
SiP-ML: High-Bandwidth Optical Network Interconnects for Machine
Learning Training

Mehrdad Khani
1
, Manya Ghobadi

1
, Mohammad Alizadeh

1
, Ziyi Zhu

2
, Madeleine Glick

2
, Keren Bergman

2
,

Amin Vahdat
3
, Benjamin Klenk

4
, Eiman Ebrahimi

4

1
Massachusetts Institute of Technology

2
Columbia University

3
Google

4
NVIDIA

ABSTRACT
This paper proposes optical network interconnects as a key enabler

for building high-bandwidth ML training clusters with strong scal-

ing properties. Our design, called SiP-ML, accelerates the training

time of popular DNN models using silicon photonics links capable

of providing multiple terabits-per-second of bandwidth per GPU.

SiP-ML partitions the training job across GPUs with hybrid data

and model parallelism while ensuring the communication pattern

can be supported efficiently on the network interconnect. We de-

velop task partitioning and device placement methods that take the

degree and reconfiguration latency of optical interconnects into

account. Simulations using real DNN models show that, compared

to the state-of-the-art electrical networks, our approach improves

training time by 1.3–9.1×.

CCS CONCEPTS
• Networks → Network architectures; Network design and
planning algorithms;

KEYWORDS
Optical networks, Distributed Machine Learning, Silicon photonics,
Reconfigurable networks
ACM Reference Format:
Mehrdad Khani, Manya Ghobadi, Mohammad Alizadeh, Ziyi Zhu, Madeleine 
Glick, Keren Bergman, Amin Vahdat, Benjamin Klenk, Eiman Ebrahimi. 
2021. SiP-ML: High-Bandwidth Optical Network Interconnects for Machine 
Learning Training. In ACM SIGCOMM 2021 Conference (SIGCOMM ’21), 
August 23–27, 2021, Virtual Event, USA. ACM, New York, NY, USA, 19 pages. 
https://doi.org/10.1145/3452296.3472900

1 INTRODUCTION
The ever-growing demand for more accurate machine learning (ML)

models has resulted in a steady increase in the dataset and model

sizes of deep neural networks (DNNs). Since 2012, the amount of
compute used in the largest AI training jobs has been increasing
exponentially with a 3.4-month doubling time [1], 50× faster than
the pace of Moore’s Law.

The computation requirements of large ML models has been
partly met by the rapid development of ML hardware accelerators
and specialized software stacks. Although hardware accelerators
have provided a significant amount of speed-up, today’s training

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8383-7/21/08.
https://doi.org/10.1145/3452296.3472900

tasks can still take days and even weeks [2–4]. Solutions such as

NVIDIA DGX [5] enable distributed training on a small number

of GPUs (e.g., 8–16) connected with a high-speed electrical switch

with Tbps bandwidth, but large-scale ML clusters must resort to

connecting GPU servers over much slower infiniband fabrics [6,

7]. We argue that future distributed ML training workloads are

likely to require several Tbps of bandwidth per device at large

scales, creating a pressing need for entirely new ways to build

interconnects for distributed ML systems.

With Silicon Photonic (SiP) technology [8–18], it is now possi-

ble to build I/O interfaces integrated with an electronic chip with

Tbps bandwidth [8, 19]. These optical I/O chiplets can be directly

integrated into a CPU/GPU/FPGA/ASIC package [20], providing

significantly higher bandwidth density than today’s technologies.

This paper proposes an end-to-end optical solution, called SiP-

ML, for strong scaling of ML workloads by leveraging SiP chiplets.

SiP-ML exploits the predictability of ML training traffic patterns to

find a parallelization strategy that meets the limitations of the opti-

cal topology at hand. Specifically, we explore two all-optical archi-

tectures: (i) SiP-OCS, an Optical Circuit Switch (OCS) design based

on commercially available switches; and (ii) SiP-Ring, a switch-

less ring design enabled by reconfigurable Micro-ring resonators

(MRRs) [21] embedded in SiP interfaces [22, 23]. Each of these archi-

tectures inherits one of the constraints of optical circuit-switched

interconnects to an extreme. Optical Circuit Switches are too slow

to reconfigure (e.g., 10 ms [24–26]) for ML models with a few mil-

liseconds of iteration time, while the ring topology can only support

communication between nearby GPUs. We show that SiP-ML’s par-

allelization algorithm can produce traffic patterns suited to both

these constraints by taking the degree limitation of all-optical circuit-
switched interconnects as an input parameter.

To evaluate SiP-ML, we develop a detailed simulator for dis-

tributed neural network training. Our simulation results show the

following: (1) for representative Natural Language Processing and

Computer Vision DNN models, SiP-ML speeds up the total training

time by a factor of 1.3–9.1× compared to today’s electrical network

fabrics; (2) although SiP-Ring’s switchless design constrains the

physical topology to a ring, it performs similarly to SiP-OCS be-

cause of the fast reconfigurability offered by the MRRs; (3) a SiP-ML

interconnect with per-GPU bandwidth B performs as well as or

better than an ideal, full-bisection electrical switch with per-GPU

bandwidth B/2; (4) when per-GPU bandwidth is high (e.g., order of

Terabits-per-second), hybrid parallelism strategies outperform data

parallelism by up to 2× in terms of time-to-accuracy.

This work does not raise any ethical issues.

657

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3452296.3472900
https://doi.org/10.1145/3452296.3472900
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current


SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA M. Khani et al.

10 100 1,000

1

10

100

Number of GPUs

T
hr

pu
t(
no

rm
al
iz
ed

)

Transformer ResNet50 Ideal

(a) Throughput

10 100 1,000

0.001

0.01

0.1

Number of GPUs

T
im

e-
to
-A

cc
.(
no

rm
al
iz
ed

)

(b) Time-to-Accuracy

Figure 1: Weak scaling in today’s training systems.

2 BACKGROUND AND MOTIVATION
This section describes the key concepts of designing scalable ML

training interconnects. First, we discuss various parallelization

strategies for distributed training (§2.1). Then, we describe weak

and strong scaling and identify their network bandwidth require-

ments (§2.2). Finally, we introduce Silicon Photonics as a promising

technology to build high-bandwidth ML training interconnects

(§2.3).

2.1 Parallelization Strategies
Data Parallelism (DP). A popular parallelization strategy is data

parallelism where a batch of training data is distributed across

multiple workers. Each worker has an identical copy of the DNN
model but trains on a subset of the training batch, called a local
batch, in parallel. In DP training, workers need to communicate

their model weight updates after each iteration. This step can be

performed using various techniques such as broadcasting [27], pa-

rameter servers [28], ring-allreduce [29–31], and tree-reduce [32].

Model Parallelism (MP). In this approach, the DNN model is par-
titioned across different workers [33, 34]. The batch is copied to all

MP workers, and different parts of the DNNmodel are computed on

different workers, resulting in faster iteration times. Model paral-

lelism is an active area of research, with various proposals for model

partitioning [35–38]. Recent work has shown significant gains can

be obtained with model parallelism; however, the degree of model

parallelism has been limited to a few tens of workers [39–42].

Hybrid Parallelism. We consider a hybrid of the above paralleliza-

tion strategies. Our proposed interconnects and task partitioning

algorithms are designed specifically to support a hybrid of DP and

MP.Further, we do not make any assumptions about a specific com-

munication pattern, such as ring-allreduce or all-to-all. Our goal is

to support a variety of communication patterns using smart task

partitioning and GPU placement algorithms (details in §3).

2.2 Weak and Strong Scaling of ML Jobs
To identify the bandwidth requirements of ML systems, we first

describe two fundamental scaling paradigms.

Approach 1: Weak Scaling. The first approach is to scale the

throughput of data processing (number of processed data sam-

ples/sec) as the number of workers increases. The principal tech-

nique for throughput scaling is to keep the local batch size per

worker fixed and grow the global batch size as more workers are

added to the training job [43]. As a result, the entire system is able

to process a larger global batch while keeping the iteration time of
each worker the same. It is widely thought that training with large

batches reduces the time-to-accuracy because large batches can

produce better model updates, allowing the training to converge

with fewer total iterations [44, 45]. However, increasing the global
batch size in DNN training does not always translate to improving

the number of iterations for all models [46, 47]. As an example,

Fig. 1 compares the throughput and time-to-accuracy of two DNN

models: Transformer [48] and ResNet-50 [49]. The numbers are

obtained from Nvidia’s benchmark results [50]. As shown in Fig. 1a,

increasing the number of GPUs increases the batch size and thus

improves the throughput (images/sec) of both models. However,

the time-to-accuracy does not scale at the same rate and starts to

plateau at large scales, as shown in Fig. 1b. As we show in our eval-

uations, reducing the time-to-accuracy at 1000-GPU scale requires

significantly higher bandwidth than today’s clusters (§4).

Approach 2: Strong Scaling. Instead of reducing the number of it-
erations, a more effective scaling approach is to reduce the iteration
time as the number of workers increases. This approach is called

strong scaling [43]. In contrast to weak scaling where the system

operates on a larger global batch size as the system scales, strong

scaling parallelizes the computation for a fixed batch size either by

reducing the local batch size per worker or by partitioning the com-

putation task across workers. However, achieving strong scaling

is challenging, because reducing the iteration time leads to more

frequent model updates and, hence, requires the I/O bandwidth to

scale with the number of workers [47]. Furthermore, since each

worker must perform small granular computations, strong scaling

can be sensitive to network latency and small inefficiencies in the

compute/network software stack.

BandwidthRequirements ofWeak and Strong Scaling. Today,
the technique most commonly used to scale a distributed training

job is weak scaling using the DP strategy. This approach is popular

because as more workers are added to the job: (i) the computation

time of each worker remains constant (since the local batch is

constant); and (ii) the size of data transfers at each iteration remains

constant (because it depends on the DNN model).
1
In contrast, in

strong scaling approaches, the bandwidth requirement increases

(often super linearly) as the system is scaled, since (i) strong scaling
leads to reduced computation time per worker and shorter training

iterations, and (ii) the amount of data exchanged at each iteration

stays the same or even grows with scale.
2
In today’s systems, the

degree of MP is limited to 8 or 16 workers within one DGX box [51]

with Tbps communication bandwidth per GPU [42, 52–54].

2.3 Silicon Photonics for ML Training
A straightforward approach to meet the high-bandwidth require-

ment of large-scale training workloads is to augment the bandwidth

of existing electrical switches. However, recent trends in SERDES/-

packet switching technology suggest that we will hit a wall in

1
The amount of data transferred in DP in each iteration depends on the all-reduce

algorithm. With a ring-reduce implementation, each worker exchanges 2×M, where M

is the DNN model size. Note that as the number of workers increase, the bandwidth

per worker remains constant but the total required bandwidth grows.

2
The amount of data transferred in MP in each iteration depends on the model parti-

tioning strategy but often increases significantly with scale, particularly when a kernel

is split on anything other than the batch dimension.

658



SiP-ML: Optical Network Interconnects for Machine Learning SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

{{
Server

G
bps dom

ain

GPU GPU

GPU GPU

GPU GPU

GPU GPU

TeraPHY

GPU

All-optical topologiesTbps D
om

ain

SiP  
ports

Node

{

(a) Today’s ML clusters (b) SiP-ML cluster

OCS

Tbps dom
ain

Figure 2: Comparing today’s ML cluster with SiP-ML.

capacity with standard electrical packet switching [55–58]. For in-

stance, realizing an electrical packet switch with 100 ports each

with 10 Tbps is extremely challenging. This is because the traffic

manager ASIC in the switch needs to process packets at 1000 Tbps

speed, but today’s ASICs can only process packets at 12.8 Tbps

speed. To get to 1000 Tbps switching, we need to build a “Clos”

of switching ASICs inside each electrical switch [59]. This is a

challenging undertaking.

At the same time, substantial progress is being made with Sil-

icon Photonics chiplets to bring optical interconnects very close

(essentially on die) to the ASICs. Recent advances in SiP fabrication

processes have created an opportunity to build chiplets with optical

I/O ports that can transmit data at far higher rates than electrical

conductors [9–17, 60–62]. With SiP interfaces, however, it is possi-

ble to build I/O interfaces integrated with electronics at 10 Tbps/mm

bandwidth (BW) density [14, 19, 20, 60, 63, 64]. Such integration

enables building next-generation computer architectures that are

fundamentally impossible with today’s technologies.

In this paper, we propose all-optical interconnects as an attrac-

tive solution to build the next generation of ML systems. We argue

that ML workloads present a unique opportunity to build special-

ized circuit-based interconnects. While conventional datacenter

workloads have unpredictable behavior, with short flows dominat-

ing the traffic, ML workloads are predictable, periodic, and consist

of mostly large transfers. Importantly, the parallelization algorithm

determines the circuit schedules, and the entire training repeats the

same communication pattern at every iteration. This unique char-

acteristic simplifies the control-plane logic with which datacenter

optical designs have grappled for years.

3 SIP-ML DESIGN
In this section, we introduce degree and reconfiguration latency as

fundamental factors affecting all optical circuit-based interconnects

(§3.1). We then discuss our parallelization algorithm, explaining

how it takes these factors into account to produce a suitable paral-

lelization strategy for a given topology (§3.2). Finally, we discuss

SiP-ML’s control plane and wavelength allocation (§3.3).

3.1 Degree and Reconfiguration Latency
Fig. 2 illustrates the differences between today’s ML training clus-

ters and SiP-ML. The state-of-the-art clusters have two bandwidth

Node1 Node2

TeraPHY

GPU

TeraPHY

GPU

TeraPHY

GPU

TeraPHY

GPU

counter clock-wise ring
clock-wise ring

Noden-1 NodenNode1 Node2 Noden-1 Noden

OCS

TeraPHY

GPU

TeraPHY

GPU

TeraPHY

GPU

TeraPHY

GPU

OCS OCS

(a) SiP-OCS topology (b) SiP-Ring topology

Figure 3: Two topologies we consider for SiP-ML.

domains: (i) a Gbps bandwidth domain that interconnects thou-

sands of servers using conventional network fabrics and off-the-

shelf NICs; (ii) an all-to-all Tbps bandwidth domain that tightly

connects a handful of GPUs inside a server or a DGX. In contrast, a

SiP-ML cluster consists of disaggregated GPUs, each equipped with

Tbps SiP interfaces, interconnected by an all-optical network. An

example of a SiP interface is the TeraPHY optical I/O technology de-

veloped by Ayar Labs [64], capable of carrying 2 Tbps bandwidth (80

wavelengths each carrying 25 Gbps [65]). A GPU can be equipped

with several of these interfaces. To put the choice of topology into

perspective, we first introduce two fundamental factors affecting

all optical circuit-switched interconnects.

Degree. Unlike packet-switched networks, optical interconnects

are circuit-based. Hence, at any point in time, each node has a

limited number of active circuits, thereby limiting the number of

nodes it can communicate with directly. We refer to this as the

node degree. A topology with degree D means each node can

simultaneously maintain, at most, D circuits. Depending on the

traffic pattern, these circuits can be established with one to D

other nodes. Topologies with higher degree are suited for traffic

patterns with high fan-out, but they also tend to have a larger

cabling footprint.

Reconfiguration Latency. The reconfiguration latency puts a

lower bound on how long the circuits should be kept to achieve a

high duty cycle [66]. For a topology with reconfiguration latency r ,
the circuit hold time should be longer than, for instance, 10×r to
achieve a 90% duty cycle.

There are various optical topologies that realize SiP-ML’s vision.

At one end of the spectrum are switch-based interconnects, such

as MEMS-based Optical Circuit Switch interconnects [24, 25, 55,

67, 68] and Rotor-based interconnects [66, 69]. On the other end lie

switch-free topologies such as ring [26, 70, 71], circulant graphs [72],

torus [73, 74], hypercube [75] and dragonfly interconnects [76–78].

In this paper, we consider two topologies at opposite ends of the

spectrum, as shown in Fig. 3. SiP-OCS is the first natural topology

choice because OCSs are commercially available today [79]. How-

ever, their reconfiguration latency is ≈10 ms, making them suitable

for circuits that last through the entire training. Fig. 3a illustrates

our SiP-OCS topology. SiP-OCS consists ofQ optical switches, each

with N ports (the same as the number of GPUs), where each GPU

is connected to every OCS in a flat topology. Hence, in SiP-OCS,

the degree D is equal to the number of switches (Q).
As an alternate, extreme design point, we also investigate the

possibility of removing the switching elements entirely and evalu-

ate the performance of a minimalistic, switch-free topology called

SiP-Ring. In contrast to SiP-OCS, SiP-Ring reconfigureswavelengths

659



SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA M. Khani et al.

within each port to achieve logically rich topologies. Reconfigura-

tion is done using Micro-ring resonators (MRRs) [21] embedded

in SiP ports [22, 23]. MRRs act as spectral filters to select and for-

ward wavelengths, and they enable the reuse of wavelengths across

non-overlapping segments of the ring (Fig. 13a in the appendix

illustrates an example). Our experiments show MRRs can switch

between different wavelengths within 25µs (§4.4). We discuss the

SiP-Ring design in more detail in Appendix A.1.

3.2 Degree-Aware Parallelization Strategy
A DNN can be viewed as a directed acyclic graph (DAG) of oper-

ations (ops). To parallelize a DNN training job, we need to decide

which GPU is responsible for running each op (or a part of each op).

As a simple example, to train a model with global batch size b using

DP on N GPUs, we break each op into N parallel sub-ops, each
operating on a local batch of size b/N (this is referred to as splitting

on the sample dimension [38]), and we map one sub-op to each

GPU. In general, MP follows similar steps: first partition each op

into parallel ops, then place the sub-ops. However, the partitioning

and placement decisions are not as straightforward as in DP.

Our parallelization algorithm takes the following as input: (i)

a DNN computation graph, Gin = (V ,E), where V is the set of

operations (nodes) and E is the set of data dependencies (edges)

between the operations; (ii) the global batch size denoted by b;
(iii) a parameter k denoting the number of GPUs to partition the

model using MP; (iv) a parameter l denoting the number of GPUs to

partition the data using DP; and (v) the physical degree constraint

of the optical network topology, denoted byD. Our algorithm finds

a hybrid MP-DP strategy with k-way model parallelism and l-way
data parallelism for N = k × l GPUs, such that the training iteration

time is minimized while satisfying the degree constraint (i.e., each

GPU communicates with no more thanD other GPUs). We assume

all GPUs are identical.

The core of the algorithm determines an MP placement of the

DNN computation on k GPUs. Specifically, we begin by splitting the

GPUs into l groups, withk GPUs per group, andwe divide the global

batch equally between the groups (i.e., each group is responsible

for a local batch of training data of size b/l ). Then, we compute an

MP placement across k devices. We replicate the same placement

in each group to produce the final hybrid MP-DP strategy. Fig. 4

illustrates the key steps in our parallelization algorithm across 8

GPUs, with k = 4-way MP, l = 2-way DP, and degree constraint

D=3. We use this as a running example in the remainder of this

section.

(i) Partitioning. DNN training involves sequential stages of com-

putation, as dictated by the data dependencies in the computation

graph. For example, the graph in Fig. 4(a) has 4 sequential ops,

shown as rectangles of different colors. The size of each rectangle

represents the computation time of the op. The key to minimizing

training time is to balance the computation load across devices

at every stage of computation to maximize parallelism. Note that

balancing per-stage computation is not the same as balancing the

total load on each device. Sequentially-dependent ops cannot run

in parallel, hence placing them on the same device has no impact

on run-time compared to placing them on different devices, even

though it increases the total load on the device.

To minimize per-op run-time, it is desirable to split ops into

smaller pieces of computation. There are many ways to split an

op; for example, a 2D convolution can be split across height, width,

and channel dimensions [38]. However, in splitting ops, we must

take care not to compromise GPU utilization. GPUs (and other ML

accelerators) internally distribute an op over a massive number of

cores. If we split an op too finely, it will not have enough compute
intensity to utilize the cores effectively, and, therefore, we will

achieve no reduction in run-time from splitting. As a result, we

choose a minimum quantum of computation time, τ , and split ops

to sub-ops of a size near τ . We also cap the maximum number of

partitions for each op at k (the MP degree), as there is no point in

splitting beyond themaximum number of available parallel workers.

The result is a balanced computation graph whose vertices are the

sub-ops, as shown in Fig. 4(b) for our running example.

The right choice of the split dimension depends on the type of

the op and can impact the communication pattern between the

sub-ops. For example, in the case of a 2D convolution on an image

with multiple output channels, if we divide the op across the height

and width dimensions of the input, none of the sub-ops needs to

know the entire input image. However, if we split the op across the

output channel dimension, every sub-op needs a copy of the input

image, leading to a broadcast communication pattern with high

overhead. We select the most efficient dimension for each op. Since

we always split ops uniformly, sub-ops tend to communicate the

same amount of data with their descendants (the edges between the

sub-ops at each stage in Fig. 4(b) carry roughly the same amount

of traffic).

(ii) Placement. Next, we assign a GPU device to each op in the

balanced graph. Our placement aims to minimize the total run-

time while respecting the communication degree constraint D

required by the optical interconnect. Each GPU has two types of

communications: (i) it must communicate with some of the GPUs in

its MP group (depending on the op placement); (ii) given the hybrid

DP-MP strategy, there are l MP groups that need to synchronize

their parameters through DP. Hence, each GPU must communicate

with its counterparts in the other l MP groups to perform an all-

reduce operation to synchronize the model parameters across the

DP partitions. We use the ring-allreduce [29, 30] algorithm for

this step. This requires a ring communication pattern between

corresponding GPUs in the MP groups, which requires each GPU

to send data to one GPU in another group. Therefore a GPU can

communicate with, at most, ∆ = D - 1 other GPUs within its own

MP group to meet the overall degree constraint.

We now present a heuristic algorithm for placing ops within

an MP group to minimize run-time with a constraint ∆ on the

degree of communication. While this problem can be written as

an Integer Linear Problem (ILP), it is prohibitive to solve this ILP

given the scale of the balanced computation graph (e.g., over 20K

sub-ops for the Transformer DNN model). Algorithm 1 provides

the pseudocode.

The key strategy in our algorithm is to map GPU devices into a

metric space and transform the degree constraint into a distance

constraint in that space. We select an arbitrary ordering of GPU

devices and place ops to maintain a maximum communication

distance of ∆; i.e., devices i and j are allowed to communicate only if

(i− j ) mod k ≤ ∆. This constraint leads to a sparse diagonal traffic

660



SiP-ML: Optical Network Interconnects for Machine Learning SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

A0
B0

C0

C1

C2

C3

D0

D1

A B C D

C2 D1

C1 D0

A1 C0 C3

A0 B0

C2 D1

C1 D0

A1 C0 C3
A0 B0

C2 D1

C1 D0

A1 C0 C3
A0 B0

GPU3

GPU2

GPU1

GPU0

GPU3

GPU2

GPU1

GPU0

GPU7

GPU6

GPU5

GPU4

Time Time
(a) Compute graph (b) Balanced compute graph (c) MP placement (d) Final DP-MP placement

A1

Figure 4: An example of SiP-ML’s parallelization strategy with k = 4, l = 2, D=3, and ∆ = 2.

Algorithm 1
Task Placement with a Communication Degree Constraint

1: Input: Balanced compute graph g_in, computation quantum τ , degree
constraint ∆, local_batchsize b/l , mp_degree k

2: Output: A task graph g_out with placed ops

3: for op in g_in.topological_sort( ) do
4: for sub_op in par_ops_map[op] do
5: far_id←farthest sub_op’s predecessor device id
6: near_id←nearest sub_op’s predecessor device id
7: range_lo←near_id
8: range_hi←far_id + ∆
9: sub_op.device←get_earliest_avail(avail_times,

range_lo, range_hi, sub_op.mem_size)
10: cand_start←latest end time of predecessors

11: start←max(cand_start, avail_time[sub_op.device])
12: end←start + sub_op.duration
13: avail_time[sub_op.device]←end
14: end for
15: end for
16: g_out← add_network_ops(g_out)

matrix with zeros outside a ∆ distance from the main diagonal,

satisfying the communication degree constraint.

The algorithm begins with a topological sort of the balanced

computation graph (shown in Fig. 4(b) for our example), such that

each sub-op appears in the sorted list after its dependencies. It

places the sub-ops in this sorted order, guaranteeing that when a

sub-op is placed, all of its dependencies have already been placed.

For each sub-op, the algorithm first computes a set of placement
candidates. These are the devices where the sub-op can be placed

without violating the distance constraint mentioned above. We

compute the intersection of these ranges for all parents of x to

determine its placement candidates. Then, we select the earliest

available device among these candidates to place x , and we schedule
the op on that device as soon as its dependencies have completed. If

there is a tie at this step, we select the GPU with the smallest index

so that we can minimize the distance between communicating

GPUs.
3
Notice that since we place the sub-ops in order of their

dependencies, keeping track of when each op can be scheduled on

each device is straightforward. If the intersection of the feasible

ranges for all parents of the sub-op x is empty, i.e., the maximum

distance between the parents is longer than ∆ − 1, we relocate the
parent nodes into a smaller device range so that the placement

of x becomes feasible. For this purpose, we place x on the GPU

3
This property helps enable wavelength reuse in the ring topology (§A.1).

that meets a maximal set of range constraints. We then reallocate

the remaining parents that violate the constraint into the nearest

device that meets the distance constraint with x . As this may create

distance violations between parents and grandparents of x , we
continue this backward process until all previously placed ops meet

the distance constraint with their parents. We then restart a forward

pass from the first located op and verify the distance constraints

between the placed ops and their children. If any violations have

occurred due to reallocation, we relocate the child op. This forward-

backward procedure is repeated until all ops are placed. We leave

the convergence proof to future work.

Fig. 4(c) shows the MP placement for our running example, with

∆ = 2. Notice two properties of this placement: (i) each GPU com-

municates with, at most, ∆ = 2 other GPUs, as required, and (ii)

the sub-ops of each op are balanced well across the 4 GPUs. In fact,

the only op that is not perfectly balanced is C , but the 4 sub-ops
of this op cannot be placed on all 4 GPUs without violating the

communication degree constraint, because whichever GPU op B
resides on would then need to communicate with the other 3 GPUs.

Putting it all together. Fig. 4(d) shows the final hybrid MP-DP

placement for our example. Asmentioned earlier, it is created simply

by replicating the MP placement in the l = 2 GPU groups. As for

the communication pattern, each GPU communicates with, at most,

∆ = 2 other GPUs in its MP group and one more GPU for the

ring topology required for the DP all-reduce step. For example, in

Fig. 4(d), GPU 1 must communicate with GPUs 2 and 3 for MP and

GPU 5 for DP. Our parallelization algorithm takes the degree of

MP and DP (k and l ) as input, but it is trivial to optimize over these

parameters to find the combination that minimizes training time

for a given number of GPUs, as discussed in Appendix 4.2.

3.3 Circuit Scheduling
Given that our SiP-OCS topology reconfigures its circuits only

once at the beginning of the training job, its control plane logic is

simple. In this case, the main task is to compute the total traffic

matrix resulting from the parallelization algorithm and then assign

circuits to each pair of GPUs that must communicate, such that

the maximum transfer time is minimized. We determine the circuit

assignment with a simple ILP run once for each training job (details

in §A.2).

The control plane for the SiP-Ring topology is more challeng-

ing, as circuits can be reconfigured during training. Hence, our

controller needs to estimate the traffic and reschedule the circuits

periodically. Therefore, every GPU’s host needs to read its GPU

transfer buffer counters through PCIe and communicate them to a

661



SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA M. Khani et al.

central controller. Using NVIDIA’s nvml API, we poll the NVLink
counters on a Tesla V100 GPU at a 300-microsecond granularity.

However, this API is designed for management purposes and is

not optimized for latency. We believe obtaining the counters at a

sub-100-microsecond scale should be feasible with further engineer-

ing. Our experiments confirm that the observed traffic matrix over

the past 100µs is a good estimate of the communication demands

over the next 100 µs . Using the traffic matrix, we can solve an ILP

(see §A.1) for optimal wavelength scheduling on the ring topol-

ogy. However, solving an ILP is too slow for short-timescale circuit

scheduling. Therefore, we propose a fast, approximate wavelength

scheduling algorithm that solves a minimum-cost flow routing

problem to schedule wavelengths. Appendix A.1 describes this al-

gorithm in detail. Note that while we currently propose to measure

the traffic matrix for dynamic circuit establishment, exploiting the

predictability of training workloads is a natural step which we leave

for future work.

Supporting Multiple Jobs. We anticipate a SiP-ML cluster will

typically be used to run multiple jobs at the same time. Each job will

run on a subset of GPUs, dedicated to that job. Supporting multiple

jobs with SiP-OCS requires no changes to our design, except that

we allocate a subset of available GPUs when a job arrives and

correspondingly set the total number of GPUs in our placement

algorithm. When a job completes, we release its GPUs and optical

circuits. SiP-Ring follows a similar logic, but we ideally prefer to

allocate each job to a contiguous block of neighboring GPUs on

the ring. Fragmentation of the ring space, as jobs arrive and depart,

could make this difficult to achieve at all times. One solution is to

use a standard OCS to assign GPU interfaces to arbitrary locations

on the ring.

Scalability Considerations. While our current version of SiP-

OCS assumes each OCS has enough ports to connect to every GPU

in a flat topology, a more realistic setting is to use hierarchical

Clos [80] or flat designs such as BCube [81] to scale SiP-OCS. Our

SiP-Ring topology can be scaled using Theia [72] and SlimFly [82]

to build hierarchical rings. Another way to scale SiP-Ring is to

consider 2D rings, where we have K horizontal rings, with N GPUs

on each ring. We then connect every K GPUs from K different

horizontal rings on a single vertical ring. Hence, there will be K +N
rings in total, connecting NK GPUs. Each GPU has direct access

to one vertical and one horizontal ring and must divide its SiP

interfaces between the two. Depending on the vertical bandwidth

requirement of the interconnect, this ratio can be adjusted.

4 EVALUATION
In this section, we quantify the performance of SiP-ML by compar-

ing it to other network interconnects. Our results show:

(i) For three representative DNN models (Transformer, ResNet,

and Megatron), SiP-ML speeds up training time by a factor of 1.3–

9.1× compared to hierarchical electrical network fabrics represen-

tative of today’s ML clusters. This is because SiP-ML eliminates

bandwidth bottlenecks and enables hybrid DP/MP parallelization

strategies that cannot be supported efficiently by today’s fabrics.

(ii) Although SiP-Ring’s switchless design constrains connectiv-

ity, it performs similarly to SiP-OCS. SiP-Ring’s limited connectivity

is compensated by its ability to rapidly reschedule wavelengths

using MRRs and our parallelization algorithm’s ability to adapt its

strategy to the topology (e.g., ensuring most communication occurs

between nearby nodes on the ring).

(iii) A SiP-ML interconnect with per-GPU bandwidth B performs

as well as or better than an ideal, full-bisection electrical switch

with per-GPU bandwidth B/2. For instance, given 1024 GPUs and

B = 8 Tbps, SiP-ML’s dynamic topology provides at least 4 Tbps

of bandwidth, on average, between each pair of GPUs that need to

communicate.

(iv) When per-GPU bandwidth is high (e.g., order of terabits-per-

second), hybrid parallelism strategies outperform data parallelism

by up to 2× in terms of time-to-accuracy.

4.1 Methodology & Setup
To evaluate SiP-ML, we implement a detailed simulator, called

Rostam, to model several baseline network architectures connect-

ing up to thousands of GPUs. Our simulator is ≈10K lines of code

in C++ and is available online at https://github.com/MLNetwork/

rostam.git. We discuss the details of our simulator in §4.2. In our

evaluations, we set the quantum of computation for balancing the

computation graphs, τ , to 10 µs (§3.2).
Comparisons. We consider the following network architectures:

• Elect-Flat: an ideal electrical switch that scales to any number

of GPUs, N , for any per-GPU bandwidth of B; i.e., each GPU can

simultaneously communicate with N − 1 other GPUs with a total

bandwidth of B in both send and receive directions. This baseline

has zero reconfiguration delay. For any pair of (B,N ), no network

can communicate faster than this baseline. In practice, it can be

approximated with full-bisection bandwidth topologies such as fat-

tree for relatively small values of B (e.g., 100–400 Gbps), or with a

small N (e.g., tens of nodes) with large B. Note that no electrical

network would be able to perform better than this flat electrical

baseline, as it provides full-bisection bandwidth.

• Elect-Cluster: a hierarchical electric network fabric represen-

tative of today’s ML clusters interconnecting GPUs. Each server

hosts eight GPUs, connected with an internal high-speed electrical

switch providing per-GPU bandwidth of B, typically in the order

of terabits-per-second. The servers are connected with a slower

electrical fabric providing 400 Gbps bandwidth per server (unless

otherwise stated). In practice, servers can be thought of as DGX [5]

boxes with an internal NVSwitch [83] interconnect, communicating

over a standard datacenter network fabric (e.g., fat-tree).

• SiP-Ring: a ring-based interconnect for SiP-ML, as described in

§3.1. Each GPU hasW distinct wavelengths that it can dynamically

allocate to communicate with its 16 closest neighbors on the ring

(in both directions). We assume each wavelength carries 25 Gbps of

bandwidth, providing amaximum bandwidth of B =W ×25Gbps for
each GPU. Unlike SiP-OCS, this topology is rapidly reconfigurable,

with a reconfiguration latency of 25 µs (§4.4). We estimate the traffic

every 100 µs as described in §3.3 unless stated otherwise.

• SiP-OCS: an optical circuit switch interconnect for SiP-ML, as

described in §3.1 with Q OCS switches, each with N ports (the

same as the number of the GPUs). Each GPU has Q optical links

(each with a bandwidth of B/Q), one to each OCS. Each GPU can

communicate with, at most, D=Q other GPUs at the same time. To

study the impact of D, we vary the number of OCS switches in the

662

https://github.com/MLNetwork/rostam.git
https://github.com/MLNetwork/rostam.git


SiP-ML: Optical Network Interconnects for Machine Learning SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

2
7

2
8

2
9

2
10

2
11

2
12

2
13

4

5

6

7

8

9

10

BW per GPU (Gbps)

T
im

e-
to
-A

cc
.(
m
in
s)

(a) ResNet50

2
7

2
8

2
9

2
10

2
11

2
12

2
13

10
0

10
1

BW per GPU (Gbps)

Elect-Cluster 200 Gbps Elect-Cluster 400 Gbps Elect-Flat (DP) Elect-Flat SiP-OCS SiP-Ring

(b) Transformer

2
7

2
8

2
9

2
10

2
11

2
12

2
13

10
3

10
4

BW per GPU (Gbps)

(c) Megatron

Figure 5: Impact of bandwidthB on the total training time (Time-to-Accuracy) forN=1024GPUs. DP is not feasible forMegatron
because of its huge memory footprint.

interconnect, using a default value of 16. Since OCS reconfiguration

delay is too long compared to the typical training iteration time of

our DNN models (< 20ms), we compute the best one-shot circuit
schedule for each workload, as described in §3.3. To evaluate the

potential benefits of optical switches with fast reconfiguration [55,

71], we also evaluate the impact of lowering the reconfiguration

latency and allowing multiple reconfigurations within each training

iteration.
4

Trainingworkloads.We consider ResNet, Transformer, andMega-

tron, three representative DNN models widely used in computer

vision and natural language processing applications. ResNet [84] is

an image classification model with 25 million parameters. Trans-

former refers to a Universal Transformer with 350 million parame-

ters. Megatron[52] is a variant of the GPTmodel [85] with 18 billion

parameters.

We focus on time-to-accuracy as our primary metric. We de-

termine the time-to-accuracy by multiplying the time for a single

training iteration (obtained via our simulator) by the number of

training iterations required to reach the target accuracy. We use

numbers reported in prior work for the required training iterations

for these models at a given batch size. For ResNet and Transformer,

Shallue et al. [86] report the number of training iterations across a

range of batch sizes. Hence for these models, we optimize over batch

size to find the lowest possible time-to-accuracy in each network

configuration. For Megatron, we use batch size 1024 and 240,000

training iterations, following [50, 87]. Note that we report the total

pre-training time for Megatron, which requires significantly more

training iterations than a typical fine-tuning task. But the relative

improvements we report would hold for fine-tuning the model since

we are directly decreasing the iteration time.

ResNet and Transformer fit in a typical GPU’s memory. Hence

the main reason to parallelize them is to speed up training. Mega-

tron, cannot fit on one GPU and therefore cannot be trained with

only DP; MP is required to split it across multiple GPU memories.

4.2 Simulator
The overall flow of an end-to-end simulation in Rostam is as fol-

lows.

4
In the extreme, eliminating reconfiguration latency entirely would make SiP-OCS

equivalent to the ideal Elect-Flat architecture.

Profiling. We first need to profile the average GPU and CPU com-

pute time, peak memory size, and input/output data sizes of each

operation in the model in addition to its data dependencies. Each

compute operation typically has one or more input/output arrays

of data, “tensors”. Profiling the operations over different input/out-

put tensor shapes helps predict the speed ups of partitioning each

operation in different input/output tensor dimensions. We start

profiling over a fair range of batch sizes, typically starting with 1

sample/iteration and continuing until we run out of GPU memory.

The profiling step is independent from the simulator and can use

any convenient profiling tool. Moreover, profiling along other than

the samples dimension (e.g., height and width in the 2D convolu-

tion) helps improve the simulation’s accuracy. In absence of the

profiling data in any dimension, we assume a linear dependency

between the total number of splits and each split’s compute time in

that dimension. Depending on the dimension of the split, Rostam

adds the required new data dependencies in the placement stage.

In addition to the operations profile, we need to know the required

number of iterations to achieve a certain level of model accuracy

as a function of the global batch. This profile depends on the DNN

model and the training dataset [46]. Rostam can combine the latter

two profiles in the placement stage to come up with the best hybrid

parallelization strategy. In this paper, we profile all models on an

NVIDIA Tesla V100 GPU with 32 GB of memory.

Placement. Our approach to explore the space of hybrid paral-

lelism techniques takes as input: (1) the number of GPUs, (2) the

bandwidth available per GPU, (3) the graph profile for the DNN

model as described above, and (4) the curve providing the required

number of training iterations as a function of the (global) batch

size. We search through all possible hybrid parallelizations over a

range of global batch size configurations and use the placement

algorithm (e.g., Algorithm 1 (§3)) for device placement. We then

estimate each configuration’s run-time based on the graph profile

and the bottleneck bandwidth. To estimate the effect of the network,

we also compute the latency for each data transfer (edge) in the

graph profile according to the bottleneck bandwidth. We finally

select the fastest of all these parallelization strategies.

Two points are worth noting about this procedure. First, one of

the strategies that our task parallalization considers is the conven-

tional DP. However, as our results show (see §4.3), in many cases,

DP is not the best strategy for large-scale training. Second, the time

663



SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA M. Khani et al.

100 1,000 10,000

1

4

16

64

256

1,020

Bandwidth per GPU (Gbps)

O
p
t
i
m
a
l
H
y
b
r
i
d
D
e
g
r
e
e

DP degree

MP degree

(a) ResNet50

100 1,000 10,000

1

4

16

64

256

1,020

Bandwidth per GPU (Gbps)

(b) Transformer

Figure 6: Optimal hybrid trade-off between the degree ofMP
and DP at different per-node bandwidths for 1024 GPUs.

computed for a configuration in this procedure is only an estimate;

in our actual simulations, a GPU’s bandwidth can vary over time

(e.g., due to circuit reconfiguration). Therefore, our simulator re-

quires a runtime stage to track the effect of dynamic decisions on

ops scheduling more precisely.

Runtime. Our runtime simulator relies on three main compo-

nents: GPUs, an interconnect, and an executive session. The session

launches the operations onto the GPUs as soon as their dependen-

cies are met in the DNN graph. The interconnect can be electrical

or optical. Our current implementation includes SiP-Ring, SiP-OCS,

electrical, and full-mesh interconnects.

Rostammodels a latency for each op launched onto the GPU and

a minimum completion time for ops that run on the GPU. Hence,

there is a lower-bound on how quickly we can run a compute graph

that depends on its critical path length. We set the launch latency

and the minimum completion to 1 microsecond in our experiments.

Moreover, Rostam overlaps the communication and computation

whenever possible.

4.3 Results
Fig. 5 compares the time-to-accuracy of our three DNN models

with 1024 GPUs on different network architectures. We vary the

bandwidth per GPU, B, between 128—8192 Gbps, and compare

Elect-Flat, Elect-Cluster with two values of inter-server bandwidth

(200 Gbps or 400 Gbps), SiP-OCS, and SiP-Ring. For each value

of B and each network architecture, we use Algorithm 1 (§3.2) to

search for the best parallelization strategy, as described in §4.2.

To compare the different architectures on an equal footing, we

run Algorithm 1 for electrical networks by removing the degree

constraint. We then compare our results to the state-of-the-art

results reported in MLPerf [88] and find that they are comparable

or better (§A.3). For reference, we also show data parallel (DP)

training on Elect-Flat (except for Megatron which cannot use basic

DP).

We also experiment with FlexFlow [38] as a state-of-the-art

placement algorithm. FlexFlow’s network model does not support

the degree constraints required by our optical interconnects. For

electrical interconnects, we run the FlexFlow code [89] for our

workloads, but the strategies it finds are very similar to DP. We

believe there are two reasons for this. First, the scales we consider

(e.g., 1000 GPUs) are much larger than those in FlexFlow, making

the search space for its Metropolis algorithm significantly larger.

Second, FlexFlow’s implementation only searches for partitioning

strategies across the batch dimension (although the approach in [38]

is general).

Analysis. We first consider the Elect-Flat architecture. Recall that

Elect-Flat has ideal performance. At every value of B, it provides
each GPUwith its full interface bandwidth regardless of the commu-

nication pattern. Thus Elect-Flat’s training time serves as a lower

bound for any other network. Fig. 5 shows that increasing B on

Elect-Flat improves training time for all models, but the improve-

ment is much larger for Transformer and Megatron than ResNet50.

ResNet50 is less sensitive to network bandwidth for two reasons.

First, it is a smaller model than the others and therefore requires less

bandwidth for all-reduce operations. Second, ResNet50 trains effec-

tively with large batch sizes (via weak scaling), further reducing its

bandwidth requirements [86, 90–92].

Comparing DP with the best strategy found using Algorithm 1

on Elect-Flat is also instructive. Consider Transformer: when B is

less than 1 Tbps, our placement cannot beat DP. But as B increases

to 8 Tbps, SiP-ML’s hybrid strategy outperforms DP by ≈50%.

Now let us turn to the Elect-Cluster architectures. For all three

models, the training time plateaus as we increase B, with Elect-

Cluster (400 Gbps) outperforming Elect-Cluster (200 Gbps). Recall

that here, B is the local bandwidth between the GPUs within each

server. The results show that scaling this local bandwidth can im-

prove training time to an extent (by enabling some model paral-

lelism), but the slow server-to-server network eventually becomes

a bottleneck and prevents further speedups.

Compared to Elect-Cluster architectures, SiP-OCS and SiP-Ring

achieve 1.3–9.1× faster training time as we scale B. The benefits
are smallest for ResNet50 (which does not require very high com-

munication bandwidth) and most significant for Megatron. SiP-ML

architectures are less efficient than the ideal Elect-Flat (which can-

not be realized in practice for large values ofB andN ): to achieve the

same training time, SiP-ML architectures require up to 2× higher

bandwidth per GPU (B) (e.g., Transformer), with a smaller gap in

many cases (e.g., Megatron). This difference reflects the constraints

imposed by optical circuit switching. Specifically, in our evalua-

tions, we set the degree constraint for both SiP-OCS and SiP-Ring

at D=16. SiP-OCS requires a one-shot reconfiguration, while SiP-

Ring imposes a traffic locality requirement on the communication

pattern. Despite these constraints, SiP-ML performs quite well, as

our placement algorithm adapts the parallelization strategy to suit

the degree requirement.

SiP-OCS and SiP-Ring perform similarly overall. Each architec-

ture has pluses and minuses. Unlike SiP-OCS, SiP-Ring has fast

reconfiguration, but it makes communication between more distant

GPUs on the ring less efficient. Our results show that the impacts of

these factors on overall performance effectively cancel each other

out.

Parallelization strategies. Fig. 6 plots the degrees of DP and MP

for each value of B in SiP-OCS. The figure shows that as the per-

node bandwidth increases on the x-axis, the optimal strategy uses

more model parallelism to decrease the total training time. This

is consistent with current practice: when the network is slow, DP

is more efficient but on a fast network, combining MP and DP

improves training time. For instance, the Transformer model shown

in Fig. 6b starts with 1024-way DP and 1-way MP, but at 10 Tbps

bandwidth per-GPU, the best training time is achieved with 16-way

MP and 64-way DP.

664



SiP-ML: Optical Network Interconnects for Machine Learning SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Figure 7: Trafficmatrices generated by SiP-ML for the Trans-
former model on 1024 GPUs (displaying only the first 32
GPUs for brevity).

10 12 14 16

5

10

15

Num. of OCSs

T
im

e-
to
-A

cc
.(
m
in
s) 2 Tbps

4 Tbps
8 Tbps

Figure 8: Impact of number of OCSs in SiP-OCS on time-to-
accuracy of a hybrid training of Transformer with one-shot
configuration. The lines correspond to different per-GPU
bandwidth (B). Dashed horizontal lines of the same color
show performance achieved by Elect-Flat at the same band-
width.

Communication patterns. To better understand the communi-

cation patterns produced by Algorithm 1, Fig. 7 shows the traffic

matrices for the Transformer model with MP degree k = 4, 8, 16,

corresponding to 2 Tbps, 6 Tbps, and 10 Tbps per-GPU bandwidth,

respectively. These traffic matrices have two main components:

(i) a set of identical k × k blocks, corresponding to the traffic be-

tween the nodes in each MP group (brighter colors represent larger

values); (ii) an off-diagonal component, corresponding to the DP

ring-all-reduce traffic used by each GPU to synchronize its param-

eters with its peers in other MP groups (holding the same part of

the model). Within the k × k blocks, the entries near the diagonal

are larger (brighter), indicating the GPUs communicate more with

their immediate neighbors. This property helps when mapping the

communication to SiP-Ring. The off-diagonal entries (DP traffic)

are smaller than the largest entries for the MP traffic, but they are

still significant. This is the downside of current hierarchical electri-

cal fabrics, as shown in Fig. 5, the low server-to-server bandwidth

becomes a chokepoint.

The traffic matrices also show how SiP-ML meets the degree

constraint. For example, in SiP-OCS, each GPU establishes circuits

with members of its MP group and is also part of a ring with its

peers in other MP groups. The resulting topology is effectively

the union of l = N /k identical direct-connect topologies and k
rings. The number of circuits to each destination is chosen based

on the traffic intensity towards that destination, although finding

the optimal circuit allocation is more subtle and requires solving

an ILP (§3.3).

Impact of number of OCSs and reconfiguration latency. In-
creasing the number of OCSs (or the total number of ports on each

10
1

10
2

10
3

0

5

10

15

Reconfiguration Delay (µsec)

T
im

e-
to
-A

cc
.(
m
in
s) 2 Tbps, Reconfig. 4 Tbps, Reconfig.

2 Tbps, one-shot 4 Tbps, one-shot

Figure 9: Impact of OCS reconfiguration delay on time-to-
accuracy of Transformer in SiP-OCS for two per-GPU band-
widths. The critical reconfiguration delaywhen choosing be-
tween reconfigurable and one-shot allocation depends on
the bandwidth.

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

10
1

10
2

Number of GPUs

T
im

e-
to
-A

cc
.(
m
in
s)

(a) ResNet50

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

10
0

10
1

10
2

Number of GPUs

Elect-Flat Elect-Cluster 400Gbps
SiP-OCS SiP-Ring

(b) Transformer
Figure 10: Overall performance of SiP-ML’s OCS and Ring
topologies at different scales.

OCS) in SiP-OCS can improve performance in two ways: (i) we

can increase the maximum permissible communication degree; or

(ii) for the same communication degree, we can allow a more fine-

grained allocation of circuits (with less bandwidth per circuit). The

latter enables SiP-ML to align circuit bandwidth to traffic demands

more closely, resulting in less wasted bandwidth. Fig. 8 shows the

time-to-accuracy vs. number of OCSs for a one-shot circuit con-

figuration of the Transformer model. Performance improves with

more OCSs, but benefits are marginal beyond 12 OCSs. Also, un-

surprisingly, a larger bandwidth per GPU (B) reduces sensitivity
to the number of OCSs; it has more headroom, thus masking the

inefficiencies caused by fewer OCSs.

Fig. 9 shows how future OCSs with faster reconfiguration time

could improve the total training time of a Transformer model. For

a reconfiguration delay of d , we use the traffic matrix of the past 5d
seconds to reconfigure the circuit allocations. We maintain circuits

for 5d to amortize the reconfiguration delay overhead. As expected,

reducing the reconfiguration delay always helps. However, note

that for d > 300µs , a one-shot allocation outperforms a dynamic

reconfiguration. Once again, higher bandwidth per GPU masks

inefficiencies, and one-shot allocation performs as well as rapid

dynamic reconfiguration.

Impact of scale. Fig. 10 compares the training time of Resnet50

and Transformer on different network architectures across different

scales, with B = 8 Tbps of bandwidth per GPU. As in Fig. 5, we

see that SiP-OCS and SiP-Ring are close to the performance of

665



SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA M. Khani et al.

#GPUs Fabric Latency

1 µsec 3 µsec 10 µsec 30 µsec 100 µsec

32 1× 0.99× 0.83× 0.73× 0.64×

128 2.11× 2.10× 1.52× 1.36× 1.29×

512 4.27× 4.04× 3.03× 2.49× 2.03×

Table 1: Impact of interconnect latency on the scaling effi-
ciency. Training speed-ups are normalized by the speed-up
at 32 GPUs with 1µsec latency.

the ideal Elect-Flat at all scales, with SiP-Ring occasionally slightly

worse.With Elect-Cluster, the training time improves up to a certain

scale, and then the benefits taper off as the low server-to-server

bandwidth becomes a bottleneck. Once again, ResNet scales quite

well with Elect-Cluster, in line with current practice [31]. But larger

models and those less amenable to large-batch training, such as

Transformer, can benefit significantly from SiP-ML’s high per-GPU

bandwidth at moderate-to-large system scales.

Impact of network latency. Network fabric latency can play an

important role in scaling ML workloads at multi Tbps network

speeds. Table 1 shows the impact of different minimum interconnect

latencies on training performance. The results show the training

speedup relative to an Elect-Flat network with 32 GPUs with B =
10 Tbps, and 1 µs fabric latency. Latencies above ∼10µs degrade
performance. This suggests another potential advantage of optical

networks over electrical switching fabrics, the latter can suffer

from variable latency due to the presence of buffers. To compare to

the best-case performance of the baselines, our simulations do not

model buffering within electrical fabrics, as this depends on factors

such as the details of the transport protocols [93, 94].

SiP-Ring reconfiguration delay.While Tbps SiP-enabled chiplets

are just about to hit the market [8, 63, 95], their reconfiguration

latency has not been evaluated. To evaluate the reconfiguration

latency of SiP-ML’s ring topology, we build a small-scale testbed

(details in §4.4). Our testbed includes a thermo-optic SiP chip which

has six micro-ring resonators (MRRs). To hit 10 Tbps bandwidth

we must package 400 MRRs (each modulating light at 25 Gbps). As

a result, our testbed only supports 10 Gbps bandwidth. Rather than

bandwidth, we focus on validating reconfigurability. Our measure-

ments show a reconfiguration delay of 25 µs (Fig. 12b and Fig. 12c

in §4.4).

4.4 Testbed
To benchmark the switching time and throughput of a SiP-based

architecture, we build a small-scale testbed.

Testbed setup. Fig. 11a shows a photograph of our experimental

testbed. We built a three-node prototype of SiP-ML using FPGA

development boards (to emulate GPUs), and a thermo-optic SiP chip

which has six micro-ring resonators (MRRs). Each MRR is tuned to

select one wavelength by receiving the appropriate bias signal from

the bias control board. We use Stratix V FPGAs to emulate the GPU

training workflow, as no commercial GPU chip supports optical

interfaces. Our FPGAs have 50 Mb embedded memory and 1152 MB

DDR3 memory. The FPGAs are programmed and configured as indi-

vidual compute nodes with their own local memory. The controller

logic is implemented using one of the FPGAs. A digital-to-analog

converter (DAC) provides the necessary bias signals to the SiP chip

Rx Buffer

Compute 
CoreCache

Create 
request

Classifier

Tx Buffer

Resp.
MEM

Remote data

Sync.

Local data

Stratix V FPGA board 

Req.

Zoomed in

10mm

10mm

Fiber I/O

MRRs

Bias control board

SiP Chip

(a) Photo

M
U

X

λ1 λ2 λ3

λ1, λ2, λ3

λ2/λ3 λ1/λ3 λ1/λ2

MRR1 MRR2 MRR3

GPU1 GPU2 GPU3

Fiber ring

Traffic Matrix 
Prediction 

Wavelength 
Allocation

Micro Ring 
Bias Voltages

Controller

SiP 
switch

(b) Logical schematic

Figure 11: SiP-ML’s testbed.

to cause a state change in the MRRs, depending on the scheduling

decision. We use commodity SFP+ transceivers connected to the

high-speed serial transceiver port on the FPGA board to achieve

the conversion between electrical and optical domains. Our three

input wavelengths are λ1 =1546.92 nm, λ2 =1554.94 nm, and λ3 =
1556.55 nm. Our SiP optical chip consists of six MRRs (we use three

of them as shown in Fig. 11b) to select and forward any of the wave-

lengths to the target emulated GPUs. To evaluate our prototype, we

implement 2D convolutional computation workloads in Verilog to

perform data fetching, computing, and storing between emulated

GPU nodes. A GPU node can get access to the other GPU node’s

memory and perform read/write operations, similar to how real

GPUs communicate today.

Example: programming the MRRs. We set the first configura-

tion such that GPU1 is connected to GPU2; this means MRR1 is

tuned to select and forward λ2 to GPU1, while MRR2 is tuned to

select and forward λ1 to GPU2. For simplicity of the configura-

tion logic, MRR3 is always tuned to λ1 but is effectively in idle

mode, as the optical power of λ1 has been dropped through MRR2.

To change the state to Configuration2 where GPU1 is connected

to GPU3, MRR1 should be tuned to select and forward λ3, while
MRR2 should be detuned from λ1 for the optical power of λ1 to pass
through MRR3 to GPU3. Note that in this configuration, MRR3, can

remain tuned to λ1.
Testbed limitations.Our use of commodity FPGAs and transceivers

is driven by pragmatic concerns. It allows us to implement work-

loads without needing separate modulation logic at the transmitter

or demodulation logic at the receiver. Packets are forwarded to the

SFP+ transceiver which modulates the light for us. However, this

method has limitations as well. Implementing convolutional neural

networks in an FPGA, rather than a GPU as would be the case in

the actual system, introduces complex Verilog logic with overhead

on (de)serializing the remote memory access commands.

To validate the feasibility of our optical design, we answer the

following four key questions. (i ) What is the impact of using MRRs

to select/bypass wavelengths on throughput? (ii ) How fast can we

reconfigure the MRRs to dynamically tune to appropriate wave-

lengths? (iii ) What is the end-to-end switching time? (iv ) What is

the impact of our scheduling algorithm on throughput?

MRRs as select/bypass interfaces. We first examine the selec-

t/bypass functions of our MRR-based interfaces. A transceiver chan-

nel is instantiated on the FPGA and a SFP+ optical transceiver at

666



SiP-ML: Optical Network Interconnects for Machine Learning SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

9 9.1 9.2 9.3
0

0.5

1

Throughput (Gbps)

C
D
F

Loopback

Bypass

Select

(a) Micro-ring select/bypass through-
put

20μs 8.4μs

0 50 100 150 200
0

1

2

3

4

Time (µs)

R
x

S
ig

n
a
l
(V

o
lt

s)

MRR1 MRR2

(b) Micro-ring reconfiguration time

10 15 20 25
0

0.1

0.2

0.3

Reconfirguration Time (µs)

F
re

q
u

en
cy

Config.1 Config.2

(c) End-to-end reconfiguration time

0 200 400 600 800 1,000

0.6

0.8

1

Slot length (µs)

N
o
rm

a
li
ze
d
T
h
ro
u
g
h
p
u
t

GPU3 → GPU2

GPU2 → GPU3

(d) End-to-end throughput

Figure 12: Testbed benchmarks.

1546.92 nm is used to perform the throughput measurements for

select, bypass and loopback cases. As shown in Fig. 12a, the through-

put measurement of the select mode (the MRR tuned at 1546.92 nm)

is the curve in black while the result for bypassing the MRR is in

blue. The red curve is the baseline measurement where the optical

transmitter is connected directly to the receiver channel without

coupling the optical signal in/out the SiP chip. Our measurements

show in all three cases, the throughput is 9 to 9.3 Gbps confirming

the feasibility of the idea of using MRRs as select/bypass interfaces.

MRR reconfiguration time. To measure the reconfiguration time

of our MRRs, we place InGaAs PIN photodetectors after MRR1 and

MRR2 in Fig. 11b and change the bias voltage from Config1 to

Config2, where MRR1 and MRR2 are tuned into and out of reso-

nance with λ1. We switch light between the two photodetectors by

applying different bias signals to the SiP chip every 125 µs. The pho-
todetectors convert the received photocurrent into voltage. We use

an oscilloscope to measure real time light intensity and can there-

fore measure the reconfiguration speed. Fig. 12b shows the receive

signal at the photodetectors. In one case, the signal reaches stable

state in approximately 20 µs, and in another case, it takes only 8.4 µs.
This is because tuning the MRR into the chosen wavelength is faster

than tuning out of that wavelength due to our use of the thermal

tuning effect. We conservatively, consider 25 µs as the switching
time in our simulations. This experiment micro-benchmarks the

micro-ring reconfiguration time; additional time might be required

for transceivers to start decoding bits. This additional time is not

fundamental, and next we show how we measured the end-to-end

reconfiguration time between FPGAs.

End-to-end reconfiguration time. The end-to-end reconfigura-

tion time includes the MRRs’ reconfiguration time, the transceivers’

locking time, and the handshaking time between newly connected

nodes. The distribution of end-to-end switching time between

Config1 and Config2 is shown in Fig. 12c. We perform 300 mea-

surements to obtain the distribution, showing that the average

switching time to Config1 is 13 µs and Config2 is 15 µs. Indeed, it
is reasonable that the fastest end-to-end reconfiguration time may

be less than the micro-ring reconfiguration time, as the receiver

at the FPGA receives enough optical power to start the synchro-

nization process before stabilization of the light output power. As

described above, the micro-ring reconfiguration times for tuning

and detuning are not equal, leading to two distinct distributions.

The additional variations in the distribution of the reconfiguration

time are a consequence of the time required for the transceiver to

lock onto the new signal and carry out the handshaking protocol.

Putting it all together.We also measure the achieved throughput

while changing the scheduling slot length between the two config-

urations. We conduct five different case studies with slot lengths of

64, 128, 256, 512 and 1000 µs and measure the ideal throughput. The

curve in blue in Fig. 12d indicates the switching state from GPU3

to GPU2 lasting the duration set by the experiment; the curve in

red indicates the switching from GPU2 to GPU3. As the plot shows,

the link can achieve above 90% of the ideal throughput, when the

scheduling slot length is 220 µs. This is because the end-to-end

reconfiguration takes only about 20 µs; hence, having a scheduling

slot 10 times larger will result in near optimal throughput.

5 DISCUSSION
Power budget and scalability. Optical power loss is a key mea-

sure for any optical system. To estimate the D of our SiP-Ring

topology, we measure the loss of light in our testbed. Our experi-

ments indicate that the loss per MRR is negligible (0.125–0.025 dB

per MRR). However, coupling the light in and out of each node

creates 0.5 dB loss because each I/O interface has an input and

output coupler with loss. Overall, the total loss incurred by passing

through each node on SiP-Ring is 0.625–0.525 dB. Hence, assuming

a 10 dB power budget based on transmit power and receiver sen-

sitivity [96], SiP-Ring can send light to 16 back-to-back neighbors

without requiring amplification. At first blush, it appears infeasible

to scale SiP-Ring, as building a cluster with more than 16 nodes

needs amplifiers which add non-linear noise to the system. How-

ever, SiP-Ring can capture path length limitations in its placement

algorithm. For instance, the path length in our evaluations is lim-

ited to 16 nodes (Appendix A.1). This is because the placement

algorithm is able to place GPUs locally close to each other such

that every GPU only interacts with, at most, a GPU that is 15 nodes

away (i.e., the node degree is 16). As a result, SiP-Ring’s design can

take path length into account to scale to large numbers of nodes.

Cost of SiP-ML. The entire field of silicon photonics is based on

the concept that the fundamental way to reduce the cost of photonic

devices is to leverage the high volume manufacturing capabilities

of the silicon electronics industry. As a result, it is impossible to

provide an accurate cost estimation for SiP-ML. Prior work has

built TeraPHY SiP interfaces with size 8.86 mm × 5.5 mm [20, Slide

41]. This area contains optical transmit, receive, and MRRs. The

cost of manufacturing this SiP interface is $44,082 for a volume of

20 chips ($4,408/chip) based on 2020 Europractice pricelist [97].
5

5
Europractice is an EC initiative that provides the industry and academia with a

platform to develop smart integrated systems, ranging from advanced prototype

design to volume production. The cost is listed as AC80,000 on page 10 under imec

Si-Photonics iSiPP50G; the volume is listed as 20 samples on page 6 under iSiPP50G.

667



SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA M. Khani et al.

Hence, assuming the cost will drop by a factor of 10 at mass produc-

tion, our current cost estimation for each SiP interface in SiP-ML is

≈$440. We further estimate the cost of on-chip electrical circuitry

(drivers, MRR’s tuning control logic, and CMOS transimpedance

amplification) to be ≈$300. This estimate is based on Europractice

pricelist for a 10 mm
2
chip area [14, 19, 98, 99].

6
Another approach

to observe the potential cost effectiveness of SiP solutions is to

look at it from the standpoint of pluggable transceivers and active

copper cables. Today’s SiP-based pluggable optics at 100 Gbps cost

roughly $1/Gbps (SiP PSM4 and CWDM4). In comparison, a non

SiP-based SR-4 pluggable transceiver is around $3/Gbps (multimode

and VCSEL based). Similarly, a 400 Gbps SR8 is $3/Gbps, while a

SiP based 400 Gbps DR4 and FR4 is projected to be $1/Gbps. We

note that there is a large distinction between the cost of commodity

DWDM transponders used in wide-area networks and SiP-ML’s

SiP interfaces. In particular, DWDM transponders are designed

to operate at long distances; this imposes strict challenges on the

laser, manufacturing, forward-error correction, photodiode sen-

sitivity, modulation scheme, and light coupling. In contrast, SiP

interfaces are designed for short distances and do not require coher-

ent detection; hence, they can take advantage of the development

and commercialization of photonics components for short distance

datacenters.

6 RELATEDWORK
Our work builds on two lines of related work.

Software/hardware systems for distributed ML. Many soft-

ware platforms and techniques have focused on enabling large-

scale distributed machine learning in recent years [100–105]. In

particular several papers focus on enabling large-scale data par-

allel training [45, 100–104, 106]. Relevant to this paper, several

aim to reduce communication overhead using techniques such

as compression [107–110], asynchronous updates [28, 111–114],

partially-exchanged gradients [115], and smart parameter propa-

gation [2, 45, 116–119]. In addition, a variety of algorithmic ap-

proaches have been developed to accelerate communication among

devices customized for the underlying network [120], or to improve

model parallel training using smart task device placement [121, 122],

and more efficient pipelining strategies [4, 123]. There is also a

significant body of work on new electrical hardware designs to ac-

celerate machine learning computations [118, 124–129]. The work

proposed here is orthogonal to the above mentioned techniques, as

they can still be applied to further improve both data and model

parallel training. Our work differs in that we investigate the sys-

tem requirements of using SiP as a new underlying technology to

interconnect hundreds of GPUs in an all-optical architecture.

Datacenter Interconnects. The broad vision for this paper is to

use all-optical interconnects for future distributed ML systems.

Optical interconnects have a long and rich history in the data-

center research community [24–26, 55, 66, 70, 71, 130–135]. Prior

work shows the benefits of reconfigurable topologies in datacenter

networks by adding optical links to the electrical topology [24,

66, 71, 133, 136] or by creating all-optical datacenter intercon-

nects [26, 55, 70, 131, 132]. The unpredictability of legacy datacenter

workloads and the complexity of managing hybrid topologies are

6
Page 6 under GLOBALFOUNDRIES 22 nm FDSOI lists AC14,000/mm

2
for 50 samples.

two main reasons for the lack of adoption of all-optical datacen-

ters so far. In contrast, this paper builds an all-optical interconnect

with a simple and practical task placement algorithm primarily

used to accelerate ML workloads. Our ring topology (SiP-Ring) is

inspired by Quartz [70], Mordia [71], and Megaswitch [26]. They

all use a fiber ring to interconnect the datacenter topology, but

they do not leverage MRRs. Moreover, Mordia realizes a microsec-

ond switching circuit switch, but it does not reuse wavelengths,

and this significantly reduces its bandwidth efficiency compared

to SiP-Ring. As a result, Mordia’s number of ports is limited by

the number of wavelengths. Jellyfish [137], Rotornet [66], and

Opera [69] take advantage of the unpredictability of datacenter

workloads and use expander-based topologies to improve the com-

pletion time of short and long flows. Random permutations are

not ideal for ML workloads, as a training workload is a periodic

repetition of thousands of iterations. Shoal [135], Larry [138], XFab-

ric [139], and Sirius [55] have proposed reconfigurable datacenter

interconnects with nanosecond switching fabric. We believe these

proposals have the potential to change the game in datacenter en-

vironments, but they are not commercially available yet and they

do not support Tbps bandwidth between communicating nodes.

Moreover, our results show µs reconfiguration latency is close to

optimal for ML; a control plane with nanosecond response time

might be needed for a general purpose datacenter traffic, but it is

an overkill for distributed ML training. Finally, there is rich body of

research on silicon photonics [17, 140–142], embedding silicon pho-

tonics switches in High Performance Computing clusters [143] and

energy-efficient datacenters [144]. By focusing on ML, our work

takes an application-level perspective to build an interconnect with

SiP components.

7 CONCLUSION
In this paper, we propose optical network interconnects for dis-

tributed ML training clusters capable of providing multiple terabits-

per-second of bandwidth per GPU. Our results show that the pre-

dictability of ML workloads makes them a great fit for optical inter-

connects. We develop a new task partitioning and placement algo-

rithm that exploits the degree requirement of optical networks to

find a parallelization strategy suitable for a given network topology.

We show this approach can mitigate and in fact largely overcome

concerns such as limited communication degree and reconfigura-

bility of optical circuit-switched networks. Simulations using three

real DNNmodels show that, compared to today’s electrical network

fabrics with limited server-to-server bandwidth, SiP-ML improves

the training time by 1.3–9.1× at scale.

8 ACKNOWLEDGMENTS
We would like to thank our shepherd Hitesh Ballani and anony-

mous reviewers for their feedback. This work was partly supported

by AEPA-E ENLITENED PINE, DARPA FastNICs, DARPA PIPES,

a Cisco Research Center Award, NSF ASCENT-2023468, NSF CNS-

2008624, NSF CNS-1751009, NSF CNS-2006827, NSF CNS-1563826

as well as by a SystemsThatLearn@CSAIL Ignite Grant and a Ma-

chineLearningApplications@CSAIL Award.

668



SiP-ML: Optical Network Interconnects for Machine Learning SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

REFERENCES
[1] AI and Compute. https://openai.com/blog/ai-and-compute/.

[2] Minsik Cho, Ulrich Finkler, David Kung, and Hillery Hunter. Blueconnect:

Decomposing all-reduce for deep learning on heterogeneous network hierarchy.

In SysML Conference, 2019.
[3] Siddharth Das. CNN Architectures, 2017.

[4] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R.

Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. Pipedream:

Generalized pipeline parallelism for dnn training. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, SOSP âĂŹ19, page 1âĂŞ15,

New York, NY, USA, 2019. Association for Computing Machinery.

[5] NVIDIA DGX A100. https://www.nvidia.com/en-us/data-center/dgx-a100/.

[6] NVIDIA Selene Cluster. https://blogs.nvidia.com/blog/2020/12/18/nvidia-

selene-busy/.

[7] S S Vazhkudai, B R de Supinski, A S Bland, A Geist, J Sexton, J Kahle, C J Zimmer,

S Atchley, S H Oral, D E Maxwell, V G Vergara Larrea, A Bertsch, R Goldstone,

W Joubert, C Chambreau, D Appelhans, R Blackmore, B Casses, G Chochia,

G Davison, MA Ezell, E Gonsiorowski, L Grinberg, B Hanson, B Hartner, I Karlin,

M L Leininger, D Leverman, C Marroquin, A Moody, M Ohmacht, R Panka-

jakshan, F Pizzano, J H Rogers, B Rosenburg, D Schmidt, M Shankar, F Wang,

P Watson, B Walkup, L D Weems, and J Yin. The design, deployment, and

evaluation of the coral pre-exascale systems. 7 2018.

[8] Valerie Coffey. DARPA PIPES Program demonstrates 2 Tbit/s optical intercon-

nects at the chip level, July 2020. https://www.laserfocusworld.com/fiber-

optics/article/14176186/darpa-pipes-program-demonstrates-2-tbits-optical-

interconnects-at-the-chip-level.

[9] Mark Wade. Optical i/o chiplets eliminate bottlenecks to unleash innovation,

2020. https://ayarlabs.com/ayar-labs-solving-critical-computing-challenges-

through-optical-i-o/.

[10] Yutaka Urino, Takahiro Nakamura, and Yasuhiko Arakawa. Silicon Optical
Interposers for High-Density Optical Interconnects, pages 1–39. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2016.

[11] D. Kim, K. Y. Au, H. Y. L. X. Luo, Y. L. Ye, S. Bhattacharya, and G. Q. Lo. 2.5d silicon

optical interposer for 400 gbps electronic-photonic integrated circuit platform

packaging. In 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC),
pages 1–4, Dec 2017.

[12] E. R. H. Fuchs, R. E. Kirchain, and S. Liu. The future of silicon photonics: Not

so fast? insights from 100g ethernet lan transceivers. Journal of Lightwave
Technology, 29(15):2319–2326, Aug 2011.

[13] David Thomson, Aaron Zilkie, John E Bowers, Tin Komljenovic, Graham T Reed,

Laurent Vivien, Delphine Marris-Morini, Eric Cassan, Leopold Virot, Jean-Marc

Fedeli, Jean-Michel Hartmann, Jens H Schmid, Dan-Xia Xu, Frederic Boeuf,

Peter O’Brien, Goran Z Mashanovich, and M Nedeljkovic. Roadmap on silicon

photonics. Journal of Optics, 18(7):073003, 2016.
[14] M. Wade, M. Davenport, M. De Cea Falco, P. Bhargava, J. Fini, D. Van Orden,

R. Meade, E. Yeung, R. Ram, M. Popovic, V. Stojanovic, and C. Sun. A bandwidth-

dense, low power electronic-photonic platform and architecture for multi-tbps

optical i/o. pages 1–3, Sep. 2018.

[15] N. Ophir, C. Mineo, D. Mountain, and K. Bergman. Silicon photonic microring

links for high-bandwidth-density, low-power chip i/o. IEEE Micro, 33(1):54–67,
Jan 2013.

[16] G.T. Reed and A.P. Knights. Silicon Photonics: An Introduction. Wiley, 2004.

[17] Qixiang Cheng, Meisam Bahadori, Madeleine Glick, Sebastien Rumley, and

Keren Bergman. Recent advances in optical technologies for data centers: a

review. Optica, 5(11):1354–1370, Nov 2018.
[18] Madeleine Glick, Lionel C. Kimmerling, and Robert C. Pfahl. A roadmap for

integrated photonics. Opt. Photon. News, 29(3):36–41, Mar 2018.

[19] Amir H. Atabaki, Sajjad Moazeni, Fabio Pavanello, Hayk Gevorgyan, Jelena

Notaros, Luca Alloatti, Mark T. Wade, Chen Sun, Seth A. Kruger, Huaiyu Meng,

Kenaish Al Qubaisi, Imbert Wang, Bohan Zhang, Anatol Khilo, Christopher V.

Baiocco, Milovs A. Popovic, Vladimir M. Stojanovic, and Rajeev J. Ram. Integrat-

ing photonics with silicon nanoelectronics for the next generation of systems

on a chip. Nature, 556(7701):349–354, 2018.
[20] Mark Wade, Erik Anderson, Shahab Ardalan, Pavan Bhargava, Sidney Buch-

binder, Michael Davenport, John Fini, Anatoly Khilo, Chandru Ramamurthy

Roy Meade, Michael Rust, Vladimir Stojanovic Forrest Sedgwick, Derek Van

Orden, Chong Zhang Edward Wang, Chen Sun, Sergey Shumarayev, Conor

O’Keeffe, Tim T. Hoang, David Kehlet, Ravi V. Mahajan, Allen Chan, and Tina

Tran. TeraPHY: A Chiplet Technology for Low-Power, High-Bandwidth Optical

I/O. HotChips, pages i–xlviii, August 2019. https://www.hotchips.org/hc31/
HC312 .9AyarLabs20190820HCFINAL.pdf.

[21] Valentina Donzella, Ahmed Sherwali, Jonas Flueckiger, Samantha M. Grist,

Sahba Talebi Fard, and Lukas Chrostowski. Design and fabrication of soi micro-

ring resonators based on sub-wavelength grating waveguides. Opt. Express,
23(4):4791–4803, Feb 2015.

[22] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja,

T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets. Silicon

microring resonators. Laser & Photonics Reviews, 6(1):47–73, 2012. https://

onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201100017.
[23] Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman. Scalable

microring-based silicon clos switch fabric with switch-and-select stages. IEEE
Journal of Selected Topics in Quantum Electronics, 25(5):1–11, Sep. 2019.

[24] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajab-

dolali Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and

Amin Vahdat. Helios: A hybrid electrical/optical switch architecture for modular

data centers. SIGCOMM’10, pages 339–350.
[25] Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina Papagian-

naki, T.S. Eugene Ng, Michael Kozuch, and Michael Ryan. c-Through: Part-time

optics in data centers. SIGCOMM’10, pages 327–338.
[26] Li Chen, Kai Chen, Zhonghua Zhu, Minlan Yu, George Porter, Chunming Qiao,

and Shan Zhong. Enabling wide-spread communications on optical fabric with

megaswitch. In 14th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 17), pages 577–593, Boston, MA, 2017. USENIX Association.

[27] Pengtao Xie, Jin Kyu Kim, Yi Zhou, Qirong Ho, Abhimanu Kumar, Yaoliang

Yu, and Eric Xing. Lighter-communication distributed machine learning via

sufficient factor broadcasting. In Proceedings of the Thirty-Second Conference on
Uncertainty in Artificial Intelligence, pages 795–804, Arlington, Virginia, USA,
2016. AUAI Press.

[28] Mu Li, David G. Andersen, JunWoo Park, Alexander J. Smola, AmrAhmed, Vanja

Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed

machine learning with the parameter server. OSDI’14, pages 583–598. USENIX

Association, 2014.

[29] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collec-

tive communication operations in mpich. Int. J. High Perform. Comput. Appl.,
19(1):49–66, February 2005.

[30] Baidu, 2017. https://github.com/baidu-research/baidu-allreduce.

[31] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu

Zhou, Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, Tiegang Chen,

Guangxiao Hu, Shaohuai Shi, and Xiaowen Chu. Highly scalable deep learning

training system with mixed-precision: Training imagenet in four minutes. CoRR,
abs/1807.11205, 2018.

[32] J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106, March

1986.

[33] Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho, Garth A Gibson, and Eric P

Xing. Onmodel parallelization and scheduling strategies for distributed machine

learning. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.

Weinberger, editors, Advances in Neural Information Processing Systems 27, pages
2834–2842. Curran Associates, Inc., 2014.

[34] Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken. Exploring hidden dimensions

in accelerating convolutional neural networks. volume 80 of Proceedings of
Machine Learning Research, pages 2274–2283, StockholmsmÃďssan, Stockholm

Sweden, 10–15 Jul 2018. PMLR.

[35] Tal BenNun and Torsten Hoefler. Demystifying parallel and distributed deep

learning: An in-depth concurrency analysis. CoRR, abs/1802.09941, 2018.
[36] L. Song, F. Chen, Y. Zhuo, X. Qian, H. Li, and Y. Chen. Accpar: Tensor partition-

ing for heterogeneous deep learning accelerators. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages 342–355,
2020.

[37] Nikoli Dryden, Naoya Maruyama, Tim Moon, Tom Benson, Marc Snir, and

Brian Van Essen. Channel and filter parallelism for large-scale cnn training.

In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC’19, New York, NY, USA, 2019. Association

for Computing Machinery.

[38] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism

for deep neural networks. SysML, 2019.
[39] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,

Marc aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le, and

Andrew Y. Ng. Large scale distributed deep networks. In F. Pereira, C. J. C.

Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 1223–1231. Curran Associates, Inc., 2012.

[40] Amir Gholami, Ariful Azad, Kurt Keutzer, and Aydin Buluç. Integrated model

and data parallelism in training neural networks. CoRR, abs/1712.04432, 2017.
[41] Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi

Mao, and Mohammad Alizadeh. Learning generalizable device placement al-

gorithms for distributed machine learning. In Advances in Neural Information
Processing Systems 32, pages 3983–3993. Curran Associates, Inc., 2019.

[42] Shar Narasimhan. NVIDIA Clocks World’s Fastest BERT Training Time and

Largest Transformer Based Model, Paving Path For Advanced Conversational

AI, Aug. 2019. https://devblogs.nvidia.com/training-bert-with-gpus/.

[43] Nikoli Dryden, Naoya Maruyama, Tom Benson, Tim Moon, Marc Snir, and

Brian Van Essen. Improving strong-scaling of cnn training by exploiting finer-

grained parallelism, 2019.

[44] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better:

Closing the generalization gap in large batch training of neural networks. In

669

https://openai.com/blog/ai-and-compute/
https://www.nvidia.com/en-us/data-center/dgx-a100/
https://blogs.nvidia.com/blog/2020/12/18/nvidia-selene-busy/
https://blogs.nvidia.com/blog/2020/12/18/nvidia-selene-busy/
https://www.laserfocusworld.com/fiber-optics/article/14176186/darpa-pipes-program-demonstrates-2-tbits-optical-interconnects-at-the-chip-level
https://www.laserfocusworld.com/fiber-optics/article/14176186/darpa-pipes-program-demonstrates-2-tbits-optical-interconnects-at-the-chip-level
https://www.laserfocusworld.com/fiber-optics/article/14176186/darpa-pipes-program-demonstrates-2-tbits-optical-interconnects-at-the-chip-level
https://ayarlabs.com/ayar-labs-solving-critical-computing-challenges-through-optical-i-o/
https://ayarlabs.com/ayar-labs-solving-critical-computing-challenges-through-optical-i-o/
https://www.hotchips.org/hc31/HC31_2.9_AyarLabs_20190820_HC_FINAL.pdf
https://www.hotchips.org/hc31/HC31_2.9_AyarLabs_20190820_HC_FINAL.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201100017
https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201100017
https://github.com/baidu-research/baidu-allreduce
https://devblogs.nvidia.com/training-bert-with-gpus/


SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA M. Khani et al.

Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pages 1729–1739, Red Hook, NY, USA, 2017. Curran Associates
Inc.

[45] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, LukaszWesolowski,

Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large

minibatch SGD: training imagenet in 1 hour. CoRR, abs/1706.02677, 2017.
[46] Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein,

Roy Frostig, and George E. Dahl. Measuring the effects of data parallelism on

neural network training. Journal of Machine Learning Research, 20(112):1–49,
2019.

[47] Yosuke Oyama, Naoya Maruyama, Nikoli Dryden, Erin McCarthy, Peter Har-

rington, Jan Balewski, Satoshi Matsuoka, Peter Nugent, and Brian Van Essen.

The case for strong scaling in deep learning: Training large 3d cnns with hybrid

parallelism. IEEE Transactions on Parallel and Distributed Systems, 2020.
[48] MLPerf v0.6: NVIDIA Implementation of Attention Mechanisms for Translation,

Aug. 2019. https://github.com/mlperf/trainingresultsv0.6/tree/master/NVIDIA/

benchmarks/transformer/implementations/pytorch.

[49] ResNet v1.5 for TensorFlow, 2020.

[50] NVIDIA Data Center Deep Learning Product Performance. https://

developer.nvidia.com/deep-learning-performance-training-inference.

[51] Nvidia DGX-2. https://www.nvidia.com/content/dam/en-zz/Solutions/Data-

Center/dgx-2/dgx-2-print-datasheet-738070-nvidia-a4-web-uk.pdf.
[52] MegatronLM: Training Billion+ Parameter Language Models Using GPU Model

Parallelism, Jul. 2019. https://nv-adlr.github.io/MegatronLM.

[53] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero:

Memory optimizations toward training trillion parameter models, 2019. https:

//www.deepspeed.ai/.
[54] Saeed Rashidi, Srinivas Sridharan, Sudarshan Srinivasan, Matthew Denton, and

Tushar Krishna. Efficient communication acceleration for next-gen scale-up

deep learning training platforms, 2020.

[55] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, Istvan Haller,

Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn Thomsen, and

Hugh Williams. Sirius: A Flat Datacenter Network with Nanosecond Optical

Switching. SIGCOMM’20, Aug. 2020.
[56] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. Dark

silicon and the end of multicore scaling. In 2011 38th Annual International
Symposium on Computer Architecture (ISCA), pages 365–376, June 2011.

[57] R. Colwell. The chip design game at the end of moore’s law. In 2013 IEEE Hot
Chips 25 Symposium (HCS), pages 1–16, Aug 2013.

[58] H. J. S. Dorren, E. H. M.Wittebol, R. de Kluijver, G. Guelbenzu de Villota, P. Duan,

and O. Raz. Challenges for optically enabled high-radix switches for data center

networks. Journal of Lightwave Technology, 33(5):1117–1125, March 2015.

[59] Alexis BjÃűrlin and Manish Mehta. Broadcom discusses its co-packaged optics

plans. http://www.gazettabyte.com/home/2021/4/27/broadcom-discusses-its-

co-packaged-optics-plans.html, 2021. [Online; last accessed 25-June-2021].

[60] Steven Leibson. Ayar labs and Intel demo FPGA with optical transceivers

in DARPA PIPES project: 2 Tbps now, >100 Tbps is the goal, Mar.

2020. https://blogs.intel.com/psg/ayar-labs-and-intel-demo-fpga-with-optical-

transceivers-in-darpa-pipes-project-2-tbps-now-100-tbps-is-the-goal/.

[61] Pipes researchers demonstrate optical interconnects to improve performance of

digital microelectronics, Mar. 2020. https://www.darpa.mil/news-events/2020-

03-25.

[62] Tiffany Trader. Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot

Chips, Aug. 2019. https://www.hpcwire.com/2019/08/19/ayar-labs-to-demo-

photonics-chiplet-in-fpga-package-at-hot-chips/.

[63] F. Douglis, S. Robertson, E. Van den Berg, J. Micallef, M. Pucci, A. Aiken, M. Hat-

tink, M. Seok, and K. Bergman. Fleet—fast lanes for expedited execution at 10

terabits: Program overview. IEEE Internet Computing, (01):1–1, apr 5555.
[64] Ayar Labs TeraPHY Silicon Chip. https://ayarlabs.com/products/.

[65] Demonstration of Ayar Labs’ Optical I/O Multi-Chip Package and Single-Die

Package solutions, Aug. 2020. https://vimeo.com/449164007.

[66] WilliamM.Mellette, RobMcGuinness, Arjun Roy, Alex Forencich, George Papen,

Alex C. Snoeren, and George Porter. Rotornet: A scalable, low-complexity,

optical datacenter network. SIGCOMM ’17, pages 267–280, 2017.
[67] Tae Joon Seok, Niels Quack, Sangyoon Han, Richard S. Muller, and Ming C. Wu.

Large-scale broadband digital silicon photonic switches with vertical adiabatic

couplers. Optica, 3(1):64–70, Jan 2016.

[68] Kyungmok Kwon, Tae Joon Seok, Johannes Henriksson, Jianheng Luo, Lane

Ochikubo, John Jacobs, Richard S Muller, and Ming C Wu. 128× 128 silicon

photonic mems switch with scalable row/column addressing. In CLEO: Science
and Innovations, pages SF1A–4. Optical Society of America, 2018.

[69] William M. Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C. Snoeren,

and George Porter. Expanding across time to deliver bandwidth efficiency and

low latency. NSDI’20, 2020.
[70] Yunpeng James Liu, Peter Xiang Gao, Bernard Wong, and Srinivasan Keshav.

Quartz: A new design element for low-latency dcns. SIGCOMM’14, pages 283–
294.

[71] George Porter, Richard Strong, Nathan Farrington, Alex Forencich, Pang Chen-

Sun, Tajana Rosing, Yeshaiahu Fainman, George Papen, and Amin Vahdat.

Integrating microsecond circuit switching into the data center. SIGCOMM’13,
pages 447–458.

[72] meg walraed sullivan, Jitu Padhye, and Dave Maltz. Theia: Simple and cheap

networking for ultra-dense data centers. In HotNets-XIII Proceedings of the 13th
ACM Workshop on Hot Topics in Networks. ACM, October 2014.

[73] Paolo Costa, Austin Donnelly, Greg O’Shea, and Antony Rowstron. Camcubeos:

A key-based network stack for 3d torus cluster topologies. In Proceedings of
the 22nd International Symposium on High-Performance Parallel and Distributed
Computing, HPDC ’13, pages 73–84, New York, NY, USA, 2013. Association for

Computing Machinery.

[74] Hussam Abu-Libdeh, Paolo Costa, Antony Rowstron, Greg O’Shea, and Austin

Donnelly. Symbiotic routing in future data centers. In Proceedings of the ACM
SIGCOMM 2010 Conference, SIGCOMM ’10, page 51?62, New York, NY, USA,

2010. Association for Computing Machinery.

[75] J. M. Kumar and L. M. Patnaik. Extended hypercube: a hierarchical intercon-

nection network of hypercubes. IEEE Transactions on Parallel and Distributed
Systems, 3(1):45–57, 1992.

[76] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. Technology-

driven, highly-scalable dragonfly topology. SIGARCH Comput. Archit. News,
36(3):77âĂŞ88, June 2008.

[77] Min Yee Teh, Jeremiah J. Wilke, Keren Bergman, and Sébastien Rumley. Design

space exploration of the dragonfly topology. In Julian M. Kunkel, Rio Yokota,

Michela Taufer, and John Shalf, editors, High Performance Computing, pages
57–74, Cham, 2017. Springer International Publishing.

[78] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-driven, highly-scalable

dragonfly topology. In 2008 International Symposium on Computer Architecture,
pages 77–88, 2008.

[79] Calient Optical Circuit Switch. https://www.calient.net/products/edge640-
optical-circuit-switch/.

[80] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable,

commodity data center network architecture. SIGCOMM Comput. Commun.
Rev., 38(4):63–74, August 2008.

[81] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,

Chen Tian, Yongguang Zhang, and Songwu Lu. Bcube: A high performance,

server-centric network architecture for modular data centers. In Proceedings of
the ACM SIGCOMM 2009 Conference on Data Communication, SIGCOMM ’09,

page 63?74, New York, NY, USA, 2009. Association for Computing Machinery.

[82] M. Besta and T. Hoefler. Slim fly: A cost effective low-diameter network topol-

ogy. In SC ’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 348–359, Nov 2014.

[83] Alexander Ishii, Denis Foley, Eric Anderson, Bill Dally, Glenn Dearth Larry

Dennison, Mark Hummel, and John Schafer. NVIDIA’s NVLink-Switching Chip

and Scale-Up GPU-Compute Server. HotChips, 2018. https://www.hotchips.org/
hc30/2conf/2.01NvidiaNVswitchHotChips2018DGX2NVSFinal.pdf.

[84] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, June 2016.

[85] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving

Language Understanding by Generative Pre-Training.

[86] Christopher J. Shallue, Jaehoon Lee, Joseph M. Antognini, Jascha Sohl-Dickstein,

Roy Frostig, and George E. Dahl. Measuring the effects of data parallelism on

neural network training. CoRR, abs/1811.03600, 2018.
[87] Raul Puri. Megatron: a large, powerful transformer, Aug. 2019. https://

github.com/NVIDIA/Megatron-LM.

[88] MLPerf: A broad ML benchmark suite. https://mlperf .org/.
[89] FlexFlow Github. https://github.com/flexflow/FlexFlow.git.
[90] Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely largeminibatch sgd:

Training resnet-50 on imagenet in 15 minutes. arXiv preprint arXiv:1711.04325,
2017.

[91] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. Ima-

genet training in minutes. In Proceedings of the 47th International Conference on
Parallel Processing, pages 1–10, 2018.

[92] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou,

Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al. Highly scalable

deep learning training system with mixed-precision: Training imagenet in four

minutes. arXiv preprint arXiv:1807.11205, 2018.
[93] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data

Center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Conference,
SIGCOMM ’10, pages 63–74, New York, NY, USA, 2010. ACM.

[94] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,

Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. Hpcc: high

precision congestion control. In Proceedings of the ACM Special Interest Group
on Data Communication, pages 44–58. 2019.

670

https://github.com/mlperf/training_results_v0.6/tree/master/NVIDIA/benchmarks/transformer/implementations/pytorch
https://github.com/mlperf/training_results_v0.6/tree/master/NVIDIA/benchmarks/transformer/implementations/pytorch
https://developer.nvidia.com/deep-learning-performance-training-inference
https://developer.nvidia.com/deep-learning-performance-training-inference
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-2/dgx-2-print-datasheet-738070-nvidia-a4-web-uk.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-2/dgx-2-print-datasheet-738070-nvidia-a4-web-uk.pdf
https://nv-adlr.github.io/MegatronLM
https://www.deepspeed.ai/
https://www.deepspeed.ai/
http://www.gazettabyte.com/home/2021/4/27/broadcom-discusses-its-co-packaged-optics-plans.html
http://www.gazettabyte.com/home/2021/4/27/broadcom-discusses-its-co-packaged-optics-plans.html
https://blogs.intel.com/psg/ayar-labs-and-intel-demo-fpga-with-optical-transceivers-in-darpa-pipes-project-2-tbps-now-100-tbps-is-the-goal/
https://blogs.intel.com/psg/ayar-labs-and-intel-demo-fpga-with-optical-transceivers-in-darpa-pipes-project-2-tbps-now-100-tbps-is-the-goal/
https://www.darpa.mil/news-events/2020-03-25
https://www.darpa.mil/news-events/2020-03-25
https://www.hpcwire.com/2019/08/19/ayar-labs-to-demo-photonics-chiplet-in-fpga-package-at-hot-chips/
https://www.hpcwire.com/2019/08/19/ayar-labs-to-demo-photonics-chiplet-in-fpga-package-at-hot-chips/
https://ayarlabs.com/products/
https://vimeo.com/449164007
https://www.calient.net/products/edge640-optical-circuit-switch/
https://www.calient.net/products/edge640-optical-circuit-switch/
https://www.hotchips.org/hc30/2conf/2.01_Nvidia_NVswitch_HotChips2018_DGX2NVS_Final.pdf
https://www.hotchips.org/hc30/2conf/2.01_Nvidia_NVswitch_HotChips2018_DGX2NVS_Final.pdf
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
https://mlperf.org/
https://github.com/flexflow/FlexFlow.git


SiP-ML: Optical Network Interconnects for Machine Learning SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

[95] Roy Meade, Shahab Ardalan, Michael Davenport, John Fini, Chen Sun, Mark

Wade, Alexandra Wright-Gladstein, and Chong Zhang. Teraphy: A high-density

electronic-photonic chiplet for optical i/o from a multi-chip module. In Optical
Fiber Communication Conference (OFC) 2019, page M4D.7. Optical Society of

America, 2019.

[96] Alvaro moscoso martir, Juliana MÃĳller, Johannes Hauck, Nicolas Chimot, Rony

Setter, Avner Badihi, Daniel Rasmussen, Alexandre Garreau, Mads Nielsen,

Elmira Islamova, Sebastian Romero-GarcÃŋa, Bin Shen, Anna Sandomirsky,

Sylvie Rockman, Chao Li, Saeed Sharif Azadeh, Guo-Qiang Lo, Elad Mentovich,

Florian Merget, and Jeremy Witzens. Silicon photonics wdm transceiver with

soa and semiconductor mode-locked laser. Scientific Reports, 7, 05 2016.
[97] 2020 General Europractice Pricelist, Jan. 2020. https://europractice-ic.com/wp-

content/uploads/2020/01/General-MPW-EUROPRACTICE-200123-v3.pdf.
[98] D. Kim, K. Y. Au, H. Y. L. X. Luo, Y. L. Ye, S. Bhattacharya, and G. Q. Lo. 2.5d silicon

optical interposer for 400 gbps electronic-photonic integrated circuit platform

packaging. In 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC),
pages 1–4, Dec 2017.

[99] Chen Sun, Mark T. Wade, Yunsup Lee, Jason S. Orcutt, Luca Alloatti, Michael S.

Georgas, Andrew S. Waterman, Jeffrey M. Shainline, Rimas R. Avizienis, Sen Lin,

Benjamin R. Moss, Rajesh Kumar, Fabio Pavanello, Amir H. Atabaki, Henry M.

Cook, Albert J. Ou, Jonathan C. Leu, Yu-Hsin Chen, Krste Asanović, Rajeev J.

Ram, MilošA. Popović, and Vladimir M. Stojanović. Single-chip microprocessor

that communicates directly using light. Nature, 528(7583):534–538, 2015.
[100] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,

Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed

deep networks. In Advances in neural information processing systems, pages
1223–1231, 2012.

[101] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and Ng An-

drew. Deep learning with cots hpc systems. In International conference on
machine learning, pages 1337–1345, 2013.

[102] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.

Project adam: Building an efficient and scalable deep learning training system.

In OSDI’14, pages 571–582, 2014.
[103] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeongjae Jeon,

Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. Tiresias: A {GPU} cluster

manager for distributed deep learning. In NSDI’19, pages 485–500, 2019.
[104] Peng Sun, Wansen Feng, Ruobing Han, Shengen Yan, and Yonggang Wen. Op-

timizing network performance for distributed dnn training on gpu clusters:

Imagenet/alexnet training in 1.5 minutes. arXiv preprint arXiv:1902.06855, 2019.
[105] Adam Lerer, Ledell Wu, Jiajun Shen, Timothée Lacroix, Luca Wehrstedt, Abhijit

Bose, and Alexander Peysakhovich. Pytorch-biggraph: A large-scale graph

embedding system. CoRR, abs/1903.12287, 2019.
[106] Luo Mai, Chuntao Hong, and Paolo Costa. Optimizing network performance in

distributed machine learning. In 7th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 15), Santa Clara, CA, 2015. USENIX Association.

[107] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient

compression: Reducing the communication bandwidth for distributed training.

arXiv preprint arXiv:1712.01887, 2017.
[108] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic.

QSGD: Communication-efficient SGD via randomized quantization and encod-

ing. volume 3, pages 1710 – 1721, 2018.

[109] Hyeontaek Lim, David G Andersen, and Michael Kaminsky. 3lc: Lightweight

and effective traffic compression for distributed machine learning. arXiv preprint
arXiv:1802.07389, 2018.

[110] Peng Jiang and Gagan Agrawal. A linear speedup analysis of distributed deep

learning with sparse and quantized communication. In S. Bengio, H. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 2525–2536. Curran Associates,

Inc., 2018.

[111] Alex Krizhevsky. One weird trick for parallelizing convolutional neural net-

works. arXiv preprint arXiv:1404.5997, 2014.
[112] Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic

averaging sgd. In Advances in Neural Information Processing Systems, pages
685–693, 2015.

[113] Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization.

In Advances in Neural Information Processing Systems, pages 873–881, 2011.
[114] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. Hogwild!: A

lock-free approach to parallelizing stochastic gradient descent. In Proceedings
of the 24th International Conference on Neural Information Processing Systems,
NIPS’11, pages 693–701, 2011.

[115] PijikaWatcharapichat, Victoria LopezMorales, Raul Castro Fernandez, and Peter

Pietzuch. Ako: Decentralised deep learning with partial gradient exchange.

SoCC ’16, 2016.
[116] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy H. Campbell. Communi-

cation scheduling as a first-class citizen in distributed machine learning systems.

CoRR, abs/1803.03288, 2018.
[117] Forrest N. Iandola, Khalid Ashraf, Matthew W. Moskewicz, and Kurt Keutzer.

Firecaffe: near-linear acceleration of deep neural network training on compute

clusters. CoRR, abs/1511.00175, 2015.
[118] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian

Caulfield, Todd Massengil, Ming Liu, Daniel Lo, Shlomi Alkalay, and Michael

Haselman. Accelerating persistent neural networks at datacenter scale. In Hot
Chips, volume 29, 2017.

[119] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra Fedorova, and Gen-

nady Pekhimenko. Priority-based parameter propagation for distributed DNN

training. CoRR, abs/1905.03960, 2019.
[120] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep

learning in tensorflow. CoRR, abs/1802.05799, 2018.
[121] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen,

Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean.

Device placement optimization with reinforcement learning. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70, pages 2430–
2439. JMLR. org, 2017.

[122] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song,

Zenglin Xu, and Tim Kraska. Superneurons: dynamic gpu memory management

for training deep neural networks. In ACM SIGPLAN Notices, volume 53, pages

41–53. ACM, 2018.

[123] Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam,

Quoc V. Le, and Zhifeng Chen. Gpipe: Efficient training of giant neural networks

using pipeline parallelism. NeurIPS, 2019.
[124] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An

energy-efficient reconfigurable accelerator for deep convolutional neural net-

works. IEEE Journal of Solid-State Circuits, 52(1):127–138, 2017.
[125] Yichen Shen, Nicholas C Harris, Scott Skirlo, Mihika Prabhu, Tom Baehr-Jones,

Michael Hochberg, Xin Sun, Shijie Zhao, Hugo Larochelle, Dirk Englund, et al.

Deep learning with coherent nanophotonic circuits. Nature Photonics, 11(7):441,
2017.

[126] Mahdi Nazm Bojnordi and Engin Ipek. Memristive boltzmann machine: A

hardware accelerator for combinatorial optimization and deep learning. In

2016 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 1–13. IEEE, 2016.

[127] ChaoWang, Lei Gong, Qi Yu, Xi Li, Yuan Xie, and Xuehai Zhou. Dlau: A scalable

deep learning accelerator unit on fpga. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 36(3):513–517, 2017.

[128] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-

datacenter performance analysis of a tensor processing unit. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA), pages
1–12. IEEE, 2017.

[129] Stephen W Keckler, William J Dally, Brucek Khailany, Michael Garland, and

David Glasco. Gpus and the future of parallel computing. IEEE Micro, 31(5):7–17,
2011.

[130] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson

Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling for data center

networks. In Proceedings of the 7th USENIX Conference on Networked Systems
Design and Implementation, NSDI’10, pages 19–19, Berkeley, CA, USA, 2010.
USENIX Association.

[131] Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R. Das,

Jon P. Longtin, Himanshu Shah, and Ashish Tanwer. Firefly: A reconfigurable

wireless data center fabric using free-space optics. SIGCOMM’14, pages 319–330.
[132] M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni, G. Ranade,

P. Blanche, H. Rastegarfar, M. Glick, and D. Kilper. Projector: Agile reconfig-

urable data center interconnect. SIGCOMM ’16, pages 216–229, 2016.
[133] He Liu, Matthew K. Mukerjee, Conglong Li, Nicolas Feltman, George Papen,

Stefan Savage, Srinivasan Seshan, Geoffrey M. Voelker, David G. Andersen,

Michael Kaminsky, George Porter, and Alex C. Snoeren. Scheduling techniques

for hybrid circuit/packet networks. In CoNEXT, pages 41:1–41:13. ACM, 2015.

[134] Ankit Singla, Atul Singh, and Yan Chen. OSA: An optical switching architecture

for data center networks with unprecedented flexibility. In Presented as part of
the 9th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12), pages 239–252, San Jose, CA, 2012. USENIX.

[135] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh Lee,

Han Wang, Rachit Agarwal, and Hakim Weatherspoon. Shoal: A network

architecture for disaggregated racks. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’19). USENIX, February 2019.

[136] He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari, Geoffrey M.

Voelker, George Papen, Alex C. Snoeren, and George Porter. Circuit switching

under the radar with REACToR. NSDI’14, pages 1–15.
[137] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. Jellyfish:

Networking data centers randomly. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation, NSDI’12, pages 17–17,
Berkeley, CA, USA, 2012. USENIX Association.

[138] Andromachi Chatzieleftheriou, Sergey Legtchenko, HughWilliams, and Antony

Rowstron. Larry: Practical network reconfigurability in the data center. In 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 18),
pages 141–156, Renton, WA, April 2018. USENIX Association.

671

https://europractice-ic.com/wp-content/uploads/2020/01/General-MPW-EUROPRACTICE-200123-v3.pdf
https://europractice-ic.com/wp-content/uploads/2020/01/General-MPW-EUROPRACTICE-200123-v3.pdf


SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA M. Khani et al.

[139] Sergey Legtchenko, Nicholas Chen, Daniel Cletheroe, Antony Rowstron, Hugh

Williams, and Xiaohan Zhao. Xfabric: A reconfigurable in-rack network for rack-

scale computers. In 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), pages 15–29, Santa Clara, CA, March 2016. USENIX

Association.

[140] Sebastien Rumley, Meisam Bahadori, Robert Polster, Simon D. Hammond,

David M. Calhoun, Ke Wen, Arun Rodrigues, and Keren Bergman. Optical

interconnects for extreme scale computing systems. Parallel Computing, 64:65 –
80, 2017. High-End Computing for Next-Generation Scientific Discovery.

[141] Nicolas Sherwood-Droz, HowardWang, Long Chen, Benjamin G. Lee, Aleksandr

Biberman, Keren Bergman, and Michal Lipson. Optical 4×4 hitless silicon router

for optical networks-on-chip (noc). Opt. Express, 16(20):15915–15922, Sep 2008.

[142] Qixiang Cheng, Sebastien Rumley, Meisam Bahadori, and Keren Bergman. Pho-

tonic switching in high performance datacenters. Opt. Express, 26(12):16022–
16043, Jun 2018.

[143] G. Michelogiannakis, Y. Shen, X. Meng M. Y. Teh, B. Aivazi, T. Groves, J. Shalf,

M. Glick, M. Ghobadi, L. Dennison, and K. Bergman. Bandwidth steering for

hpc using silicon nanophotonics. ACM/IEEE Supercomputing Conference (SC),
10 2019.

[144] Keren Bergman, John Shalf, George Michelogiannakis, Sebastien Rumley, Larry

Dennison, and Monia Ghobadi. Pine: An energy efficient flexibly interconnected

photonic data center architecture for extreme scalability. In 2018 IEEE Optical
Interconnects Conference (OI), OI ’18, 2018.

[145] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows.

1988.

[146] Robert E Tarjan. Dynamic trees as search trees via euler tours, applied to the

network simplex algorithm. Mathematical Programming, 78(2):169–177, 1997.
[147] James B Orlin, Serge A Plotkin, and Éva Tardos. Polynomial dual network

simplex algorithms. Mathematical programming, 60(1-3):255–276, 1993.
[148] Prabhakar Raghavan and Clark D. Thompson. Randomized rounding: A tech-

nique for provably good algorithms and algorithmic proofs. Technical Report

UCB/CSD-85-242, EECS Department, University of California, Berkeley, May

1985.

672



SiP-ML: Optical Network Interconnects for Machine Learning SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

A APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

A.1 SiP-Ring
One of the core properties of SiP-ML-Ring is the ability to dynami-

cally place bandwidth around the static topology to maximize the

throughput between communicating nodes for model parallel jobs.

Note that for ring-allreduce data parallel jobs, there is no need to

reschedule the bandwidth once a physical ring is established by

the patch panel. However, we find that model parallel jobs benefit

from bandwidth rescheduling. The optimal bandwidth allocation

maximizes the throughput while ensuring no two paths sharing

the same fiber are assigned the same wavelength. More formally,

the bandwidth allocation problem corresponds to the following

optimization problem. Let TMi j denote the predicted GPU-to-GPU

traffic matrix, andW denote the total number of wavelengths (a.k.a

available bandwidth). We can represent a wavelength allocation as

a 3-dimensional binary matrix, Λ, where Λi jk is 1 if GPU i sends
data to GPU j using λk and is zero otherwise. There are several

possible objectives. A natural one is to minimize the maximum com-

pletion time for any GPU-to-GPU transfer, where the completion

time is

TMi j∑
k Λi jk

. This can be expressed as an Integer Linear Program

(ILP) by maximizing the minimum inverse of the completion time,
as follows:

maximizeΛ∈{0,1}N×N×W min

i j :TMi j>0

∑
k Λi jk/TMi j

s.t.

(1)
∑

(j≤i≤N+l )∩(l<j ) Λ(i mod N )jk ≤ 1 ∀l ,k
(2)

∑
i Λi jk ≤ 1 ∀j,k

(3)
∑
j Λi jk ≤ 1 ∀i,k

(1)

The constraints are (1) ensure fiber segments do not contain over-

lapping wavelengths (ring constraint), and (2) ensure each GPU can

use each wavelength for communication with, at most, one other

GPU (node constraint).

Note that the size of the ILP solution space, Λ ∈ {0, 1}N×N×W ,

grows with the number of nodes in the network, rendering it in-

tractable at larger scale. Therefore, instead of solving the ILP, we

present a more practical algorithm that turns this discrete optimiza-

tion problem into a min-cost flow routing problem which can be

solved efficiently.

Step 1: Communication graph construction. We construct a

directed communication graph, G = (V ,E), where V is the set of

nodes and for every TMuv > 0, there is a directed edge e = (u,v ).
After including edges for the entire TM in G, we check whether

every adjacent node-pair on the topology is connected in G. If not,
we add a “dummy” edge between them to E. The direction of all

edges in G is the same as that of wave propagation on the fiber.We

then add dummy sink and source nodes by cutting the edges in G
along an arbitrary topology segment. For simplicity, let us assume

for now that this process cuts only one edge of the graph.We add

two terminal nodes on the two ends of the cut edge to be the source

and sink. The source node injects a unit-sized flow into the ring

and the sink node receives it.

Step 2: Compute min-cost flow. Having constructed the graph

G, we solve the following flow routing problem:

maximize

∑
e ∈E :TMe>0

fe
TMe

,
(2)

where for an edge e = (u,v ), fe is the flow on the edge, and

TMe = TMuv is the traffic demand on that edge. The constraints

(not shown for brevity) are the standard flow conservation con-

straints. The intuition for the above objective is that we wish to

maximize throughput but preferentially allocate a larger flow (more

wavelengths) to GPU-to-GPU paths with smaller demand. The rea-

son for favoring smaller demands is to complete them quickly,

reducing the number of nodes with which each node must commu-

nicate. This keeps the unsatisfied traffic pattern sparse over time,

allowing the remaining traffic to be handled efficiently in future

wavelength reconfiguration events.

The objective in Eq. (2) can be equivalently be written as a min-

cost flow routing problem [145] by defining the weight of edge e
as we = −1/TMe if TMe > 0, and we = 0 if e is a dummy edge.

The problem is then to minimize

∑
e we fe . Min-cost flow routing

can be solved using the network simplex algorithm [145–147]. The

procedure for constructing the graph and defining the flow routing

problem is slightly more complicated when the cut chosen for

adding the source and sink nodes includes more than one edge. In

this case, we need additional constraints to ensure consistency of

flows between the cut edges.

In the more general case of cuts with higher degrees, suppose we

would like to inject the flows at the segment between Node3 and

Node4. The problem remains basically the same, but we need to add

the following three constraints in addition to the flow conservation

constraints: (1) X = X ′, (2) Y = Y ′, and (3) X + Y = 1. We can

simply add these constraints to our simplex problem as well.

Node4

RGB

R R

GB

Node4

Src 
Node

1
3

1

2
3 1

3

1

Sink 
Node

(a) Wavelength allocation (b) Flow allocation

Node3

Node2

Node3

Node2

Node1 Node1

2
3

X

X’Y
Y’

Figure 13: Wavelength allocation and its equivalent flow
routing translation for multiedge cut.

Step 3: Remove and repeat. The solution obtained by solving

the above min-cost flow problem may result in some GPU-to-GPU

demands completing very quickly. However, since reconfiguration

incurs delay (e.g., 25 µs in our prototype), we cannot reconfigure

wavelengths too quickly without hurting efficiency (more on this

below). Therefore we should plan the wavelength allocation based

on a time horizon rather than looking only at the instantaneous

traffic demands. To this end, we iteratively solve the min-cost flow

673



SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA M. Khani et al.

problem in Equation (2), serving theTM with step-size of∆ based on

the flows obtained after each iteration, and repeating this procedure

until there is no unserved demand left in the TM . We compute the

mean of the flow allocations over all iterations as the final flow

allocation.

Step 4: Mapping flows to bandwidth. Finally, we scale the flows
from the previous step byW and map them to integer numbers

using a technique called randomized rounding [148]. This produces

the final compute and bandwidth allocation. An important con-

sideration in SiP-ML’s design is how frequently to reschedule the

bandwidth allocations. By rescheduling frequently, we can better

tailor the bandwidth allocation to meet the traffic demands. But

rescheduling too quickly is undesirable, because each reconfigu-

ration incurs a delay during which no traffic can be sent. In our

experiments, we found setting the rescheduling period to 100 µs
(4× the reconfiguration delay) provides the best performance.

A.2 SiP-OCS ILP
Similar to §A.1, we assumeTMi j denotes the estimated trafficmatrix

between GPUs i and j. We have N GPUs and Q OCSs each with N
ports. There is B/Q bandwidth available between each GPU and

OCS. Let P ∈ {0, 1}N×N×Q stand for the permutation configuration

of all OCSs with Pi jk = 1 if there is a circuit between GPUs i and j
on OCS k . Therefore, the total available bandwidth between GPUs

i and j would be: (B/Q )
(∑Q

k=1 Pi jk
)
. Our circuit scheduling goal

can be expressed as an Integer Linear Program (ILP) by maximizing

the minimum inverse of the completion time, as follows:

maximizeP ∈{0,1}N×N×Q min

i j :TMi j>0

∑
k Pi jk/TMi j

s.t.

(1)
∑
i Pi jk ≤ 1 ∀j,k

(2)
∑
j Pi jk ≤ 1 ∀i,k

(3)

where constraints (1) and (2) would enforce the OCS configurations

to be in the form of a permutation for each OCS; i.e., each GPU can

establish a circuit with only one other GPU on each OCS. For com-

mercial OCSs that have orders of magnitude higher reconfiguration

delay than MRRs, we only use one-shot configuration. For such

configurations, our experiments show ILPs can be solved reason-

ably fast enough for thousands of nodes. Note that with one-time

scheduling, this optimization happens only once at the beginning

of training each new workload.

A.3 Scaling Efficiency of the Placement
In Fig. 14, we compare the scaling efficiency of SiP-ML’s placement

algorithm on 1024 GPUs to the efficiency achieved in the most

recent version of the MLPerf training benchmark [88]. We highlight

the following takeaways: 1) workloads like ResNet50 are too small to

be efficiently scaled to 1000s of GPUs; 2) our placement generalizes

to electrical topologies without degree constraint; 3) placement

with optical degree constraints respects the compute efficiency in

addition to interconnect constraints; 4) overall, SiP-ML achieves

up to 4.3× better scaling efficiency than today’s expert-designed

parallelization strategies for clusters in MLPerf benchmark.

2
7

2
8

2
9

2
10

2
11

2
12

2
13

15

20

25

30

35

BW per GPU (Gbps)

Sc
al
in
g
Effi

ci
en

cy
(%
)

(a) ResNet50

2
7

2
8

2
9

2
10

2
11

2
12

2
13

0

25

50

75

100

BW per GPU (Gbps)

SiP-ML (∆ = ∞) SiP-ML (∆ = 16)
MLPerf v0.7

(b) Transformer

Figure 14: Comparing the scaling efficiency of our place-
ment algorithm at different bandwidths to state-of-the-art
expert designed placements in MLPerf benchmark for 1024
GPUs.

Figure 15: System level diagram of GPU nodes with scalable
SiP select/bypass interface. The incoming 64 wavelengths
are separated into four groups with 16 wavelengths each for
select/bypass.

A.4 Optical Simulations
Fig. 15 demonstrates our approach to achieve SiP interfaced GPU

nodes at large scale. Every WDM input of 64 wavelengths from the

previous GPU node is first de-interleaved into 4 groups with 16

wavelengths each.We use cascaded SiPmicro-ring filters to perform

wavelength selective add/drop or to pass wavelength(s) through the

node based on the requirement of global scheduler. To overcome

the spectral power variability caused by the multi-staged optical

components, we add optical amplifiers, optical (de)multiplexers and

variable optical attenuators (VOAs) to equalize the optical power for

each wavelength at the output of the GPU node. An interleaver then

combines all 4 groups and forwards the new WDM signal to the

next GPU node. We simulate our SiP add/drop interface using the

American Institute for Manufacturing Integrated Photonics (AIM

674



SiP-ML: Optical Network Interconnects for Machine Learning SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

Photonics) process design kit (PDK) in OptSim software. The add/-

drop filters are from the AIM PDK and the (de)interleavers are built

with cascaded 2-stage MZI. The optical multiplexer/demultiplexers

are designed using ideal OptSim models with a bandwidth of 0.5nm.

The multiplexer/demultiplexer function can also be implemented

with multimode interference (MMI) couplers. In the simulation,

we achieve an equalized optical spectrum at the output of a GPU

node for two cases: 1) 64 bypass wavelengths; 2) 64 wavelengths

with 32 wavelengths being dropped and added, while the other 32

wavelengths bypassing the node.

675


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Parallelization Strategies
	2.2 Weak and Strong Scaling of ML Jobs
	2.3 Silicon Photonics for ML Training

	3 SiP-ML Design
	3.1 Degree and Reconfiguration Latency
	3.2 Degree-Aware Parallelization Strategy
	3.3 Circuit Scheduling

	4 Evaluation
	4.1 Methodology & Setup
	4.2 Simulator
	4.3 Results
	4.4 Testbed

	5 Discussion
	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References
	A Appendix
	A.1 SiP-Ring
	A.2 SiP-OCS ILP
	A.3 Scaling Efficiency of the Placement
	A.4 Optical Simulations


