [3] and [12]). We

leave these interesting direction for future work.

We show that the assumption of interference-freeness is

reasonable in that it corresponds to the important set of pat-

terns that display data locality properties. However, we note

that even if the traffic pattern is not interference free, QTBS

can still be used as a model to design interconnects. Similar

to the case of dynamic traffic patterns, in this case operators

could use QTBS to perform non-symbolical numerical analy-

sis to compare the various designs without having to resort

to costly trial-and-error implementations.

While our work focuses on optimizing performance, the

QTBS model is generic and, in future work, it can also be

used to address other important design criteria. Consider for

instance resiliency analysis. Using the predictive capabilities

of QTBS, an operator can use the proposed model to measure

the negative effect of a link failure, and provision additional

redundant capacity or links to protect those regions of the

network whose failure would lead to higher impact.

8 CONCLUSIONS
We present a model to compute optimal link capacity settings

in data center networks based on the recently introduced

Quantitative Theory of Bottleneck Structures (QTBS). Using

this framework, we show that for interconnects with traf-

fic patterns that are interference-free, there exists a design
that optimizes both the completion time and throughput

needed to execute such traffic patterns. We demonstrate that

fat-trees, folded-Clos and dragonfly topologies satisfy this

property for typical production traffic patterns that display

data locality properties. In particular, we identify the set

of designs that are always inefficient (more costly without

yielding any performance benefit), regardless of the traffic

pattern. QTBS proves that if the traffic pattern is such that

more data is transmitted between two hosts in the same

pod than two hosts in different pods (which holds in most

production interconnects), proportional designs are optimal

in both latency and throughput. Moreover, we demonstrate

that increasing the capacity of the interpod links (the most

expensive layer in modern data center interconnects) above

the value determined by this optimal design yields no perfor-

mance gain. These results provide an engineering framework

to help network architects and operators identify the right

size of an interconnect that delivers maximum performance

while avoiding unnecessary costs. Forthcoming work will

focus on applying QTBS to production-level traffic patterns

and validating these results in production interconnects.

Acknowledgments
We wish to thank the shepherd Radhika Niranjan Mysore

for her insightful comments and guidance as well as the

anonymous reviewers for their valuable feedback. This work

was partly supported by the DOE DE-SC0019523.

12

330

Designing Data Center Networks Using Bottleneck Structures SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

REFERENCES
[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A

Scalable, Commodity Data Center Network Architecture. In Proceed-
ings of the ACM SIGCOMM 2008 Conference on Data Communication
(SIGCOMM ’08). Association for Computing Machinery, New York, NY,

USA, Article 1, 12 pages. https://doi.org/10.1145/1402958.1402967

[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-

tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA:

Distributed Congestion-Aware Load Balancing for Datacenters. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM (SIGCOMM ’14).
Association for Computing Machinery, New York, NY, USA, Article 1,

12 pages. https://doi.org/10.1145/2619239.2626316

[3] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron.

2011. Towards predictable datacenter networks. In Proceedings of the
ACM SIGCOMM 2011 Conference. 242–253.

[4] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network

Traffic Characteristics of Data Centers in the Wild. In Proceedings of
the 10th ACM SIGCOMM Conference on Internet Measurement (IMC ’10).
Association for Computing Machinery, New York, NY, USA, Article 1,

14 pages. https://doi.org/10.1145/1879141.1879175

[5] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang.

2010. Understanding data center traffic characteristics. ACMSIGCOMM
Computer Communication Review 40, 1 (2010), 92–99.

[6] Dimitri P. Bertsekas and Robert G. Gallager. 1992. Data Networks.
Vol. 2. Prentice-Hall Inc., Englewood Cliffs, New Jersey 07632.

[7] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas

Yeganeh, and Van Jacobson. 2016. BBR: Congestion-Based Conges-

tion Control. ACM Queue 14, 5, Article 50 (October 2016), 34 pages.
https://doi.org/10.1145/3012426.3022184

[8] Dah-Ming Chiu and Raj Jain. 1989. Analysis of the increase and

decrease algorithms for congestion avoidance in computer networks.

Computer Networks and ISDN systems 17, 1 (1989), 1–14.
[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. 2009. Introduction to Algorithms, Third Edition (3rd ed.). The

MIT Press, Cambridge, Massachusetts.

[10] Wolfgang E Denzel, Jian Li, Peter Walker, and Yuho Jin. 2010. A

framework for end-to-end simulation of high-performance computing

systems. Simulation 86, 5-6 (2010), 331–350.

[11] Nandita Dukkipati and Nick McKeown. 2006. Why flow-completion

time is the right metric for congestion control. ACM SIGCOMM Com-
puter Communication Review 36, 1 (2006), 59–62.

[12] Andreas Fischer, Juan Felipe Botero, Michael Till Beck, Hermann

De Meer, and Xavier Hesselbach. 2013. Virtual network embedding: A

survey. IEEE Communications Surveys & Tutorials 15, 4 (2013), 1888–
1906.

[13] Iperf.fr. 2019. iPerf - The ultimate speed test tool for TCP, UDP and

SCTP. (2019). Retrieved October 24, 2019 from https://iperf.fr/

[14] Van Jacobson. 1988. Congestion Avoidance and Control. SIGCOMM
computer communication review 18, 4 (August 1988), 314–329. https:

//doi.org/10.1145/52325.52356

[15] Raj Jain, Dah-MingW. Chiu, andWilliamR. Hawe. 1998. AQuantitative

Measure Of Fairness And Discrimination For Resource Allocation

In Shared Computer Systems. CoRR cs.NI/9809099 (1998), 38. http:

//arxiv.org/abs/cs.NI/9809099

[16] Sangeetha Abdu Jyothi, Ankit Singla, P Brighten Godfrey, and Alexan-

dra Kolla. 2016. Measuring and understanding throughput of network

topologies. In SC’16: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE,
761–772.

[17] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel,

and Ronnie Chaiken. 2009. The nature of data center traffic: measure-

ments & analysis. In Proceedings of the 9th ACM SIGCOMM conference
on Internet measurement. Association for Computing Machinery, New

York, NY, USA, 202–208.

[18] John Kim, Wiliam J Dally, Steve Scott, and Dennis Abts. 2008.

Technology-driven, highly-scalable dragonfly topology. In 2008 In-
ternational Symposium on Computer Architecture. IEEE, 77–88.

[19] Reservoir Labs. 2021. G2-Mininet: Mininet extensions to

support the analysis of the bottleneck structure of networks.

https://github.com/reservoirlabs/g2-mininet. (2021). Retrieved June

11, 2021 from https://github.com/reservoirlabs/g2-mininet

[20] Charles E Leiserson. 1985. Fat-trees: universal networks for hardware-

efficient supercomputing. IEEE transactions on Computers 100, 10
(1985), 892–901.

[21] George Michelogiannakis, Yiwen Shen, Min Yee Teh, Xiang Meng,

Benjamin Aivazi, Taylor Groves, John Shalf, Madeleine Glick, Manya

Ghobadi, Larry Dennison, and Keren Bergman. 2019. Bandwidth

Steering in HPC Using Silicon Nanophotonics. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’19). Association for Computing Machinery,

New York, NY, USA, Article Article 41, 25 pages. https://doi.org/10.

1145/3295500.3356145

[22] Mininet. 2019. Mininet: An Instant Virtual Network on your Laptop (or

other PC). (2019). Retrieved October 24, 2019 from http://mininet.org/

[23] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal,

and B. Khan. 2013. Minimizing flow completion times in data centers.

In 2013 Proceedings IEEE INFOCOM. IEEE, New York, NY, USA, 2157–

2165. https://doi.org/10.1109/INFCOM.2013.6567018

[24] Peter Phaal, Sonia Panchen, andNeilMcKee. 2001. sFlow Specifications,

InMon Corporation. IETF RFC 3176 (2001).
[25] NOX Repo POX. 2019. The POX Network Software Platform. (2019).

=https://noxrepo.github.io/pox-doc/html/, Last accessed 09/24/2019.

[26] Jordi Ros-Giralt, Noah Amsel, Sruthi Yellamraju, James Ezick, Richard

Lethin, Yuang Jiang, Aosong Feng, Leandros Tassiulas, Zhenguo Wu,

Min Yeh Teh, and Keren Bergman. 2021. A Quantitative Theory of Bot-

tleneck Structures for Data Networks. IEEE Transactions on Networking
(under review) (2021).

[27] Jordi Ros-Giralt, Atul Bohara, Sruthi Yellamraju, M. Harper Langston,

Richard Lethin, Yuang Jiang, Leandros Tassiulas, Josie Li, Yuanlong

Tan, and Malathi Veeraraghavan. 2019. On the Bottleneck Structure

of Congestion-Controlled Networks. Proc. ACM Meas. Anal. Comput.
Syst. 3, 3, Article Article 59 (Dec. 2019), 31 pages. https://doi.org/10.
1145/3366707

[28] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C

Snoeren. 2015. Inside the social network’s (datacenter) network. In

Proceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication. 123–137.

[29] Daniele Sensi, Salvatore Girolamo, Kim McMahon, Duncan Roweth,

and Torsten Hoefler. 2020. An In-Depth Analysis of the Slingshot Inter-

connect. In 2020 SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). IEEE Computer

Society, 481–494.

[30] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-

tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie

Germano, Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,

Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2015.

Jupiter Rising: A Decade of Clos Topologies and Centralized Control

in Google’s Datacenter Network. In Proceedings of the 2015 ACMConfer-
ence on Special Interest Group on Data Communication (SIGCOMM ’15).
Association for Computing Machinery, New York, NY, USA, 183–197.

https://doi.org/10.1145/2785956.2787508

13

331

https://doi.org/10.1145/1402958.1402967
https://doi.org/10.1145/2619239.2626316
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/3012426.3022184
https://iperf.fr/
https://doi.org/10.1145/52325.52356
https://doi.org/10.1145/52325.52356
http://arxiv.org/abs/cs.NI/9809099
http://arxiv.org/abs/cs.NI/9809099
https://github.com/reservoirlabs/g2-mininet
https://doi.org/10.1145/3295500.3356145
https://doi.org/10.1145/3295500.3356145
http://mininet.org/
https://doi.org/10.1109/INFCOM.2013.6567018
=
https://doi.org/10.1145/3366707
https://doi.org/10.1145/3366707
https://doi.org/10.1145/2785956.2787508

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA J. Ros-Giralt et al.

[31] Ankit Singla, P Brighten Godfrey, and Alexandra Kolla. 2014. High

throughput data center topology design. In 11th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 14). 29–41.

[32] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and

Randy Katz. 2012. DeTail: Reducing the Flow Completion Time Tail

in Datacenter Networks. In Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM ’12). Association for Computing

Machinery, New York, NY, USA, Article 1, 12 pages. https://doi.org/

10.1145/2342356.2342390

Appendices are supporting material that has not been peer-

reviewed.

9 APPENDICES
A MATHEMATICAL PROOFS
A.1 Proof of Theorem 2.6
Optimality of wasteless designs. For a given topology and
traffic pattern, if a design 𝑐 is wasteless, then it is impossible to
improve on the network completion time or network throughput
of the design without adding more capacity. That is, if 𝑐 ′ is an
alternative design for which 𝜇 (𝑏, 𝑐 ′) < 𝜇 (𝑏, 𝑐) or 𝑇 (𝑏, 𝑐 ′) >

𝑇 (𝑏, 𝑐), then ∑
𝑙 ∈L 𝑐 ′(𝑙) > ∑

𝑙 ∈L 𝑐 (𝑙).

Proof. We first prove the statement regarding network

completion time. The total amount of data transmitted by

any flow 𝑓 over the course of the transmission is 𝑏 (𝑓). So if

𝑟𝑐 (𝑓 , 𝑡) is the rate of flow 𝑓 at time 𝑡 under design 𝑐 , then

𝑏 (𝑓) =
∫ 𝜇 (𝑏,𝑐)

0

𝑟𝑐 (𝑓 , 𝑡)𝑑𝑡

Taking sums on both sides:∑
𝑙 ∈L

∑
𝑓 ∈F𝑙

𝑏 (𝑓) =
∫ 𝜇 (𝑏,𝑐)

0

∑
𝑙 ∈L

∑
𝑓 ∈F𝑙

𝑟𝑐 (𝑓 , 𝑡)𝑑𝑡

where F𝑙 is the set of flows that use link 𝑙 . The same holds

for the alternative design 𝑐 ′:∑
𝑙 ∈L

∑
𝑓 ∈F𝑙

𝑏 (𝑓) =
∫ 𝜇 (𝑏,𝑐′)

0

∑
𝑙 ∈L

∑
𝑓 ∈F𝑙

𝑟𝑐′ (𝑓 , 𝑡)𝑑𝑡

As always, the rates must respect the capacity constraint of

each link: ∑
𝑓 ∈F𝑙

𝑟𝑐′ (𝑓 , 𝑡) ≤ 𝑐 ′(𝑙)

Combining this with the equation above,∑
𝑙 ∈L

∑
𝑓 ∈F𝑙

𝑏 (𝑓) ≤
∫ 𝜇 (𝑏,𝑐′)

0

∑
𝑙 ∈L

𝑐 ′(𝑙)𝑑𝑡 = 𝜇 (𝑏, 𝑐 ′) ·
∑
𝑙 ∈L

𝑐 ′(𝑙)

By assumption, the original design 𝑐 is wasteless, so the full

capacity of each link is used:∑
𝑓 ∈F𝑙

𝑟𝑐 (𝑓 , 𝑡) = 𝑐 (𝑙)

Thus for 𝑐 , we derive an equality instead of an inequality:∑
𝑙 ∈L

∑
𝑓 ∈F𝑙

𝑏 (𝑓) = 𝜇 (𝑏, 𝑐) ·
∑
𝑙 ∈L

𝑐 (𝑙)

Combining this with the inequality involving 𝑐 ′ above,

𝜇 (𝑏, 𝑐) ·
∑
𝑙 ∈L

𝑐 (𝑙) ≤ 𝜇 (𝑏, 𝑐 ′) ·
∑
𝑙 ∈L

𝑐 ′(𝑙)

Thus, if 𝜇 (𝑏, 𝑐 ′) < 𝜇 (𝑏, 𝑐), then ∑
𝑙 ∈L 𝑐 (𝑙) < ∑

𝑙 ∈L 𝑐 ′(𝑙). If no
bandwidth is wasted for one batch, the scheduling 𝑛 batches

sequentially wastes no bandwidth either. Thus the same

argument proves the statement about network throughput.

□

A.2 Proof of Theorem 2.8
Non-proportional designs waste bandwidth. If a design
wastes no bandwidth on a given traffic pattern, then it is the
proportional design for the traffic pattern.

Proof. Let 𝑐 be the design, and let 𝑏 be the traffic pattern.

Let 𝜇 be the completion time of the network. The design

wastes no bandwidth, so for all links 𝑙 and all 𝑡 ∈ [0, 𝜇],∑
𝑓 ∈F𝑙

𝑟𝑐 (𝑓 , 𝑡) = 𝑐 (𝑙)

where F𝑙 is the set of flows that traverse link 𝑙 . The total

amount of data transmitted by a flow 𝑓 during [0, 𝜇] is exactly
𝑏 (𝑓) (i.e., all of its data), so taking the integral of the left side
of the above equation,∫ 𝜇

0

∑
𝑓 ∈F𝑙

𝑟𝑐 (𝑓 , 𝑡)𝑑𝑡 =
∑
𝑓 ∈F𝑙

∫ 𝜇

0

𝑟𝑐 (𝑓 , 𝑡)𝑑𝑡 =
∑
𝑓 ∈F𝑙

𝑏 (𝑓)

Integrating the right side of the equality above,∫ 𝜇

0

𝑐 (𝑙)𝑑𝑡 = 𝜇 · 𝑐 (𝑙)

These two expressions are equal. Thus,

𝑐 (𝑙) = 1

𝜇

∑
𝑓 ∈F𝑙

𝑏 (𝑓)

and 𝑐 is proportional. □

A.3 Proof of Theorem 2.10
We first prove the following lemma:

Lemma A.1. If the traffic pattern is interference free, all
flows start transmitting at the same time, and the proportional
design is used, then each flow’s rate is proportional to its size:
𝑟 𝑓 = 𝛼 · 𝑏 (𝑓), where 𝛼 is the coefficient of the proportional
design.

14

332

https://doi.org/10.1145/2342356.2342390
https://doi.org/10.1145/2342356.2342390

Designing Data Center Networks Using Bottleneck Structures SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Proof. We prove the lemma by induction on the flows 𝑓 ,

going in order from smallest to largest (if there are repeated

sizes, this order may not be unique but the argument still

holds). The induction hypothesis is that all flows that pre-

cede 𝑓 in this ordering have rates proportional to their size.

This hypothesis holds for the first flow, since there are no

preceding flows. Now let 𝑓 be any flow. We must prove that

if the induction hypothesis holds, then 𝑟 𝑓 = 𝛼 · 𝑏 (𝑓). Since 𝑏
is interference-free, there exists a link 𝑙 such that 𝑓 traverses

𝑙 , and for all flows 𝑓 ′ that traverse 𝑙 , 𝑏 (𝑓 ′) ≤ 𝑏 (𝑓). Since 𝑐 is
proportional,

𝑐 (𝑙) = 𝛼
∑
𝑓 ′∈F𝑙

𝑏 (𝑓 ′)

By the induction hypothesis, all flows forwhich𝑏 (𝑓 ′) < 𝑏 (𝑓)
have rates proportional to their size. Thus, the remaining

capacity of 𝑙 is

𝑐 (𝑙) −
∑
𝑓 ′∈F𝑙

𝑏 (𝑓 ′)<𝑏 (𝑓)

𝛼 · 𝑏 (𝑓 ′) = 𝛼
∑
𝑓 ′∈F𝑙

𝑏 (𝑓 ′)=𝑏 (𝑓)

𝑏 (𝑓 ′)

This capacity is divided among the remaining flows that

traverse 𝑙 , which all have the same size as 𝑓 . Thus, the fair-

share of link 𝑙 is 𝛼 · 𝑏 (𝑓), and the transmission rate of flow

𝑓 is 𝛼 · 𝑏 (𝑓) too. By induction, the rate of any flow 𝑓 is

𝑟 𝑓 = 𝛼 · 𝑏 (𝑓). □

We now prove Theorem 2.10:

Interference-free proportional designs are wasteless.
If the traffic pattern is interference free and all flows start
transmitting at the same time, then the proportional design
wastes no bandwidth, and furthermore, all flows finish trans-
mitting at the same time.

Proof. By Lemma A.1, for all 𝑓 ∈ F , 𝑟 𝑓 = 𝛼 · 𝑏 (𝑓) where
𝛼 is the coefficient of the proportional design. For any link 𝑙 ,

the unused capacity at the beginning of the transmission is

𝑐 (𝑙) −
∑
𝑓 ∈F𝑙

𝑟 𝑓 = 𝑐 (𝑙) −
∑
𝑓 ∈F𝑙

𝛼 · 𝑏 (𝑓) = 0

Thus, at the beginning of the transmission, the capacity of

each link is fully utilized. Since each flow’s rate is propor-

tional to its size, all flows finish simultaneously. Thus, none

of the flows’ rates change during the transmission. Thus,

throughout the transmission, the capacity of each link is

fully utilized. □

A.4 Proportional Designs Yield Maximal
Throughput

Theorem A.2. For a given topology and traffic pattern, if
the design of the network is proportional, then it is impossible
to improve network throughput without adding more capacity
to the network.

Proof. We will show that if the design is proportional,

there exists some integer 𝐵 and some schedule for 𝐵 batches

such that no bandwidth is wasted. By Theorem 2.6, this

shows that any alternative design with a better completion

time for the 𝑛 batches must have more capacity than the

proportional design, and continues to hold as the number

of batches grows without bound. Assume without loss of

generality that the size of each flow 𝑏 (𝑓) is an integer. (In

this discussion, we use the word “flow” to mean one of the

flows of a single batch, not one of multiple copies of these

flows from different batches.) Let 𝐵 be the least common

multiple of {𝑏 (𝑓) | 𝑓 ∈ F }. If 𝛼 is the scale parameter of

the proportional design, then we will transmit 𝐵 batches

according to the following schedule:

For each flow 𝑓 , begin transmitting 𝑏 (𝑓) copies of 𝑓 every
𝑏 (𝑓)/𝛼 seconds until time 𝐵/𝛼 .

We now prove that for a proportional design, this schedule

wastes no bandwidth. Since 𝑐 is proportional, for each link 𝑙 ,

the capacity is

𝑐 (𝑙) = 𝛼 ·
∑
𝑓 ∈F𝑙

𝑏 (𝑓)

For each 𝑓 ∈ F𝑙 , we begin transmitting 𝑏 (𝑓) copies at time

0. Thus, the initial fairshare of link 𝑙 is

𝑐 (𝑙)∑
𝑓 ∈F𝑙 𝑏 (𝑓)

= 𝛼

This is true for all links. Thus the initial transmission rate

of each flow is 𝛼 . This means that no bandwidth is wasted;

since there are 𝑏 (𝑓) copies of each flow traversing each link,∑
𝑓 ∈F𝑙

𝑏 (𝑓)𝑟𝑐 (𝑓 , 𝑡) =
∑
𝑓 ∈F𝑙

𝑏 (𝑓) · 𝛼 = 𝑐 (𝑙)

Thus, all 𝑏 (𝑓) copies of flow 𝑓 will finish transmitting at time

𝑏 (𝑓)/𝛼 . According to our schedule, these are immediately

replaced by𝑏 (𝑓)more copies of 𝑓 . Thus, for as long as the net-

work transmits, the rate of each flow is 𝛼 , and no bandwidth

is wasted. At time 𝐵/𝛼 , the number of times that we will have

begun new transmissions of flow 𝑓 is 𝐵/𝛼÷𝑏 (𝑓)/𝛼 = 𝐵/𝑏 (𝑓)
(this is an integer since 𝑏 (𝑓) divides 𝐵 by definition). During

each of these periods, we transmit 𝑏 (𝑓) copies of 𝑓 , so by the
end we will have finished transmitting 𝐵 copies. Since we

have completed 𝐵 copies of every flow, this schedule success-

fully transmits 𝐵 batches in the time 𝐵/𝛼 without wasting

any bandwidth. Furthermore, the throughput (completed

batches per second) is 𝐵 ÷ 𝐵/𝛼 = 𝛼 □

A.5 Proof of Lemma 3.1
Optimal fat-tree with uniform traffic. Consider a gener-
alized fat-tree 𝐹𝑇 ([𝑛1, 𝑛2, ..., 𝑛𝐿]) and let 𝑐𝑖 be the capacity of
its links at level 𝑖 , for 1 ≤ 𝑖 ≤ 𝐿. Then, if the traffic pattern
is uniform, it is interference-free and the following design is
optimal:

15

333

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA J. Ros-Giralt et al.

𝑐𝑖 =
𝜌𝑖

𝜌𝐿
𝑐𝐿 (14)

where
𝜌𝑖 = 2

(𝑖∏
𝑗=1

𝑛 𝑗 − 1

) 𝐿∏
𝑗=𝑖+1

𝑛2𝑗 (15)

Proof. We first derive an expression for 𝜌𝑖 , the number

of flows traversing each link in level 𝑖 . Each edge divides the

hosts into two groups—the set of descendants of the edge,

and the complement of that set. Let 𝑑𝑖 be the number of hosts

that are descendants of each link in level 𝑖 of the tree. Then

𝑑𝑖 =

𝐿∏
𝑗=𝑖+1

𝑛 𝑗

We now count the number of flows that traverse each link in

level 𝑖 . For a given link, two flows traverse it for each pair of

one host that is descendant of the link and one host that is

not a descendant (two flows because there are two possible

directions along that path). The total number of hosts in the

tree is

𝐿∏
𝑗=1

𝑛 𝑗

Thus

𝜌𝑖 = 2

(𝐿∏
𝑗=1

𝑛 𝑗 − 𝑑𝑖

)
𝑑𝑖 = 2

(
1

𝑑𝑖

𝐿∏
𝑗=1

𝑛 𝑗 − 1

)
𝑑2𝑖 =

= 2

(𝑖∏
𝑗=1

𝑛 𝑗 − 1

) 𝐿∏
𝑗=𝑖+1

𝑛2𝑗

We now show that the design given in the lemma is op-

timal. First, note that the given traffic pattern is trivially

interference-free, since all flows are the same size. Next, note

that the design is proportional. Each link in level 𝑖 has ca-

pacity

𝑐𝑖 =
𝜌𝑖

𝜌𝐿
𝑐𝐿

and is traversed by 𝜌𝑖 flows of equal size. Thus, the capacity

of each link is proportional to the sum of the sizes of the flows

traversing it. Thus, by Theorem 2.10 the design is optimal

with respect to completion time and throughput. □

A.6 Proof of Lemma 3.2
Optimal fat-tree with skewed traffic. Consider a gener-
alized fat-tree 𝐹𝑇 ([𝑛1, 𝑛2, ..., 𝑛𝐿]) and let 𝑐𝑖 be the capacity

of its links at level 𝑖 , for 1 ≤ 𝑖 ≤ 𝐿. Assume a traffic pattern

𝑏 (𝑓) = 𝜎𝑖 , where 𝑓 is a flow that traverses a link in level

𝑖 , but no link in level 𝑖 − 1. If 𝑖 ≤ 𝑗 =⇒ 𝜎𝑖 ≤ 𝜎 𝑗 for all

1 ≤ 𝑖, 𝑗 ≤ 𝐿, then the traffic pattern is interference free and

the following design is optimal:

𝑐1 = 𝜋1𝜎1 (16)

𝑐𝑖 = 𝜋𝑖𝜎𝑖 +
𝑐𝑖−1
𝑛𝑖

(17)

where

𝜋𝑖 = (𝑛𝑖 − 1)
𝐿∏

𝑗=𝑖+1
𝑛2𝑗 (18)

Proof. We begin by deriving the expression for 𝜋𝑖 , which

is the number of flows that traverse each link in level 𝑖 but do

not traverse any link in level 𝑖−1. According to our definition
of the traffic pattern, these flows will all be of size 𝜎𝑖 . The

number of hosts that are descendants of each link in level 𝑖

is

𝑑𝑖 =

𝐿∏
𝑗=𝑖+1

𝑛 𝑗

(See the proof of Lemma 3.1.) Any given link in level 𝑖 has a

single parent link in level 𝑖 − 1. For a flow to be counted in

𝜋𝑖 , it must traverse the given link, but not its parent. That is,

it must have one endpoint that is a descendant of the given

link, and one endpoint that is a descendant of the given link’s

siblings. Since the given link is in level 𝑖 , it has 𝑖 siblings, and

each of them has 𝑑𝑖 descendants. Thus,

𝜋𝑖 = 2𝑑𝑖 · (𝑛 − 1)𝑑𝑖 = 2(𝑛 − 1)
𝐿∏

𝑗=𝑖+1
𝑛2𝑗

(We include the factor of two because there are two possible

flows for each pair of hosts, one in each direction).

We now show that the specified design is optimal. Note

that while multiple designs specify the given equations, they

are all equivalent up to scaling.

First note that because of the assumption 𝜎𝑖 ≤ 𝜎 𝑗 , the traf-

fic pattern is interference free. The flows of size 𝜎𝑖 traverse

links of level 𝑖 , which are only traversed by other flows of

smaller or equal size 𝜎1, · · ·𝜎𝑖 .
Second, we prove by induction that the given design is

proportional. By definition, the number of flows that traverse

each link in level 1 is simply 𝜋1. Thus, for links in level 1∑
𝑓 ∈F𝑙

𝑏 (𝑓) = 𝜋1𝜎1 = 𝑐1

So far, the design is proportional. Now assume that for all

links in levels 1 ≤ 𝑖 ≤ 𝑁 − 1, the capacity corresponds to

that of a proportional design:

𝑐𝑖 =
∑
𝑓 ∈F𝑙

𝑏 (𝑓)

Each switch in level 𝑖 − 1 has 𝑛𝑖 children, all with symmetric

traffic. Thus, for each class of flows 𝜎1 . . . 𝜎𝑖−1, the number

of flows of that class that traverse each link in level 𝑖 − 1 is

𝑛𝑖 times the number that traverse each link in level 𝑖 . So the

16

334

Designing Data Center Networks Using Bottleneck Structures SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

contribution of flows in the classes𝜎1 . . . 𝜎𝑖−1 to
∑

𝑓 ∈F𝑙 𝑏 (𝑓)
is simply 𝑐𝑖−1/𝑛. In addition, 𝜋𝑖 flows traverse each link in

level 𝑖 that do not traverse level 𝑖 − 1. These flows are of size

𝜎𝑖 . Thus for all 𝑙 in level 𝑖∑
𝑓 ∈F𝑙

𝑏 (𝑓) = 𝜋𝑖𝜎𝑖 +
𝑐𝑖−1
𝑛𝑖

= 𝑐1

By induction, the formula holds for links in all levels 1 ≤ 𝑖 ≤
𝐿. Since the traffic pattern is interference free and the design

is proportional, by Theorem 2.10 the design is optimal with

respect to completion time and latency.

□

A.7 Proof of Lemma 3.3
Design space of fat-trees 𝐹𝑇 (𝑛, 2).Consider a fat-tree 𝐹𝑇 (𝑛, 2)
and let 𝑐1 and 𝑐2 be the capacity of its spine and leaf links, re-
spectively. Without loss of generality, let 𝑏 (𝑓) = 1 for interpod
flows, and 𝑏 (𝑓) = 𝜎 for intrapod flows. Then,
(1) If 𝜎 ≥ 1, the optimal design satisfies 𝑐1 ≤ 𝑛2 · 𝑐2/(𝑛 + 1).
(2) If 0 < 𝜎 < 1, the proportional design satisfies 𝑛2 ·𝑐2/(𝑛+

1) < 𝑐1 < 𝑛 · 𝑐2, but every design wastes bandwidth.
(3) If 𝜎 = 0, the optimal design corresponds to 𝑐1 = 𝑛 · 𝑐2.

Proof. Applying Lemma 3.2, and substituting𝑛1 = 𝑛2 = 𝑛

and 𝐿 = 2, the proportional design is

𝑐1 = (𝑛 − 1)𝑛2𝜎1

𝑐2 = (𝑛 − 1)𝜎2 +
(𝑛 − 1)𝑛2

𝑛
𝜎1

Substituting 𝜎1 = 1, 𝜎2 = 𝜎 ,

𝑐1 = (𝑛 − 1)𝑛2

𝑐2 = (𝑛 − 1)𝜎 + (𝑛 − 1)𝑛2
𝑛

= (𝑛 − 1) (𝜎 + 𝑛)

It follows immediately that

𝑐1 =
𝑛2

𝑛 + 𝜎
𝑐2

The inequalities in the three cases all follow from plugging

the hypotheses about 𝜎 into the above equation. The opti-

mality of the proportional design in cases (1) and (3) follows

from the fact that the traffic patterns are interference free in

these cases. It remains only to show that when 0 < 𝜎 < 1,

every design wastes bandwidth. By Theorem 2.8, it suffices

to show that the proportional design wastes bandwidth. For

the proportional design, the initial fairshare allocation of

each links is the quotient of its capacities and the number of

flows that traverse it:

𝑐1

(𝑛 − 1)𝑛2 = 1

𝑐2

𝑛 − 1 + 𝑛(𝑛 − 1) =
𝜎 + 𝑛
1 + 𝑛 < 1

Since the leaf links have the smaller initial allocation, they

are the initial bottlenecks for both interpod and intrapod

flows, and bandwidth is wasted at the spinelinks. □

A.8 Proof of Lemma 4.1
Optimal 3-level folded-Clos with radix 𝑘 and skewed
traffic. Assume a traffic pattern 𝑏 (𝑓) = 𝜎𝑖 , where 𝑓 is a flow
that traverses a link in level 𝑖 , but no link in level 𝑖 − 1. Assume
that 𝜎1 = 1 and 𝜎2 = 𝜎3 = 𝜎. Then, the traffic pattern is
interference-free and the oversubscription parameter𝜔 (𝑘, 𝜎) =

𝑘
2𝛽 (𝑘,𝜎) corresponds to the optimal design, where

𝛽 (𝑘, 𝜎) =
⌈

(𝑘4 − 𝑘3)
2(𝑘3 − 𝑘2) + 𝜎 (2𝑘2 − 8)

⌉
(19)

is the number of deployed spine blocks and ⌈·⌉ is the ceiling op-
erator. Equivalently, a𝐶𝑙𝑜𝑠 (𝑘, 3) with 𝛽 spine blocks is optimal
if 𝜎1 = 1 and 𝜎2 = 𝜎3 = 𝜎 (𝑘, 𝛽), where:

𝜎 (𝑘, 𝛽) =
{

(𝑘3−𝑘2) (𝑘−2𝛽)
2𝛽 (𝑘2−4) , 𝑓 𝑜𝑟 1 ≤ 𝛽 < 𝑘/2

1, 𝑓 𝑜𝑟 𝛽 = 𝑘/2
(20)

Proof. From Theorem 2.10, we know that the optimal

design is one that makes all flows complete at the same time

in the following network configuration:

(1) Set up a flow between every pair of hosts in the folded-

Clos network;

(2) Have each host start transmitting data to every other

host according to the traffic pattern 𝑏 (𝑓).
Consider an oversubscribed configuration of the folded-Clos.

From Fig. A4-a, we know that interpod flows are bottle-

necked at the spine links while intrapod flows are bottleneck

at the leaf (or edge) links. Using QTBS [27], since interpod

flows are bottlenecked at the top level in the bottleneck struc-

ture, their transmission rate 𝑟1 can be obtained by dividing

the capacity of a spine link with the total number of flows

traversing it. It’s easy to see that the total number of flows

traversing a spine link when 𝛽 = 𝑘/2 (i.e., an oversubscrip-

tion of 1:1) is 𝜌1 = 𝑘3/2 − 𝑘2/2. Such number increases by a

factor of 𝑘/(2𝛽) when only 𝛽 spine blocks are deployed, i.e.,

𝜌1 = (𝑘3/2 − 𝑘2/2) · 𝑘/(2𝛽). Taking a normalized spine link

capacity of 𝑐1 = 1, this yields:

𝑟1 =
𝑐1

𝜌1
=

1

𝜌1
=

2𝛽/𝑘
(𝑘3 − 𝑘2)/2 =

4𝛽

𝑘4 − 𝑘3

From Fig. A4, the intrapod flows are bottlenecked at the

leaf links. It’s easy to see that the number of flows traversing

a leaf link (the third level in the folded-Clos) is 𝜌3 = 𝑘3/2− 2.

These flowswill get a fair share of the leaf link capacityminus

the bandwidth taken by the interpod flows (since these also

traverse the leaf links), leading to the following transmission

rate for both long and short intrapod flows (taking again the

normalized leaf link capacity of 𝑐3 = 1):

17

335

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA J. Ros-Giralt et al.

𝑟2 = 𝑟3 =
1 − 𝑟1 · 𝜌1
𝜌3 − 𝜌1

=
2(𝑘 − 2𝛽)
𝑘 (𝑘2 − 4)

Using Theorem 2.10, the optimal design equalizes flow

completion time, thus we have:

1

𝑟1
=

𝜎

𝑟3
Doing some algebraic manipulation we obtain:

𝛽 =
(𝑘4 − 𝑘3)

2(𝑘3 − 𝑘2) + 𝜎 (2𝑘2 − 8)
Since folded-Clos is a discrete network, we need to take

the smallest integer that is higher than the above expression,

leading to Equation (19). Equation (20) can also be easily

derived from the above expression and we leave it as an

exercise to the reader.

□

A.9 Proof of Lemma 4.3
Network completion timeof a 3-level folded-Closwith
radix 𝑘 and skewed traffic. Assume that every host sends 𝜎
bits of information to every other host located in the same pod
and 1 bit of information to every other host located in a remote
pod. The network completion time of a 3-level folded-Clos with
radix 𝑘 is:

𝜇 (𝛽, 𝜎) =
{
𝑘2+𝜎 (𝑘3−𝑘2)−4

2𝑐
, 𝑖 𝑓 𝜎 ≤ 𝜎 (𝑘, 𝛽)

𝜎 (𝑘4−𝑘3)
4𝛽𝑐

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(21)

where 𝑐 is the capacity of each switch port.

Proof. This proof is similar to the proof of Lemma 4.1

and we omit it for the sake of brevity. □

B FORMAL DEFINITION OF THE
BOTTLENECK STRUCTURE GRAPH

At the core of QTBS lies the concept of a bottleneck. The the-

ory builds upon a definition that captures the mathematical

relationship between a link and a flow bottlenecked at it:

Definition B.1. Bottleneck link. Let L and F be the sets

of links and flows in a network, respectively. Let 𝑐𝑙 and 𝑟 𝑓
be the capacity of link 𝑙 ∈ L and the transmission rate of

flow 𝑓 ∈ F , respectively. We say that flow 𝑓 is bottlenecked

at a link 𝑙 ∈ L if and only if flow 𝑓 traverses link 𝑙 and

𝜕𝑟 𝑓 /𝜕𝑐𝑙 ≠ 0.

The above definition provides the starting-point connec-

tion between QTBS and the congestion control problem.

Intuitively, the transmission rate 𝑟 𝑓 of a flow 𝑓 depends on

the capacity 𝑐𝑙 of its bottleneck link 𝑙 . This is expressed math-

ematically with the expression 𝜕𝑟 𝑓 /𝜕𝑐𝑙 ≠ 0; that is, a flow

𝑓 is bottlenecked at a link 𝑙 if and only if a change in the

capacity of 𝑙 affects flow 𝑓 ’s transmission rate. Link 𝑙 here

constitutes the point of congestion of flow 𝑓 . The key to a

congestion control algorithm is to identify each flow’s point

of congestion and determine an optimal transmission rate

that both maximizes throughput without creating conges-

tion while ensuring fairness among all flows. Further, this

definition allows us to introduce the concept of bottleneck
structure [26, 27], the core building block of QTBS used to

model the system-wide performance of a network:

Definition B.2. Bottleneck Structure. LetL and F be the set

of links and flows in a network, respectively. The bottleneck
structure is the directed graph such that:

(1) There exists a vertex for each link and each flow.

(2) If 𝑓 ∈ F traverses link 𝑙 ∈ L, then there exists a

directed edge from 𝑓 to 𝑙 .

(3) If 𝑓 ∈ F is bottlenecked at link 𝑙 ∈ L, then there exists

a directed edge from 𝑙 to 𝑓 .

As shown in [26, 27], the bottleneck structure of a net-

work describes how perturbations (small variations) in link

capacities and flow transmission rates propagate through

the network. Intuitively, imagine that flow 𝑓 is bottlenecked

at link 𝑙 . From Definition B.1, this necessarily implies that a

perturbation in the capacity of link 𝑙 will cause a change on

the transmission rate of flow 𝑓 , 𝜕𝑟 𝑓 /𝜕𝑐𝑙 ≠ 0. This is reflected

in the bottleneck structure by the presence of a directed edge

from link 𝑙 to flow 𝑓 (Condition 3 in Definition B.2). A change

in the value of 𝑟 𝑓 , in turn, affects all the other links traversed

by flow 𝑓 . This is reflected by the directed edges from 𝑓 to the

links it traverses (Condition 2). This process of (1) inducing

a perturbation in a vertex (either in a link or a flow vertex)

followed by (2) propagating the effects of the perturbation

along the departing edges of the vertex creates a ripple effect

in the bottleneck structure much like an instantaneous pic-

ture of a wave traveling through water, with some flows and

links seeing an increment in the available bandwidth (the

crest of the wave) and others seeing a reduction (the trough

of the wave).

C BOTTLENECK STRUCTURE OF
FAT-TREES

For the sake of illustration, consider the case of the binary, 2-

level fat-tree 𝐹𝑇 (2, 2) shown in Fig. 1. To study the behavior

of this network, we build its possible bottleneck structures by

using the 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝐺𝑟𝑎𝑝ℎ algorithm introduced in [26, 27]

and plot them in in Fig. A1. Depending on the design, the

interconnect has one of three possible bottleneck structures,

which we call oversubscribed (Fig. A1-a), balanced (Fig. A1-b)

18

336

Designing Data Center Networks Using Bottleneck Structures SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

and undersubscribed (Fig. A1-c)
10
. Following a similar con-

vention used in [27], each white vertex in the bottleneck

structure represents a link, while each colored vertex rep-

resents a flow, with each flow’s color indicating its path

according to the coloring scheme of Fig. 1. (Note that since

there is bidirectional communication between every pair of

hosts, for each different color there are two vertices.)

These bottleneck structures allow us to make initial quali-

tative observations about the design problem for fat-trees.

Consider a design in which the spine links are oversub-

scribed; for example, imagine that the leaf links each had a

capacity of 100 and the spine links each had a capacity of 1.

Clearly the intrapod flows, which use the spine links, will

experience a lower transmission rate than the interpod flows,

which do not. This observation is reflected in the bottleneck

structure corresponding to the oversubscribed configuration

(Fig. A1-a). Links 1 and 2 (the spine links) are at the top of the

graph, since they constrain the flows that traverse them to

have a very small rate. The interpod flows are bottlenecked

at the spine links, so they are directly adjacent to them in

the graph. The leaf links (links 3-6) do not bottleneck the in-

terpod flows, but they are traversed by them; so according to

the definition of bottleneck structure [26], they are directly

adjacent to these flows in the graph. Finally, the intrapod

flows are at the bottom of the graph because they only tra-

verse the leaf links and so they get a very fast rate. This

design is desirable when the intrapod flows transmit much

more traffic than the interpod flows, because the intrapod

flows get a correspondingly faster rate. But if all flows trans-

mit the same amount of data, then the intrapod flows will

finish transmitting long before the interpod flows, leading

to wasted bandwidth at the leaf links later on.

Next consider a design in which the spine links are un-

dersubscribed; for example, one where the leaf links have

capacity of 1 and the spine links have capacity of 100. Now

all flows (interpod and intrapod) are bottlenecked by the

leaf links and experience equal rates, and the spine links

aren’t bottlenecks at all. This is reflected in the bottleneck

structure for this case (Fig. A1-c), where all flow vertices lie

below the leaf links, and the spine links have no children in

the graph. This bottleneck structure shows that this design

wastes bandwidth, since we can reduce the capacity (and the

cost) of the spine links without harming the performance

of any flows. The balanced configuration is less costly (as

it requires less capacity in the spine links) and is as perfor-

mant as the undersubscribed configuration (since in both

configurations all flows are bottlenecked at the leaf links and,

thus, will experience the same throughput). Another way of

10
Note that when we use the terms oversubscribed and undersubscribed,

we mean with respect to the balanced solution—not with respect to a full

fat-tree, like some previous authors [1].

seeing this is to note that spine links are not bottlenecks for

any flows and, thus, some of their capacity is being wasted.

Finally, for the balanced configuration (Fig. A1-b), all flows

are bottlenecked at both the spine and the leaf links equally.

Since all flows are on the same level of the bottleneck struc-

ture, they will all get the same rate. In Section 3.1 we prove

that this design is optimal when the traffic pattern is uniform

(Definition 2.2). Since production networks typically expe-

rience skewed traffic patterns, with intrapod flows sending

more data than interpod flows [4, 5, 17], this design is usually

sub-optimal.

In the next section we introduce the set of optimal designs

and mathematically characterize some of these properties

inherent to fat-trees.

D TRAFFIC SKEWNESS AND
INTERCONNECT SIZE FOR 𝐹𝑇 (𝑛, 2)

In Fig. A2 we present a chart representing the traffic skew-

ness value needed to optimally operate a 𝐹𝑇 (𝑛, 2) as a func-
tion of the number of hosts 𝑛2 supported by the interconnect

and for various tapering parameters 𝜏 . As shown, the higher

the degree of oversubscription (lower value of 𝜏), the higher

the skewness level required to operate efficiently. In the limit

where there is no oversubscription (𝜏 = 1), the optimal skew-

ness is a horizontal line 𝜎 = 1 corresponding to the case of

uniform traffic and a balanced bottleneck structure (e.g., Fig.

A1-b).

E NETWORK COMPLETION TIME OF
𝐶𝑙𝑜𝑠 (48, 3)

Fig. A3 provides a plot of the network completion time

as a function of the oversubscription parameter 𝜔 for a

production-scale folded-Clos with radix 𝑘 = 48 assuming

a normalized link capacity of 𝑐 = 1 bps. The plot is based

on the network completion time Equation (13). In this chart,

network completion time has been normalized to (divided

by) 𝜎 to better illustrate its assymptotic behavior, so the cor-

responding traffic pattern is 𝑏 (𝑓) = 1/𝜎 for interpod flows

and 𝑏 (𝑓) = 1 for intrapod flows.

F BOTTLENECK STRUCTURE OF
FOLDED-CLOS NETWORKS

Fig. A4 provides the possible bottleneck structures of the

𝐶𝑙𝑜𝑠 (4, 3) interconnect. Link labels inside the white vertices

and flow colors correspond to those used in Fig. 4. Because

folded-Clos are discrete networks, there are only two pos-

sible bottleneck structures: oversubscribed (Fig. A4-a) and

undersubscribed (Fig. A4-b). (Thus, unlike fat-trees, folded-

Clos don’t have a balanced bottleneck structure).

19

337

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA J. Ros-Giralt et al.

l1 l2

l3 l4 l6l5

Interpod
flow

s
Leaf
links

Intrapod
flow

s

l3 l4 l6l5l1 l2

Spine links

S
pine

links

Leaf links

Interpod flows Intrapod flows

l3 l4 l6l5

Intrapod flowsInterpod
flows

Leaf links

Spine links

l1 l2

(a) (b) (c)

Figure A1: Possible bottleneck structures in a 𝐹𝑇 (2, 2): (a) oversubscribed, (b) balanced, (c) undersubscribed

0 500 1000 1500 2000 2500 3000 3500 4000
Number of hosts n² in a FT(n, 2)

0

50

100

150

200

250

Op
tim

al
 sk

ew
ne

ss
 (

)

 = 0.2
 = 0.28
 = 0.36
 = 0.44
 = 0.52
 = 0.6
 = 0.68
 = 0.76
 = 0.84
 = 0.92
 = 1.0

Figure A2: Optimal traffic skewness in 𝐹𝑇 (𝑛, 2) as a
function of the number of hosts 𝑛2.

G DESIGNING DRAGONFLY NETWORKS
While folded-Clos is the predominant topology in large-scale

data centers, evolving technology and the availability of

high-radix switches have led to other new high-performance

topologies that, for some applications, are able to deliver

better cost-performance trade-off. One such topology is drag-

onfly, introduced by Kim et al. [18], which leverages modern

switches with high radix to reduce the diameter, the latency

and in some cases the cost of the interconnect. Dragonfly

topologies are primarily being used in supercomputer inter-

connects (e.g., [29]).

A dragonfly interconnect consists of 𝑝 pods
11
, each with 𝑎

switches. Each switch is connected with every other switch

in its pod via intrapod links, forming a full-mesh. Each switch

is also connected with ℎ other switches located in other pods

via interpod links. Finally, each switch is connected with

𝑡 hosts. The switches in a dragonfly must offer at least a

11
In the context of supercomputer interconnects, these are usually referred

as groups. We use the data center-oriented term pod for consistency with

the terminology used in the analysis of the previous interconnects.

radix 𝑘 = 𝑡 +ℎ + 𝑎 − 1 and the interconnect scales to support

𝑎 · 𝑝 · 𝑡 hosts. We will use the notation 𝐷𝑟𝑎𝑔𝑜𝑛𝑓 𝑙𝑦 (𝑎, 𝑝, ℎ)
to denote a dragonfly with parameters 𝑎, 𝑝 and ℎ. (For the

sake of simplicity, we omit the connections with the hosts,

since they do not alter the core topology of the network.)

A dragonfly is said to be canonical if 𝑝 = 𝑎 + 1 and ℎ = 1,

denoted as 𝐷𝑟𝑎𝑔𝑜𝑛𝑓 𝑙𝑦 (𝑎, 𝑎 + 1, 1). Canonical dragonflies are
of interest because they ensure every pair of hosts can be

connected by traversing one single interpod link and have

minimal diameter.

The topology of a dragonfly interconnect is shown in Fig.

A5 for the case of 𝑎 = 3, 𝑝 = 14 and ℎ = 1. A dragonfly

can generally be constructed using the following iterative

procedure. Position all the pods in a circle as shown in the

figure and start with an arbitrary pod. Refer to this single

pod as group 1. From it, connect its 𝑎 · ℎ interpod links to as

many consecutive different pods as possible by traveling the

ring counterclockwise. Refer to this set of pods group 2. Now,
connect its 𝑎ℎ(𝑎ℎ − 1) interpod links to as many consecutive

different pods as possible by continuing to travel the ring

counterclockwise. Refer to this set of pods group 3. This
process is repeated until all the interpod links have been

connected. At the end of this process, we set 𝜆 to be the total

number of groups and 𝛾 to be the number of pods in the

last group. In Section G.2 we will see that the parameters

𝜆 and 𝛾 , together with 𝑎, 𝑝 and ℎ, uniquely determine the

performance of a dragonfly interconnect.

G.1 Bottleneck Structure of Dragonflies
Fig. A6 provides the possible bottleneck structures of the

𝐷𝑟𝑎𝑔𝑜𝑛𝑓 𝑙𝑦 (3, 4, 1) interconnect. Flow colors correspond to

those used in Fig. A5. There are three possible bottleneck

structures: oversubscribed (Fig. A6-a), balanced (Fig. A6-b)

and undersubscribed (Fig. Fig. A6-c).

G.2 Design Equations for Skewed Traffic
The general equations that determine an optimal dragonfly

design for skewed traffic are as follows:

20

338

Designing Data Center Networks Using Bottleneck Structures SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Oversubscription (ω:1)

N
et

w
or

k
co

m
pl

et
io

n
tim

e
(s

ec
s)

5.00E+3

1.00E+4

5.00E+4

1.00E+5

5.00E+5

1.00E+6

24
:1

12
:1 8:1 6:1 4.8

:1 4:1
3.4

2:1 3:1
2.6

6:1 2.4
:1

2.1
8:1 2:1

1.8
4:1

1.7
1:1 1.6

:1
1.5

:1
1.4

1:1
1.3

3:1
1.2

6:1 1.2
:1

1.1
4:1

1.0
9:1

1.0
4:1 1:1

σ = 1082.88

σ = 517.89

σ = 329.57

σ = 235.40

σ = 178.91

σ = 141.24

σ = 114.34

σ = 94.16

σ = 78.46

σ = 65.91

σ = 55.64

σ = 47.08

σ = 39.83

σ =33.62

σ =28.24

σ = 23.54

σ =19.38

σ = 15.69

σ = 12.38

σ = 9.41

σ = 6.72

σ = 4.28

2 more

Figure A3: Effect of oversubscribing a 𝐶𝑙𝑜𝑠 (48, 3) network on the maximum flow completion time.

(b)(a)

l1

Edge links

l1

E
dg

e
lin

ks

l8

S
pi

ne

lin
ks

l32

Aggregation links Spine links

Undersubscribed

Oversubscribed

l9 l5 l29l10 l8

l32

l25

l2 l4

l2 l4

l5l9 l10

l25

l29

(...)

(...)

l26l28

l33 l34

(Short) intrapod flow

(Long) intrapod flow

Interpod flow

(...)

l28 l26

l33 l34

Aggregation links

(...) (...)

A
gg

re
ga

tio
n

lin
ks

Figure A4: Possible bottleneck structures in a 𝐶𝑙𝑜𝑠 (4, 3): (a) oversubscribed and (b) undersubscribed

Lemma G.1. Optimal dragonfly with skewed traffic. Assume
that every host sends 𝜎 bits of information to every other host
located in the same pod and 1 bit of information to every other
host located in a remote pod. If 𝜎 ≥ 1, then the traffic pattern
is interference-free and the following design is optimal:

𝑐1 =
𝜌1

𝜎 + 𝜌2 − 1

𝑐2 (22)

where

𝜌1 =
1

ℎ

[
𝑎(𝑔 − 1) +

𝛾−2∑
𝑖=0

(
𝑎(𝑔 − 1) −

𝑖∑
𝑗=0

𝑎2ℎ(𝑎ℎ − 1) 𝑗
)]
(23)

21

339

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA J. Ros-Giralt et al.

1 pod
group 1

a·h pods
group 2

a·h·(ah-1) pods
group 3

λ=4 pods
group 𝛄=4

Intrapod link
Interpod link

Figure A5: Dragonfly topology with 𝑎 = 3, 𝑝 = 14, ℎ = 1,
resulting in 𝜆 = 4 and 𝛾 = 4.

𝜌2 = 𝑔 + 𝜆 + 1

𝑎 − 1

𝛾−2∑
𝑖=0

[
𝑎ℎ(𝑎 − 1) (𝑎ℎ − 1)𝑖+

(𝑎 − 1)ℎ
𝑎ℎ − 1

(
𝑎(𝑔 − 1) −

𝑖∑
𝑗=0

𝑎2ℎ(𝑎ℎ − 1) 𝑗
)]

(24)

𝛾 =𝑚𝑎𝑥

{
𝑥 | 𝑎(𝑔 − 1) −

𝑥−2∑
𝑖=0

𝑎2ℎ(𝑎ℎ − 1)𝑖 ≥ 0

}
(25)

𝜆 = 𝑔 − 1 −
𝛾−1∑
𝑖=0

ℎ𝑎(𝑎ℎ − 1)𝑖 (26)

Proof. This proof is similar to the proof of Lemma 3.2

and we omit it for the sake of brevity. □

With simple algebraicmanipulations, we can use the above

lemma to derive the optimal design for a canonical dragonfly

by setting 𝑝 = 𝑎 + 1 and ℎ = 1:

𝑐1 =
𝑎2

𝜎 + 2𝑎
𝑐2 (27)

Since a canonical dragonfly has a total of 𝑎(𝑎 + 1)/2 inter-
pod links and 𝑎(𝑎 − 1) (𝑎 + 1)/2 intrapod links, its tapering

parameter 𝜏 corresponds to12:

𝜏 =
𝑐1 · 𝑎 · (𝑎 + 1)/2

𝑐2 · 𝑎 · (𝑎 − 1) (𝑎 + 1)/2 =
𝑎2

(𝜎 + 2𝑎) (𝑎 − 1) (28)

For 𝜎 = 0, we have that the optimal design has a tapering

parameter 𝜏 = 𝑎/(2(𝑎 − 1)). Interestingly, this is in contrast

with the optimal fat-tree design for 𝜎 = 0, which corresponds

to a full fat-tree with 𝜏 = 1. This implies that dragonflies

require a maximum tapering parameter which is lower than

12
Recall from Section 3 that we defined 𝜏 as the ratio of the aggregated

interpod link capacity divided by the aggregated intrapod link capacity

that of a fat-tree. In other words, an optimal design for 𝜎 =

0 requires less aggregated capacity in the interpod links

relative to the intrapod links for canonical dragonflies than

it requires for fat-trees. This also implies that designing a

dragonfly by allocating as much aggregated capacity to the

interpod links as the intrapod links (i.e., 𝜏 = 1 and 𝑐1 =

(𝑎 − 1) · 𝑐2) is always suboptimal, as the optimal design for

𝜎 = 0 (i.e., 𝑐1 = 𝑎 · 𝑐2/2) is less costly and yields the same

network completion time and throughput.

Fig. A7 shows the optimal tapering parameter 𝜏 as a func-

tion of traffic skewness 𝜎 for a variety of canonical drag-

onflies. Similar to the case of fat-trees in Fig. 3, all optimal

designs require oversubscriging the interpod links (𝜏 < 1)

and, as the size of the interconnect increases, the optimal ta-

pering parameter increases too. As an example, suppose that

our goal is to design a canonical dragonfly𝐷𝑟𝑎𝑔𝑜𝑛𝑓 𝑙𝑦(6, 7, 1)
(i.e.,𝑎 = 6) to transport a traffic patternwith skewness𝜎 = 15.

By using the chart in Fig. 3, we can identify the needed de-

sign (represented with a yellow dot) at the intersection of

the red curve with the line 𝜎 = 15, resulting in a tapering

parameter of 𝜏 = .26667.

The following lemma characterizes the design space of

canonical dragonflies 𝐷𝑟𝑎𝑔𝑜𝑛𝑓 𝑙𝑦 (𝑎, 𝑎 + 1, 1):13

Lemma G.2. Design space of canonical dragonflies. Consider
a canonical dragonfly 𝐷𝑟𝑎𝑔𝑜𝑛𝑓 𝑙𝑦 (𝑎, 𝑎 + 1, 1) and let 𝑐1 and 𝑐2
be the capacity of its interpod and intrapod links, respectively.
Without loss of generality, let 𝑏 (𝑓) = 1 for interpod flows, and
𝑏 (𝑓) = 𝜎 for intrapod flows. Then,

(1) If 𝜎 ≥ 1, the optimal design satisfies 𝑐1 ≤ 𝑎2 ·𝑐2/(1+2𝑎).
(2) If 𝜎 < 1, the optimal design satisfies 𝑎2 · 𝑐2/(1 + 2𝑎) <

𝑐1 ≤ 𝑎 · 𝑐2/2.

Proof. See appendix A.7. □

The above lemma is pictured in Fig. A8 as follows. The

region of optimal designs for 𝜎 > 1 is marked with gray hash

lines; it falls below the optimal design line for uniform (𝜎 = 1)

traffic 𝑐1 = 𝑎2 · 𝑐2/(1 + 2𝑎), shown as a red line. Note that

the optimal designs for 𝜎 > 1 correspond to oversubscribed

interconnects (shown in Fig. A6-a) because they allocate less

bandwidth to the spine links than a balanced design. The

region of optimal designs for 𝜎 < 1 is marked with red hash

lines, bordered by the design 𝑐1 = 𝑎 · 𝑐2/2 (corresponding
to the optimal design when 𝜎 = 0) and the optimal design

line for uniform traffic. These designs correspond to under-

subscribed interconnects (shown in Fig. A1-c) because they

allocate more bandwidth to the spine links than a balanced

design. Similarly to fat-trees (although bordered by a differ-

ent design curve), there exists no traffic pattern for which

a design in the region 𝑐1 > 𝑎 · 𝑐2/2 is optimal, because the

13
This lemma can be generalized to support 𝐷𝑟𝑎𝑔𝑜𝑛𝑓 𝑙𝑦 (𝑎, 𝑝,ℎ) , we leave

this as an exercise to the reader.

22

340

Designing Data Center Networks Using Bottleneck Structures SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

l3l7 l11l8l2l1 l4 l5 l6l9 l10 l13l12 l14l15 l16 l17 l18

Interpod LinksIntrapod Links

…... …... …... …... …... …...

l3 l7l11 l8l2l1 l4l5 l6 l9l10 l13l12 l14l15 l16 l17 l18

Interpod Links Intrapod Links

…... …... …... …... …... …...

Intrapod Links

l3 l11l5 l6 l10 l15

Interpod
Links

l1

…... …... …... …... …... …...

l2 l4 l7 l8 l9 l12 l13 l14 l16 l17 l18

Interpod
Flow

s

Intrapod
Links

Intrapod
Flow

s

**Colored nodes: intrapod flows
***Dots: interpod flows

l1 l2 l4 l7 l8 l9 l12 l13 l14 l16 l17 l18

Intrapod
Links

Intrapod
Flow

s…... …... …...…...…...

l3
l11l5 l6 l10

l15

Interpod
Links

…... …... …... …... …... …...

Interpod
Flow

s

…...

Balanced V1

Balanced V2

Oversubscribed

Undersubscribed

Intrapod flow Short interpod flow Long interpod flow

(...)(...)(...)

Intrapod Links

(...)

Intrapod
links

(...) (...)

(...)

(...)

(...)

(...) (...)

(...)

(...)

Balanced
Oversubscribed

Undersubscribed

Intrapod flow

(Short) interpod flow

(Long) interpod flow

Interpod
links

Interpod Links

Interpod links

Intrapod
 links

(a) (b) (c)

Figure A6: Possible bottleneck structures in a 𝐷𝑟𝑎𝑔𝑜𝑛𝑓 𝑙𝑦(3, 4, 1): (a) oversubscribed, (b) balanced and (c) undersub-
scribed

0 20 40 60 80 100
Traffic skewness ()

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Op
tim

al
 ta

pe
rin

g
pa

ra
m

et
er

 (
)

DF(4,5,1)
DF(6,7,1)
DF(12,13,1)
DF(22,23,1)
DF(32,33,1)
DF(42,43,1)
DF(52,53,1)
DF(62,63,1)
DF(72,73,1)
DF(82,83,1)
DF(92,93,1)
[a=6, =15]

Figure A7: Optimal tapering parameter as a function
of traffic skewness for various 𝐷𝑟𝑎𝑔𝑜𝑛𝑓 𝑙𝑦(𝑎, 𝑎 + 1, 1) de-
signs.

design 𝑐1 = 𝑎 ·𝑐2/2 yields the same network completion time

and throughput and is less costly. Such designs are inefficient
and network architects should avoid using them no matter

the traffic pattern.

As an example, a 𝐷𝑟𝑎𝑔𝑜𝑛𝑓 𝑙𝑦(16, 17, 1) design in which in-

trapod flows carry ten times more traffic than interpod flows

(𝜎 = 10) has an optimal tapering parameter 𝜏 = 0.40635,

yielding the design 𝑐1/𝑐2 = 6.09523. This design is shown

in Fig. A8 as a blue dot. Similarly, the same interconnect

with uniform traffic (𝜎 = 1) has an optimal tapering param-

eter 𝜏 = 0.51717, yielding the design 𝑐1/𝑐2 = 7.75757. This

corresponds to an interconnect with a balanced bottleneck

structure (e.g., Fig. A6-b), and is plotted in Fig. A8 as a green

dot.

8 10 12 14 16 18 20
a

3

4

5

6

7

8

9

10

11

12

De
sig

n
(c

1
/ c

2)

Efficient designs

Inefficient designs

Balanced canonical dragonfly designs =1
Design frontier for canonical dragonflies =0
Optimal design for a=16 and =10
Optimal design for a=16 and =1
Efficient designs for > 1
Efficient designs for 1
Inefficient designs

Figure A8: Design space for 𝐷𝑟𝑎𝑔𝑜𝑛𝑓 𝑙𝑦(𝑎, 𝑎 + 1, 1).

G.3 Experiments with Dragonfly Networks
In this section we empirically demonstrate the existence

of optimal dragonfly designs. (We follow a similar method-

ology used in Section 5.1 to empirically validate optimal

fat-tree designs.) We start by simulating a 𝐷𝑟𝑎𝑔𝑜𝑛𝑓 𝑙𝑦(3, 4, 1)
interconnect—i.e., a dragonflywith 4 pods, eachwith 3 routers

(a total of 12 routers), every router in a pod is connected

with every other router in the same pod (full-mesh connec-

tivity) using intrapod links (a total of 12 intrapod links) and

each router is connected with a router located in a differ-

ent pod via an interpod link (a total of 6 interpod links).

We connect every router to a host (a total of 12 hosts) and

connect every pair of nodes with two TCP flows (one for

each direction), for a total of 132 flows. In the first set of

experiments, we assume uniform traffic (𝜎 = 1). Using Equa-

tion (27), we have that the optimal design corresponds to

𝑐1 = 𝑎2 · 𝑐2/(1 + 2𝑎) = 3
2 · 𝑐2/(1 + 2 · 3) = 1.2857 · 𝑐2.

Fig. A9 shows the result of simulating a variety of designs

with 𝑐2 = 20Mbps and 𝑐1 ∈ {5, 10, 20, 25.71, 30, 40, 60}Mbps—

resulting in values for 𝑐1/𝑐2 of 0.25, 0.5, 1, 1.2857, 1.5, 2 and 3.
(Again, without loss of generality, we could pick any value for

23

341

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA J. Ros-Giralt et al.

𝑐2 and scale 𝑐1 accordingly). Results are shown for the BBR,

Cubic and Reno congestion control algorithms, and for both

experimental and theoretical (according to QTBS) values. As

predicted by the QTBS mathematical model, the plots show

that the optimal design is found at 𝑐1/𝑐2 = 1.2857. According

to Theorem 2.10, this design wastes no bandwidth, minimizes

network completion time and maximizes network through-

put. Designs in the region 𝑐1/𝑐2 < 1.2857 waste bandwidth

at the intrapod links, increase network completion time (due

to the longer completion time of the interpod flows) and

decrease network throughput. As shown also, a design in the

region 𝑐1/𝑐2 > 1.2857 achieves the same network completion

time and network throughput as the design 𝑐1/𝑐2 = 1.2857,

regardless of how large the capacity of a spine link (𝑐1) is.

A design in this region wastes bandwidth at the spine links

and is more costly than the optimal design, thus it should

also be avoided.

The three congestion control algorithms closely follow

the theoretical QTBS model, all reaching an inflection point

right at the optimal design 𝑐1/𝑐2 = 1.2857. Increasing the

capacity of 𝑐1/𝑐2 beyond this value yields a design with the

same network’s completion time (and, thus the same net-

work throughput) but with a higher cost. Once again and

similar to the results shown in Section 5.1, BBR is able to

more accurately perform according to the optimal design

than Cubic and Reno. This is also shown in Fig. A10, where

BBR yields a higher Jain’s index. Note that, as in all other

experiments, all the results follow the model for network

completion time from slightly above because of imperfec-

tions of the congestion control algorithms.

Fig. A11 shows the cumulative distribution function of

all the experiments run in Fig. A9a. The figure shows how

increasing 𝑐1 helps reduce the maximum flow completion

time until the optimal value 𝑐1 = 1.2857 · 𝑐2 is reached. At
this point, all completion times are equalized (Theorem 2.10)

and increasing 𝑐1 beyond this value does not qualitatively

alter the completion time of the flows.

In Fig. A12 we present experiments using a skewed traffic

pattern consisting of 𝑏 (𝑓) = 1 for interpod flows and 𝑏 (𝑓) =
𝜎 for intrapod flows, with 𝜎 ∈ {2, 4, 10}. Using Equation (27),

we have that the optimal design satisfies 𝑐1 = 𝑎2 ·𝑐2/(𝜎+2𝑎) =
9 · 𝑐2/(𝜎 + 6). This leads to three optimal designs, one for

each traffic pattern: 𝑐1 = 1.125 · 𝑐2 for 𝜎 = 2, 𝑐1 = 0.9 · 𝑐2 for
𝜎 = 4, and 𝑐1 = 0.5625 · 𝑐2 for 𝜎 = 10. Fig. A12 shows that,

experimentally, the interconnect behaves as QTBS predicts,

minimizing network completion time right at the optimal

design for each of traffic skewness value. As predicted by

the model, for any design allocating more capacity in the

interpod links than the optimal design, network completion

time does not improve. Network architects should avoid

these designs.

H G2-MININET
The G2-Mininet tool [19] provides a powerful, flexible in-

terface to emulate networks of choice with customizable

topology, routing and traffic flow configurations, with a fo-

cus to help experimentally demonstrate the quantitive theory

of bottleneck structures (QTBS). It uses Mininet [22] and the

POX SDN controller [25] to create such highly customizable

networks. It also uses iPerf [13] internally to generate net-

work traffic and offers an interface to configure various flow

parameters such as the source and destination hosts, routing,

start time, data size, and traffic pattern, among others. G2-

Mininet also offers an integration with sFlow-RT [24] agent

that enables real-time access to traffic flows and real-time

computation of the emulated network’s bottleneck structure.

The extensions to Mininet include scripts to automatically

generate the specifications of data center networks such as

fat-trees, folded-Clos and dragonflies, that are then used as

inputs to the emulation environment to measure the accu-

racy of the QTBS model and equations. Mininet uses real,

production grade TCP/IP stack from the Linux kernel, en-

abling a testbed to run experiments using congestion control

protocols such as BBR, Cubic and Reno to study bottleneck

structures and flow performance. Apart from its flexible con-

figuration interface, G2-Mininet also offers a set of useful

utilities to compute and plot various performance metrics

such as instantaneous network throughput, flow conver-

gence time, flow completion time, Jain’s fairness index, and

the computation in real time of the network’s bottleneck

structure, among others for a given experiment. G2-Mininet
and all the experiments presented in this paper are made

available as open source software (see [19]).

I ADDITIONAL EXPERIMENTS
As mentioned in Section 5, more than 600 simulation (or

the equivalent of 800 hours) were run to verify that the

three interconnects behave according to the design equations

presented in this paper. Because only a limited selection of

these experimental results are included in the main body of

this paper, in Figures A13, A14, A15, A16, A17, A18, A19 and

A20 we include other complementary results.

J DESIGN TABLES FOR 𝐹𝑇 ([𝑛1, 𝑛2])
This section presents sample tables that can help network

designers identify optimal designs as a function of network

size and traffic pattern. Tables can be derived for any of the

studied interconnects using the design equations provided

in this paper. For the sake of illustration, we only provide

two examples for the design of fat-trees for skewness 𝜎 = 1

(Table 1) and 𝜎 = 2 (Table 2). The parameters shown in this

table are:

• 𝑐1: capacity of spine links.

24

342

Designing Data Center Networks Using Bottleneck Structures SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

0.25 0.50 1.00 1.291.50 2.00 2.50 3.00
C1/C2

1000

1500

2000

2500

3000

3500

4000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Measured max completion time
Theoretical max completion time
Optimal design

(a) BBR.

0.25 0.50 1.00 1.291.50 2.00 2.50 3.00
C1/C2

1000

1500

2000

2500

3000

3500

4000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Measured max completion time
Theoretical max completion time
Optimal design

(b) Cubic.

0.25 0.50 1.00 1.291.50 2.00 2.50 3.00
C1/C2

1000

1500

2000

2500

3000

3500

4000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Measured max completion time
Theoretical max completion time
Optimal design

(c) Reno.

Figure A9: Network completion time for 𝐷𝑟𝑎𝑔𝑜𝑛𝑓 𝑙𝑦(3, 4, 1) and uniform traffic.

[H]

0.5 1.0 1.5 2.0 2.5 3.0
C1/C2

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ja
in

's
Fa

irn
es

s I
nd

ex

BBR
Cubic
Reno

Figure A10: Jain’s fairness index for 𝐷𝑟𝑎𝑔𝑜𝑛𝑓 𝑙𝑦(3, 4, 1).

0 1000 2000 3000 4000
Flow completion time (secs)

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pe

rim
en

ta
l C

DF

c1 = 0.25 · c2
c1 = 0.5 · c2
c1 = 1 · c2
c1 = 1.1 · c2
c1 = 1.2 · c2
c1 = 1.28 · c2
c1 = 1.3 · c2
c1 = 1.4 · c2
c1 = 1.5 · c2
c1 = 2 · c2
c1 = 3 · c2

Figure A11: CDFs of flow completion time for
𝐷𝑟𝑎𝑔𝑜𝑛𝑓 𝑙𝑦 (3, 4, 1).

• 𝑐2: capacity of leaf links.

• 𝑟1: transmission rate of interpod flows.

• 𝑟2: transmission rate of intrapod flows.

• 𝑠1: fair share of spine links.

• 𝑠2: fair share of leaf links.
• 𝜏 : tapering parameter.

• 𝜂: total flow throughput divided by total link capac-

ity.
14

14
This metric provides a simple estimate of how efficient is this design.

25

343

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA J. Ros-Giralt et al.

0.25 0.50 1.00 1.291.50 2.00 2.50 3.00
C1/C2

400

600

800

1000

1200

1400

1600

1800

2000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Measured max completion time
Theoretical max completion time
Optimal design

(a) Traffic skewness 𝜎 = 2.

0.25 0.50 1.00 1.291.50 2.00 2.50 3.00
C1/C2

300

400

500

600

700

800

900

1000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Measured max completion time
Theoretical max completion time
Optimal design

(b) Traffic skewness 𝜎 = 4.

0.25 0.50 1.00 1.291.50 2.00 2.50 3.00
C1/C2

150

200

250

300

350

400

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Measured max completion time
Theoretical max completion time
Optimal design

(c) Traffic skewness 𝜎 = 10.

Figure A12: Network completion time for 𝐷𝑟𝑎𝑔𝑜𝑛𝑓 𝑙𝑦(3, 4, 1) using BBR.

0.5 1 1.5 2 3 4 5
C1/C2 value

200

400

600

800

1000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

1.33

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(a) BBR.

0.5 1 1.5 2 3 4 5
C1/C2 value

200

400

600

800

1000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

1.33

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(b) Cubic.

0.5 1 1.5 2 3 4 5
C1/C2 value

200

400

600

800

1000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

1.33

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(c) Reno.

Figure A13: Flow completion time for 𝐹𝑇 (2, 2) and uniform traffic.

0.4 0.6 0.8 1.0 1.2 1.4 1.6
C1/C2 value

2000

3000

4000

5000

6000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(a) Traffic skewness 𝜎 = 2.

0.200 0.400 0.666 0.800 1.000 1.200 1.400
C1/C2 value

1000

2000

3000

4000

5000

6000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(b) Traffic skewness 𝜎 = 4.

0.100 0.200 0.333 0.500 0.700 0.900 1.100
C1/C2 value

1000

2000

3000

4000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(c) Traffic skewness 𝜎 = 10.

Figure A14: Flow completion time for 𝐹𝑇 (2, 2) using BBR.

26

344

Designing Data Center Networks Using Bottleneck Structures SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

0.4 0.6 0.8 1.0 1.2 1.4 1.6
C1/C2 value

2000

3000

4000

5000

6000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(a) Traffic skewness 𝜎 = 2.

0.200 0.400 0.666 0.800 1.000 1.200 1.400
C1/C2 value

1000

2000

3000

4000

5000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(b) Traffic skewness 𝜎 = 4.

0.100 0.200 0.333 0.500 0.700 0.900 1.100
C1/C2 value

500

1000

1500

2000

2500

3000

3500

4000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(c) Traffic skewness 𝜎 = 10.

Figure A15: Flow completion time for 𝐹𝑇 (2, 2) using Cubic.

0.4 0.6 0.8 1.0 1.2 1.4 1.6
C1/C2 value

1500

2000

2500

3000

3500

4000

4500

5000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(a) Traffic skewness 𝜎 = 2.

0.200 0.400 0.666 0.800 1.000 1.200 1.400
C1/C2 value

1000

2000

3000

4000

5000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(b) Traffic skewness 𝜎 = 4.

0.100 0.200 0.333 0.500 0.700 0.900 1.100
C1/C2 value

500

1000

1500

2000

2500

3000

3500

4000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(c) Traffic skewness 𝜎 = 10.

Figure A16: Flow completion time for 𝐹𝑇 (2, 2) using Reno.

0.6 1.0 1.4 1.8 2.2 2.6
C1/C2 value

2000

4000

6000

8000

10000

12000

14000

16000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(a) Traffic skewness 𝜎 = 2.

0.600 0.800 1.000 1.286 1.500 1.700
C1/C2 value

3000

4000

5000

6000

7000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(b) Traffic skewness 𝜎 = 4.

0.100 0.300 0.500 0.692 0.900 1.100 1.300 1.500
C1/C2 value

2500

5000

7500

10000

12500

15000

17500

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(c) Traffic skewness 𝜎 = 10.

Figure A17: Flow completion time for 𝐹𝑇 (3, 2) using Cubic.

27

345

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA J. Ros-Giralt et al.

0.6 1.0 1.4 1.8 2.2 2.6
C1/C2 value

2000

4000

6000

8000

10000

12000

14000

16000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(a) Traffic skewness 𝜎 = 2.

0.600 0.800 1.000 1.286 1.500 1.700
C1/C2 value

3000

4000

5000

6000

7000

8000

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(b) Traffic skewness 𝜎 = 4.

0.100 0.300 0.500 0.692 0.900 1.100 1.300 1.500
C1/C2 value

2500

5000

7500

10000

12500

15000

17500

Co
m

pl
et

io
n

tim
e

(s
ec

s)

Theoretical completion time of interpod flows
Theoretical completion time of intrapod flows
Measured completion time of interpod flows
Measured completion time of intrapod flows
Optimal design

(c) Traffic skewness 𝜎 = 10.

Figure A18: Flow completion time for 𝐹𝑇 (3, 2) using Reno.

0.4 0.6 0.8 1.0 1.2 1.4 1.6
C1/C2 value

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fa
irn

es
s i

nd
ex

Fairness index (BBR)
Fairness index (Cubic)
Fairness index (Reno)

(a) Traffic skewness 𝜎 = 2.

0.200 0.400 0.666 0.800 1.000 1.200 1.400
C1/C2 value

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fa
irn

es
s i

nd
ex

Fairness index (BBR)
Fairness index (Cubic)
Fairness index (Reno)

(b) Traffic skewness 𝜎 = 4.

0.100 0.200 0.333 0.500 0.700 0.900 1.100
C1/C2 value

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fa
irn

es
s i

nd
ex

Fairness index (BBR)
Fairness index (Cubic)
Fairness index (Reno)

(c) Traffic skewness 𝜎 = 10.

Figure A19: Jain’s fairness index for 𝐹𝑇 (2, 2).

0.6 1.0 1.4 1.8 2.2 2.6
C1/C2 value

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fa
irn

es
s i

nd
ex

Fairness index (BBR)
Fairness index (Cubic)
Fairness index (Reno)

(a) Traffic skewness 𝜎 = 2.

0.600 0.800 1.000 1.286 1.500 1.700
C1/C2 value

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fa
irn

es
s i

nd
ex

Fairness index (BBR)
Fairness index (Cubic)
Fairness index (Reno)

(b) Traffic skewness 𝜎 = 4.

0.100 0.300 0.500 0.692 0.900 1.100 1.300 1.500
C1/C2 value

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fa
irn

es
s i

nd
ex

Fairness index (BBR)
Fairness index (Cubic)
Fairness index (Reno)

(c) Traffic skewness 𝜎 = 10.

Figure A20: Jain’s fairness index for FT(3, 2).

28

346

Designing Data Center Networks Using Bottleneck Structures SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Table 1: Optimal fat-tree designs 𝐹𝑇 ([𝑛1, 𝑛2]) for skewness 𝜎 = 1 (uniform traffic).

𝑛1 𝑛2 𝑐1/𝑐2 𝑠1 𝑠2 𝜂 𝜏

2 4 1.3333 0.25 0.25 0.6 1.5

2 6 1.8 0.1111 0.1111 0.625 1.6667

2 8 2.2857 0.0625 0.0625 0.6364 1.75

2 10 2.7778 0.04 0.04 0.6429 1.8

2 12 3.2727 0.0278 0.0278 0.6471 1.8333

2 14 3.7692 0.0204 0.0204 0.65 1.8571

2 16 4.2667 0.0156 0.0156 0.6522 1.875

2 18 4.7647 0.0123 0.0123 0.6538 1.8889

2 20 5.2632 0.01 0.01 0.6552 1.9

2 22 5.7619 0.0083 0.0083 0.6562 1.9091

2 24 6.2609 0.0069 0.0069 0.6571 1.9167

2 26 6.76 0.0059 0.0059 0.6579 1.9231

2 28 7.2593 0.0051 0.0051 0.6585 1.9286

2 30 7.7586 0.0044 0.0044 0.6591 1.9333

2 32 8.2581 0.0039 0.0039 0.6596 1.9375

2 34 8.7576 0.0035 0.0035 0.66 1.9412

2 36 9.2571 0.0031 0.0031 0.6604 1.9444

2 38 9.7568 0.0028 0.0028 0.6607 1.9474

2 40 10.2564 0.0025 0.0025 0.661 1.95

2 42 10.7561 0.0023 0.0023 0.6613 1.9524

2 44 11.2558 0.0021 0.0021 0.6615 1.9545

2 46 11.7556 0.0019 0.0019 0.6618 1.9565

2 48 12.2553 0.0017 0.0017 0.662 1.9583

3 6 1.6 0.125 0.125 0.5556 1.25

3 9 2.25 0.0556 0.0556 0.5714 1.3333

3 12 2.9091 0.0312 0.0312 0.5789 1.375

3 15 3.5714 0.02 0.02 0.5833 1.4

3 18 4.2353 0.0139 0.0139 0.5862 1.4167

3 21 4.9 0.0102 0.0102 0.5882 1.4286

3 24 5.5652 0.0078 0.0078 0.5897 1.4375

3 27 6.2308 0.0062 0.0062 0.5909 1.4444

3 30 6.8966 0.005 0.005 0.5918 1.45

3 33 7.5625 0.0041 0.0041 0.5926 1.4545

3 36 8.2286 0.0035 0.0035 0.5932 1.4583

3 39 8.8947 0.003 0.003 0.5938 1.4615

𝑛1 𝑛2 𝑐1/𝑐2 𝑠1 𝑠2 𝜂 𝜏

3 42 9.561 0.0026 0.0026 0.5942 1.4643

3 45 10.2273 0.0022 0.0022 0.5946 1.4667

3 48 10.8936 0.002 0.002 0.5949 1.4688

4 8 1.7143 0.0833 0.0833 0.5385 1.1667

4 12 2.4545 0.037 0.037 0.55 1.2222

4 16 3.2 0.0208 0.0208 0.5556 1.25

4 20 3.9474 0.0133 0.0133 0.5588 1.2667

4 24 4.6957 0.0093 0.0093 0.561 1.2778

4 28 5.4444 0.0068 0.0068 0.5625 1.2857

4 32 6.1935 0.0052 0.0052 0.5636 1.2917

4 36 6.9429 0.0041 0.0041 0.5645 1.2963

4 40 7.6923 0.0033 0.0033 0.5652 1.3

4 44 8.4419 0.0028 0.0028 0.5658 1.303

4 48 9.1915 0.0023 0.0023 0.5663 1.3056

5 10 1.7778 0.0625 0.0625 0.5294 1.125

5 15 2.5714 0.0278 0.0278 0.5385 1.1667

5 20 3.3684 0.0156 0.0156 0.5429 1.1875

5 25 4.1667 0.01 0.01 0.5455 1.2

5 30 4.9655 0.0069 0.0069 0.5472 1.2083

5 35 5.7647 0.0051 0.0051 0.5484 1.2143

5 40 6.5641 0.0039 0.0039 0.5493 1.2188

5 45 7.3636 0.0031 0.0031 0.55 1.2222

6 12 1.8182 0.05 0.05 0.5238 1.1

6 18 2.6471 0.0222 0.0222 0.5312 1.1333

6 24 3.4783 0.0125 0.0125 0.5349 1.15

6 30 4.3103 0.008 0.008 0.537 1.16

6 36 5.1429 0.0056 0.0056 0.5385 1.1667

6 42 5.9756 0.0041 0.0041 0.5395 1.1714

6 48 6.8085 0.0031 0.0031 0.5402 1.175

7 14 1.8462 0.0417 0.0417 0.52 1.0833

7 21 2.7 0.0185 0.0185 0.5263 1.1111

7 28 3.5556 0.0104 0.0104 0.5294 1.125

7 35 4.4118 0.0067 0.0067 0.5312 1.1333

7 42 5.2683 0.0046 0.0046 0.5325 1.1389

8 16 1.8667 0.0357 0.0357 0.5172 1.0714

𝑛1 𝑛2 𝑐1/𝑐2 𝑠1 𝑠2 𝜂 𝜏

8 24 2.7391 0.0159 0.0159 0.5227 1.0952

8 32 3.6129 0.0089 0.0089 0.5254 1.1071

8 40 4.4872 0.0057 0.0057 0.527 1.1143

8 48 5.3617 0.004 0.004 0.5281 1.119

9 18 1.8824 0.0312 0.0312 0.5152 1.0625

9 27 2.7692 0.0139 0.0139 0.52 1.0833

9 36 3.6571 0.0078 0.0078 0.5224 1.0938

9 45 4.5455 0.005 0.005 0.5238 1.1

10 20 1.8947 0.0278 0.0278 0.5135 1.0556

10 30 2.7931 0.0123 0.0123 0.5179 1.0741

10 40 3.6923 0.0069 0.0069 0.52 1.0833

11 22 1.9048 0.025 0.025 0.5122 1.05

11 33 2.8125 0.0111 0.0111 0.5161 1.0667

11 44 3.7209 0.0063 0.0062 0.5181 1.075

12 24 1.913 0.0227 0.0227 0.5111 1.0455

12 36 2.8286 0.0101 0.0101 0.5147 1.0606

12 48 3.7447 0.0057 0.0057 0.5165 1.0682

13 26 1.92 0.0208 0.0208 0.5102 1.0417

13 39 2.8421 0.0093 0.0093 0.5135 1.0556

14 28 1.9259 0.0192 0.0192 0.5094 1.0385

14 42 2.8537 0.0085 0.0085 0.5125 1.0513

15 30 1.931 0.0179 0.0179 0.5088 1.0357

15 45 2.8636 0.0079 0.0079 0.5116 1.0476

16 32 1.9355 0.0167 0.0167 0.5082 1.0333

16 48 2.8723 0.0074 0.0074 0.5109 1.0444

17 34 1.9394 0.0156 0.0156 0.5077 1.0312

18 36 1.9429 0.0147 0.0147 0.5072 1.0294

19 38 1.9459 0.0139 0.0139 0.5068 1.0278

20 40 1.9487 0.0132 0.0132 0.5065 1.0263

21 42 1.9512 0.0125 0.0125 0.5062 1.025

22 44 1.9535 0.0119 0.0119 0.5059 1.0238

23 46 1.9556 0.0114 0.0114 0.5056 1.0227

24 48 1.9574 0.0109 0.0109 0.5054 1.0217

29

347

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA J. Ros-Giralt et al.

Table 2: Optimal fat-tree designs 𝐹𝑇 ([𝑛1, 𝑛2]) for skewness 𝜎 = 2.

𝑛1 𝑛2 𝑐1/𝑐2 𝑠1 𝑠2 𝜂 𝜏

2 4 1.0 0.25 0.5 0.6667 2.0

2 6 1.2857 0.1111 0.2222 0.7 2.3333

2 8 1.6 0.0625 0.125 0.7143 2.5

2 10 1.9231 0.04 0.08 0.7222 2.6

2 12 2.25 0.0278 0.0556 0.7273 2.6667

2 14 2.5789 0.0204 0.0408 0.7308 2.7143

2 16 2.9091 0.0156 0.0312 0.7333 2.75

2 18 3.24 0.0123 0.0247 0.7353 2.7778

2 20 3.5714 0.01 0.02 0.7368 2.8

2 22 3.9032 0.0083 0.0165 0.7381 2.8182

2 24 4.2353 0.0069 0.0139 0.7391 2.8333

2 26 4.5676 0.0059 0.0118 0.74 2.8462

2 28 4.9 0.0051 0.0102 0.7407 2.8571

2 30 5.2326 0.0044 0.0089 0.7414 2.8667

2 32 5.5652 0.0039 0.0078 0.7419 2.875

2 34 5.898 0.0035 0.0069 0.7424 2.8824

2 36 6.2308 0.0031 0.0062 0.7429 2.8889

2 38 6.5636 0.0028 0.0055 0.7432 2.8947

2 40 6.8966 0.0025 0.005 0.7436 2.9

2 42 7.2295 0.0023 0.0045 0.7439 2.9048

2 44 7.5625 0.0021 0.0041 0.7442 2.9091

2 46 7.8955 0.0019 0.0038 0.7444 2.913

2 48 8.2286 0.0017 0.0035 0.7447 2.9167

3 6 1.3333 0.125 0.25 0.6 1.5

3 9 1.8 0.0556 0.1111 0.625 1.6667

3 12 2.2857 0.0312 0.0625 0.6364 1.75

3 15 2.7778 0.02 0.04 0.6429 1.8

3 18 3.2727 0.0139 0.0278 0.6471 1.8333

3 21 3.7692 0.0102 0.0204 0.65 1.8571

3 24 4.2667 0.0078 0.0156 0.6522 1.875

3 27 4.7647 0.0062 0.0123 0.6538 1.8889

3 30 5.2632 0.005 0.01 0.6552 1.9

3 33 5.7619 0.0041 0.0083 0.6563 1.9091

3 36 6.2609 0.0035 0.0069 0.6571 1.9167

3 39 6.76 0.003 0.0059 0.6579 1.9231

𝑛1 𝑛2 𝑐1/𝑐2 𝑠1 𝑠2 𝜂 𝜏

3 42 7.2593 0.0026 0.0051 0.6585 1.9286

3 45 7.7586 0.0022 0.0044 0.6591 1.9333

3 48 8.2581 0.002 0.0039 0.6596 1.9375

4 8 1.5 0.0833 0.1667 0.5714 1.3333

4 12 2.0769 0.037 0.0741 0.5909 1.4444

4 16 2.6667 0.0208 0.0417 0.6 1.5

4 20 3.2609 0.0133 0.0267 0.6053 1.5333

4 24 3.8571 0.0093 0.0185 0.6087 1.5556

4 28 4.4545 0.0068 0.0136 0.6111 1.5714

4 32 5.0526 0.0052 0.0104 0.6129 1.5833

4 36 5.6512 0.0041 0.0082 0.6143 1.5926

4 40 6.25 0.0033 0.0067 0.6154 1.6

4 44 6.8491 0.0028 0.0055 0.6163 1.6061

4 48 7.4483 0.0023 0.0046 0.617 1.6111

5 10 1.6 0.0625 0.125 0.5556 1.25

5 15 2.25 0.0278 0.0556 0.5714 1.3333

5 20 2.9091 0.0156 0.0312 0.5789 1.375

5 25 3.5714 0.01 0.02 0.5833 1.4

5 30 4.2353 0.0069 0.0139 0.5862 1.4167

5 35 4.9 0.0051 0.0102 0.5882 1.4286

5 40 5.5652 0.0039 0.0078 0.5897 1.4375

5 45 6.2308 0.0031 0.0062 0.5909 1.4444

6 12 1.6667 0.05 0.1 0.5455 1.2

6 18 2.3684 0.0222 0.0444 0.5588 1.2667

6 24 3.0769 0.0125 0.025 0.5652 1.3

6 30 3.7879 0.008 0.016 0.569 1.32

6 36 4.5 0.0056 0.0111 0.5714 1.3333

6 42 5.2128 0.0041 0.0082 0.5732 1.3429

6 48 5.9259 0.0031 0.0063 0.5745 1.35

7 14 1.7143 0.0417 0.0833 0.5385 1.1667

7 21 2.4545 0.0185 0.037 0.55 1.2222

7 28 3.2 0.0104 0.0208 0.5556 1.25

7 35 3.9474 0.0067 0.0133 0.5588 1.2667

7 42 4.6957 0.0046 0.0093 0.561 1.2778

8 16 1.75 0.0357 0.0714 0.5333 1.1429

𝑛1 𝑛2 𝑐1/𝑐2 𝑠1 𝑠2 𝜂 𝜏

8 24 2.52 0.0159 0.0317 0.5435 1.1905

8 32 3.2941 0.0089 0.0179 0.5484 1.2143

8 40 4.0698 0.0057 0.0114 0.5513 1.2286

8 48 4.8462 0.004 0.0079 0.5532 1.2381

9 18 1.7778 0.0312 0.0625 0.5294 1.125

9 27 2.5714 0.0139 0.0278 0.5385 1.1667

9 36 3.3684 0.0078 0.0156 0.5429 1.1875

9 45 4.1667 0.005 0.01 0.5455 1.2

10 20 1.8 0.0278 0.0556 0.5263 1.1111

10 30 2.6129 0.0123 0.0247 0.5345 1.1481

10 40 3.4286 0.0069 0.0139 0.5385 1.1667

11 22 1.8182 0.025 0.05 0.5238 1.1

11 33 2.6471 0.0111 0.0222 0.5312 1.1333

11 44 3.4783 0.0063 0.0125 0.5349 1.15

12 24 1.8333 0.0227 0.0455 0.5217 1.0909

12 36 2.6757 0.0101 0.0202 0.5286 1.1212

12 48 3.52 0.0057 0.0114 0.5319 1.1364

13 26 1.8462 0.0208 0.0417 0.52 1.0833

13 39 2.7 0.0093 0.0185 0.5263 1.1111

14 28 1.8571 0.0192 0.0385 0.5185 1.0769

14 42 2.7209 0.0085 0.0171 0.5244 1.1026

15 30 1.8667 0.0179 0.0357 0.5172 1.0714

15 45 2.7391 0.0079 0.0159 0.5227 1.0952

16 32 1.875 0.0167 0.0333 0.5161 1.0667

16 48 2.7551 0.0074 0.0148 0.5213 1.0889

17 34 1.8824 0.0156 0.0312 0.5152 1.0625

18 36 1.8889 0.0147 0.0294 0.5143 1.0588

19 38 1.8947 0.0139 0.0278 0.5135 1.0556

20 40 1.9 0.0132 0.0263 0.5128 1.0526

21 42 1.9048 0.0125 0.025 0.5122 1.05

22 44 1.9091 0.0119 0.0238 0.5116 1.0476

23 46 1.913 0.0114 0.0227 0.5111 1.0455

24 48 1.9167 0.0109 0.0217 0.5106 1.0435

30

348

	Abstract
	1 Introduction
	2 Theoretical Background
	2.1 Network Model
	2.2 Designing Data Center Networks
	2.3 Proportional Designs

	3 Designing Fat-Tree Networks
	3.1 Design Equations for Uniform Traffic
	3.2 Design Equations for Skewed Traffic

	4 Designing Folded-Clos Networks
	4.1 Design with Optimal Oversubscription

	5 Experiments
	5.1 Experiments with Fat-Trees
	5.2 Experiments with Folded-Clos

	6 Related Work
	7 Assumptions and Generalizations
	8 Conclusions
	References
	9 Appendices
	A Mathematical Proofs
	A.1 Proof of Theorem 2.6
	A.2 Proof of Theorem 2.8
	A.3 Proof of Theorem 2.10
	A.4 Proportional Designs Yield Maximal Throughput
	A.5 Proof of Lemma 3.1
	A.6 Proof of Lemma 3.2
	A.7 Proof of Lemma 3.3
	A.8 Proof of Lemma 4.1
	A.9 Proof of Lemma 4.3

	B Formal Definition of the Bottleneck Structure Graph
	C Bottleneck Structure of Fat-Trees
	D Traffic Skewness and Interconnect Size for Lg
	E Network Completion Time of Lg
	F Bottleneck Structure of Folded-Clos Networks
	G Designing Dragonfly Networks
	G.1 Bottleneck Structure of Dragonflies
	G.2 Design Equations for Skewed Traffic
	G.3 Experiments with Dragonfly Networks

	H G2-Mininet
	I Additional Experiments
	J Design tables for Lg

