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The scaling trends of deep learning models and distributed training workloads are challenging network capacities in 

today’s datacenters and HPCs. We propose a system architecture that leverages silicon photonic (SiP) switch-enabled 

server regrouping using bandwidth steering to tackle the challenges and accelerate distributed deep learning training. In 

addition, our proposed system architecture utilizes a highly integrated OS-based SiP switch control scheme to reduce 

implementation complexity. To demonstrate the feasibility of our proposal, we built an experimental testbed with a SiP 

switch-enabled reconfigurable fat tree topology and evaluated the network performance of distributed ring all-reduce and 

parameter server workloads. The experimental results show up to 3.6 improvements over the static non-reconfigurable 

fat tree. Our large-scale simulation results show that server regrouping can deliver up to 2.3 flow throughput 

improvement for a 2 tapered fat tree and a further 11% improvement when higher-layer bandwidth steering is employed. 

The collective results show the potential of integrating SiP switches into datacenter and HPC systems to accelerate 

distributed deep learning training. 

 

I. INTRODUCTION 

 
Deep learning (DL) is a branch of machine learning that has 

become a major driving force behind the progress in artificial 

intelligence applications such as image classification,1 natural 

language processing,2 and recommendation systems.3 The 

demand for better DL models has resulted in a rise of more 

complex models that support larger dataset sizes to improve 

these deep neural networks.4,5 The typical approach to speed 

up the training process of these larger DL models is 

parallelization using many GPU-equipped nodes,6–8 which 

requires a high-bandwidth interconnect to support the 

communication requirements between training devices.9 DL 

workloads are taking a large proportion of the computation in 

today’s high-performance computing (HPC) operations, and 

observation has shown that the demand is dramatically 

growing in datacenters.10 These trends have shifted the 

performance bottleneck from the compute to the network 

interconnect due to system fragmentation (applications often 

receive an allocation on a set of distant and non-contiguous 

nodes). This places a tremendous challenge on interconnect 

designs to provide high bandwidth and low latency 

networking to sustain the continual growth of these hardware-

driven deep learning applications.  
These challenges present a unique opportunity for flexible 

photonic switched networks that have the capabilities to 

perform topology reconfiguration and have motivated much 

research to explore reconfigurable network architectures 

based on optical circuit switches (OCSs). These OCS-based 

architectures employ various different technologies, such as 

3D MEMS,11,12 silicon photonic switches,13 wireless 

transceivers based on free space optics,14,15 RotorSwitch,16 and 

tunable lasers.17 Early architectures of reconfigurable network 

such as Helios12 used OCSs to build a hybrid optical/electrical 

architecture to serve bandwidth-bound large flows using the 

OCS network while serving the latency-bound small flows 

with static electrical packet switches (EPSs). Later works such 

as ProjecToR14 and RotorNet16 used customized switching 

prototypes to build flatter network topologies where the top-

of-rack (ToR) switches are directly connected with a single 

layer of OCSs for higher energy efficiency. Meanwhile, 

silicon photonic (SiP) switches have also been proposed as 

another solution that could provide power-efficient high 

bandwidth scaling at low fabrication cost. Flexfly13 and 

Flexspander18 placed SiP switches in between clusters/groups 

of EPSs to achieve better scalability.  

In addition to applying these reconfigurable network 

architectures to traditional HPC workloads, various works in 

the literature have explored employing them under distributed 

machine learning settings as well. Truong et al.19 have 

proposed using a hybrid electrical/optical architecture, similar 

to Helios,12 to serve long-lived DL training communications 

using the OCS network while using the EPS network for 

smaller messages. Evaluation with real DL workload shows 

significant communication speedup when employing the 

hybrid architecture. Lu et al.20 have proposed to build a 

hierarchical network, similar to Flexfly,13 for distributed 

machine learning applications. Results show that X-NEST 

outperforms RotorNet16 across different DL workloads and 

performs similarly to fat trees with fewer hardware 

components. 

While many reconfigurable network architectures have 

been explored in the past, prior work has typically proposed 

architectures with reconfigurability at a single network layer 

(e.g. between ToR and aggregation EPSs21 or between 

dragonfly groups13). In this work, we propose our 

reconfigurable SiP architecture22 that uses SiP switches 

between servers and ToR, and between ToR and aggregation 

EPSs in a fat tree topology. This architecture introduces two 

unique network functionalities: (1) server-regrouping between 

servers and ToR switches to recover job-level traffic locality, 

and (2) bandwidth-steering between ToR and aggregation 

layers to maximize traffic retention at the lower fat tree layers. 

We demonstrate an improvement in overall network 
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performance for distributed ring all-reduce and parameter 

server deep learning training algorithms. An optimized SiP 

switch control scheme is presented to simplify the control 

implementation complexity and to achieve better integration 

of the SiP switches into large-scale systems. In our 

experimental hardware testbed,22 we present new results 

demonstrating that regrouping servers and steering network 

bandwidth can result in more efficient execution of the 

distributed deep learning workloads. We report a 1.9 to 3.6 

performance improvements depending on different distributed 

training strategies and test cases. In this paper we also present 

new system-scale simulations. We perform server regrouping 

and bandwidth steering on a large-scale tapered fat tree with 

1024 compute nodes. Our simulation results show that server 

regrouping can deliver up to 2.3 flow throughput 

improvement for a 2 tapered fat tree and a further 11% 

improvement when higher-layer bandwidth steering is 

applied.  
 
II. SILICON PHTONICS FOR OPTICAL CIRCUIT SWITCHING 
 

Optical circuit switching offers a promising approach to 
reconfigure the interconnect in order to (1) regroup a set of 
distant and non-contiguous nodes and (2) steer bandwidth at 
higher layers for efficiency. Depending upon underlying 
traffic patterns of the nodes at different times, optimized 
topology connections can be dynamically formed on demand.   

Commercially available technologies, such as 
microelectromechanical systems (MEMS), 23 beam-steering, 24 
and liquid crystal on silicon (LCOS),25 can be used to 
implement the reconfigurable network. However, there are 
still challenges to achieve commercial adoption. The rigorous 
calibration and the installation of discrete components 
introduce significant complexity and result in high cost per 
port.  Similarly, arrayed waveguide grating routers 
(AWGRs)26 based interconnects usually require higher cost 
tunable wavelength transceivers that add complexity and 
additional power consumption in broadcast and select type 
architectures. For low-cost datacenter adoption, lithography-
based photonic integration technologies hold great promise for 
large-scale optical integrated switch fabrics with smaller 
device footprint, and reduced assembly and calibration 
overheads.  

The silicon photonics platform, in particular, leverages the 
mature and widespread CMOS manufacturing infrastructure, 
and SiP switches are promising for the dynamic topology 
reconfiguration with better power efficiency, lower cost-per-
port, smaller footprint, and the potential for nanosecond range 
dynamic switching.27-31 However, there are several technical 
challenges to address in this platform, specifically loss through 
the switch, polarization dependency, thermal stability, and 
switch radix scalability. Research works have been reported to 
address these challenges, and the primary switching cells that 
are being explored are Mach-Zehnder interferometers (MZIs), 
microring resonators (MRRs), and MEMS-actuated couplers.  

MZI switching circuits of 32  32 connectivity have been 
realized using thermo-optic (T-O) phase shifters with 6.1 dB 
on-chip loss.32 To overcome the polarization dependency, a 
polarization-diversity SiP MZI switch was further 
developed.33 The current record for the T-O MZI switch is a 

64  64 implementation in Bene topology.34 For fast electro-
optic (E-O) switching, carrier-injection based PIN junctions 

are employed. 16  16 and 32  32 E-O MZI-based switches 
were proposed by Lu et al.35 and Qiao et al. 36 Performance, 
however, can be limited due to the high insertion loss. Gain-
integrated switches for lossless operation can be applied to 
overcome this challenge.37 

MRR based devices show ultra-compact and energy-
efficient potentials for optical switching. Recent work has 

demonstrated 8  7 cross-bar,38 8  8 Omega,39 4  4 switch-
and-select architectures.40 Add-drop filters assembled in a 1-
D bus structure can act as spatial (de)multiplexers.41 Thermal 
stabilization42,43 is necessary for MRR based switches to 
address wavelength drifts due to the thermal dependencies to 
the varying ambient temperature.     

The largest-scale SiP switch fabric reported to date is the 
MEMS-actuated cross-bar switch with 240 × 240 
connectivity, which consists of a 3 × 3 array of identical 80 × 
80 switch blocks.44 Maximum on-chip loss of 9.8 dB was 
reported. Multilayer bus waveguides can be used for 
eliminating waveguide crossings to reduce insertion loss and 
for addressing polarization sensitivity.45 Recent work has 
shown successful fabrication of SiP MEMS using a 
commercial foundry with reduced driving voltage down to 
9.45V.46 

More detailed discussions on the photonic switching 
technologies in datacenter/HPC systems can be found in the 
reviews.27-29 We note that SiP switches are promising for 
optical switching in datacenter/HPC rack-to-rack applications; 
however, the loss should be further reduced before being 
deployed in practice. Approaches, such as (1) integration with 
semiconductor optical amplifiers (SOAs), (2) improvement of 
coupling loss, and (3) progress on individual component to 
have a better loss performance, are being taken to further 
reduce the loss of silicon photonic switched architectures. 

 

 
III. SYSTEM ARCHITECTURE AND SIP SWITCH CONTROL 

 
A. System Architecture  
 

Distributed deep learning training workflows, including 

data parallelism and model parallelism, show strong 

communication patterns with high-bandwidth requirement 

between server nodes. We demonstrate our proposed system 

architecture on synchronized ring all-reduce6 and 

asynchronized parameter server47 data-parallel techniques. 

Figure 1(a) illustrates our proposed system architecture. It 

consists of EPSs, SiP-based OCSs, and servers to demonstrate 

the capabilities of server regrouping and network bandwidth 

steering. By using SiP OCSs between servers and ToR EPSs, 

this architecture allows servers with intense communication 

requirements to be grouped locally within the same ToR-

switch, thereby reintroducing traffic locality between 

physically distant servers. An example of regrouped servers is 

shown in Fig. 1(b). With the demand of traffic between servers 

(in orange), the SiP OCS is capable of dynamically changing 

the connectivity and connecting the regrouped servers 

(orange) under the same ToR EPS. Due to the limited port 

count of the SiP OCS, it is not feasible to realize all-to-all ToR 

connectivity for systems at scale. Therefore, SiP OCSs are also 

inserted between the ToR and the aggregation layers. When a 

partial server regrouping is performed, bandwidth steering 
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will be applied to reduce contentions at higher layers. An 

example is shown in Fig. 1(c). Bandwidth steering above the 

ToR is used to relocate connections from the ToR to desired 

aggregation EPSs. The overall system architecture essentially 

reconstructs locality of connection and optimizes topology to 

better fit network traffic demands. 

 

B. SiP Switches and Control 
 

Our proposed architecture and control scheme are agnostic 

to the choice of SiP switching devices. We optimized our 

control scheme of the SiP switches and fabricated custom 

DAC cards to provide a software-based network control 

interface, and to ease control implementation complexity and 

achieve better integration. Depending on the traffic patterns of 

the distributed deep learning training, the overall network 

controller reconfigures network topology on demand. Figure. 

2(a) shows our overall network control plane. It consists of (1) 

a Ryu-based SDN controller that manages the flow tables on 

the EPSs; (2) a TCP/IP client program that sends new 

reconfiguration requests to the SiP OCS subsystem as shown 

in Fig. 2(b). In the subsystem, the SiP network controller is 

built upon a Xilinx ZCU 106 board. We leverage Xilinx 

PetaLinux to build a kernel image stored in a SD card and boot 

a Linux/Ubuntu operating system (OS) from a hard-drive. A 

TCP/IP server program running on the ARM processors 

responds to the reconfiguration requests from the overall 

network controller. Control algorithms such as calibration and 

thermal stabilization can be not only implemented in the 

software for simplicity, but also implemented as hardware 

logic in the field programmable gate array (FPGA) for control 

speed. A custom 80-channel DAC daughter card was 

fabricated to demonstrate a path toward large-scale system 

integration. Using the DAC daughter cards, the switch 

controller implemented on a Terasic TR4 board provides 

correct bias voltages to the switching elements in the packaged 

SiP switches. The SiP network and switch controllers are 

connected using GPIOs and the interface from SiP switch 

controller to the fan-out PCB uses SMA cables. Figure. 2(c) 

shows the physical devices.   

 
 

IV. TESTBED 

 
    To run distributed deep learning workloads and demonstrate 
the network improvements of our proposed system 
architecture, we built a 16-node HPC/datacenter testbed22 as 
shown in Fig. 3(a). We used 4 GPU servers (in orange) 

equipped with NVIDIA M40 GPU to run ring all-reduce and 
parameter server training algorithms across them. The other 
12 CPU servers (in blue) are used for running other 
applications to generate background traffic across the 

network. The EPSs are virtually partitioned from an 
OpenFlow-enabled PICA8 packet switch with 10G SFP+ 

ports. We use a 1  2 and a 1  4 MRR-based OCSs to perform 

server regrouping and bandwidth steering above the ToR 
EPSs. For the fully server-regrouped case (defined as case #1), 
the SiP switches are connected to servers #9 and #10, and two 

separate ports on EPS #2 and #3, respectively. For the case 

(defined as case #2) where the server regrouping is partially 
performed and bandwidth is steered above the ToR, the SiP 
switches are connected to server #9 and a port on EPS #3, and 

individual ports on EPS #3, #6, #2, #5 respectively. In this 
case, server #10 is connected to EPS #3 without going through 
the SiP OCSs. 10G SFP+ optical transceivers are used for 
reconfigured links and static links are using 10G electrical 

transceivers. A detailed experimental setup is shown in Fig. 
3(b). Two SFP+ transceivers with wavelengths at 1554.94 nm 

(λ5) and 1556.55 nm (λ6) are used for server #9 and #10 to 

transmit data to EPS #3 and EPS #2 (in case #1) or for server 
#9 and EPS #3 to transmit data to EPS #3, #6, and EPS #2, #5 

(in case #2). Four SFP+ transceivers, with wavelengths at 

1545.32 nm (λ1), 1546.92 nm (λ2), 1553.33 nm (λ3) and 

1554.94 nm (λ4), are used for the opposite direction. The 

polarization controllers (PC) are used to maximize the optical 
power being coupled into and out of the SiP chips. An erbium 
doped fiber amplifier (EDFA) is necessary to compensate the 
loss due to the grating couplers of the SiP switch chips. We 

note that the approaches described in Section II can potentially 
reduce the loss and allow the system to work without EDFAs.  
Detailed SiP switching characteristics can be found in the 
previous work.48 The SiP network controller FPGA board 

(ZCU 106) receives configuration requests from the overall 
network controller and triggers the SiP switch controller 
(TR4). The switch controller will then configure each MRR 
by tuning the resonance with bias voltage. A photograph of 

EPSs, CPU servers, GPU servers, SiP switches, SiP network 
controller, and SiP switch controller is shown in Fig. 3(c). We 
note that the reconfiguration speed limitation is the transceiver 
locking and the EPS polling time49 at the millisecond scale. 

This is a negligible effect in the current architecture due to the 
fact that the topology reconfiguration only happens before an 
application starts. Thermal drift of the MRR-based switches 
could lead to system performance degradation, and thermal 

stabilization42,43 should be applied to address this issue before 
the deployment of MRR-based architectures in future 
datacenter/HPC networks. The experiments described in this 
work take place in a thermally stable environment. 

  

 

V. EXPERIMENTS AND RESULTS 
 

We used the distributed communication package in 

PyTorch,50 which enables the processing groups for each of 

the workers used in the synchronized training and the 

parameter server and workers in the asynchronized training. 

The training jobs run across 4 server nodes (#5, #6, #9, #10) 

for the ring all-reduce algorithm and run across 3 server nodes 

(#5 – parameter server and #9, #10 - workers) for the 

parameter server algorithm. For the remaining 12 servers, we 

run skeletonized version of the Gyrokinetic Toroidal Code 

(GTC) benchmark applications51 as the background traffic 

across the network. There are two test cases. (1) Assuming 

OCS port count is sufficient for server regrouping, we use 

baseline (no dynamic reconfigured links) to compare with 

server-regrouping (servers #9, #10 regrouped to EPS #2) as 

our test case #1. (2) For test case #2, a partial server-

regrouping (only server #9 regrouped to EPS #2) compares 

server-regrouping with bandwidth steering above the ToR 
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(server #9 regrouped to EPS #2 and a steered link from EPS 

#3 to EPS #5). Simplified diagrams for the two test cases are 

shown in the Fig. 4(a) and (b), respectively.  

  Figure 5 plots the throughput of incoming traffic to servers 

#9 and #10 (blue and red), from EPS #5 to EPS #7 (green), 

and from EPS #1 to EPS #5 (yellow) for various training 

strategies and test cases. The plotted links are sufficient to 

show the network performance of deep learning workloads. 

The neural network is VGG1 for image classification and the 

dataset is imagenette.52 Figure 5(a) shows the results for the 

synchronized training. For test case #1, Fig. 5(a) left, the green 

curve in the baseline diagram (top left) indicates the traffic at 

the core level is aggregated by the background GTC traffic 

(yellow) and the ring all-reduce training traffic (red or blue). 

The training process is suppressed by the background GTC 

traffic, and it takes approximately 5341 s to train the VGG 

network for 1 epoch for the baseline. For the regrouped case, 

server #9 and server #10 are regrouped to EPS #2, and the 

training job’s traffic is within EPS #2, such that the 

communication bandwidth for the ring all-reduce training 

processes is restored. The red curve in the server regrouping 

diagram (bottom left) in Fig. 5(a) shows a 5 Gb/s bandwidth 

on average for the ring all-reduce algorithm with a 72% 

difference in execution time which corresponds to a 3.6 

network performance improvement. For test case #2, Fig. 5(a) 

right shows the results for server regrouping with limited OCS 

port count and when bandwidth steering above the ToR is 

applied. We observe a 5709 s execution time (in Fig. 5(a) top 

right) when only server #9 is regrouped to EPS #2 and no 

bandwidth is steered between ToR and aggregation EPSs. In 

comparison, server regrouping and bandwidth steering above 

the ToR (Fig. 5(a) bottom right) provides a 61% difference in 

execution time which corresponds to a 2.6 network 

performance improvement due to the fact that the deep 

learning training flows are not going through the core layer of 

the network. Figure 5(b) shows the performance 

improvements for the parameter server training algorithm. 

Similar performance improvements are observed for the server 

regrouping and the server regrouping with bandwidth steering 

above the ToR as 67% and 47% in execution time differences 

(3.0 and 1.9 improvements), respectively. We should note 

that parameter server training is an asynchronized training, 

and it is reasonable that the two worker nodes finish their 

individual training job at different time stamps as indicated by 

the red and blue curves in Fig. 5(b) right. The comparative 

experimental results can be found in Table I. 
 

 

VI. SYSTEM-SCALE EVALUATION 
 

We study the scalability and network performance of the 

proposed system architecture on two distributed deep learning 

training algorithms: (1) ring all-reduce and (2) parameter 

server. For each of the workloads, we analyze how server 

regrouping and bandwidth steering affect the performance of 

large-scale networks with various tapering ratios. In addition 

to using uniformly mapped jobs as a performance upper 

bound, we also simulate non-uniformly mapped jobs since 

past work21 has shown that frequent system fragmentations in 

high performance systems could make the job mapping largely 

non-uniform. For the purpose of this work, which is to show 

the performance improvement of the proposed strategies, we 

assume that server regrouping and bandwidth steering 

strategies for non-uniform job placements happen before a 

workload starts in the simulation and therefore has no packet 

loss due to reconfiguration. We plan to add this 

reconfiguration functionality to the Netbench simulator as 

future work.  
 

 

 

A. Simulation Setup 
 

    We use Netbench,53 a discrete event-driven packet-level 

simulator, to evaluate network performance at scale. 

The simulated network is a tapered 3-layer fat tree constructed 

using EPSs with 32 bidirectional ports. We assume the link 

bandwidth to be 100 Gb/s. The fat tree topology contains 1024 

compute nodes distributed among 4 pods. Each pod consists 

of 16 ToR switches each connected to 16 servers, with a total 

of 256 servers per pod, as shown in Fig. 6. The tapering in our 

fat tree refers to the difference in bisection bandwidth between 

any two levels of the tree, as described by Michelogiannakis 

et al.54 We taper the fat tree at the aggregation and core layers 

to emulate production networks. For our simulation, we taper 

the aggregation layer by 2, 4, 8, and 16 while tapering 

the core layer with a constant 8 with respect to the 

aggregation layer. We use Equal-Cost Multi-Path (ECMP) 

routing on both the bandwidth-steered and static baseline fat 

trees with per-packet load-balancing. 

We test server regrouping on both ring all-reduce and 

parameter server types of traffic workload in our simulation. 

The ring all-reduce traffic and parameter-server traffic each 

contains 32 and 16 compute nodes per job, respectively. Under 

uniform job placement, each process is mapped sequentially 

onto each server. However, job placement might not always 

be uniform in real high performance systems. Past work21 has 

shown that applications are often placed on a set of distant and 

non-contiguous nodes, resulting in system fragmentation. In 

order to verify the effectiveness of server regrouping at large 

scale, we introduce a mixed job mapping strategy to generate 

a more adversarial traffic pattern to the static fat tree. This 

mapping hinges on the ratio of intrapod to interpod traffic. For 

our simulation, we set the ratio so that half of the nodes in each 

pod communicates with other nodes in the same pod, and the 

other half would communicate with nodes in the other pods. 

The mapping within each half is also shuffled to introduce 

randomness in the mapping.   

 

 

 

B. Server Regrouping and Bandwidth Steering 
 

    Since the usage of small-radix OCSs could impose extra 

physical constraints on the topology-wiring problem,55 we 

first make the assumption that given k ToRs with k downlinks 

each, the OCS layer in between the server and the ToR layer 

is comprised of a single large-radix OCS with k2 ports. The 

OCS can be viewed as a k2 by k2 fully non-blocking switch 

ca- pable of reaching and regrouping servers across all pods. 
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This assumption is necessary for the purpose of our work 

which is to evaluate the performance and scalability of server 

re- grouping strategy. Experiment with this initial assumption 

can serve as a performance upper bound for our experiments 

with smaller radix OCSs. To evaluate the network 

performance of smaller-radix OCSs, we split the single large-

radix OCS into two OCSs with half the radix (each connecting 

two pods) and into four OCSs with a quarter of its original 

radix (each connecting one pod). 

    The server regrouping heuristic for the ring all-reduce 

traffic is similar to that of the parameter-server, and it can be 

split into two substeps: 

1.    Group jobs that only contain servers in the same pod. For 

these jobs, group as many servers under the same ToR switch 

as possible. 

2.     Group jobs that contain servers in different pods. If the 

OCS port count is big enough to reach all the servers in the 

same job, then group these servers under the first available 

ToR. If not, group as many servers in the same job as possible 

under a single ToR for each pod that contains these jobs. 

When server regrouping falls short, bandwidth steering at the 

ToR to aggregation layer can be applied together with server 

regrouping to further improve the performance. We assume a 

single large OCS between the aggregation and core layers as a 

performance upper bound. Smaller radix OCS could also be 

used here similar to previous works13,21 for bandwidth steering 

at higher layers depending on the reconfiguration 

requirements and tapering ratios. Bandwidth steering above 

the ToRs is configured so that the number of flows traversing 

the core layer is minimized. This is done by first regrouping 

the servers that have the same destination pod under the same 

ToR switch within each pod and then wire the OCS such that 

the two ToRs with the heaviest communication are connected 

by the same aggregation switch. For these simulations, we 

assume that the topology is reconfigured according to the 

described server regrouping or bandwidth steering strategy 

before a workload starts. 

 

 

C. Results 
 

In this section we evaluate the performance of server re- 

grouping and higher-layer bandwidth steering in large-scale 

systems. Fig. 7 shows the simulation results for average flow 

throughput (for both intrapod and interpod flows) as the job- 

mapping and topology design vary for all ToR-to-aggregation 

tapering ratios. Uniform job placement corresponds to the case 

where jobs are mapped sequentially onto the servers in the 

topology without any shuffling. It achieves the highest average 

throughput since the communicating nodes are placed close to 

each other, so the tapered core layer links are not congested by 

interpod flows. It serves therefore as the performance upper 

bound for all the server regrouping schemes in our 

experiments. Indeed, when servers are regrouped with one 

large-radix OCS (RG (#OCS = 1)), results for both ring all- 

reduce workload in Fig.7(a) and parameter server workload in 

Fig.7(b) show matching behavior with the uniform case. Note 

here that the mean flow throughput for parameter server is 

much lower than that of ring all-reduce because parameter 

server jobs contain many more flows in each iteration, result- 

ing in much higher link congestion. On the other end, baseline 

corresponds to the case where jobs are randomly mapped onto 

servers across different pods without server regrouping. 

    RG (#OCS = 2) and RG (#OCS = 4) correspond to the cases 

where the servers are regrouped with two and four OCSs 

respectively. Since we have four pods in total, the former case 

with two OCSs would mean that each OCS connects to servers 

and ToRs in two pods. Similarly, the latter case with four 

OCSs means that each OCS is responsible for connecting 

servers and ToRs in only one pod. For the cases where servers 

can only be partially regrouped, we still observe improvement 

from the baseline case, especially under higher tapering. Al- 

though not all servers can be regrouped, other properly re- 

grouped servers have already reduced the amount of traffic 

traversing the tapered layer by an appreciable amount. 

On top of server regrouping, we can further improve the 

performance of the network by employing bandwidth steering 

in the ToR-to-aggregation layer to alleviate congestion at the 

top layers. We see that for the cases with both server re- 

grouping and higher-layer bandwidth steering (BS), the 

performance is consistently higher than the purely regrouped 

cases, especially at lower tapering ratio. For higher tapering 

ratios, the number of available reconfigurable links be- tween 

each ToR switch and the aggregation switches is limited, 

which limits the benefits of higher-layer bandwidth steering. 

Simulation results show that our approach improves the net- 

work performance for the ring all-reduce and parameter server 

workloads at scale. We only consider results with two or more 

OCSs as the RG (#OCS = 1) case is the same as our 

performance upper bound. We found that for 2 tapering ratio, 

server regrouping alone can improve the throughput 

performance from the baseline by 2.3, and higher-layer 

bandwidth steering can provide up to 11% further 

improvement (2.5 improvement in total from the grey bar to 

the pink bar). For higher tapering ratios, the total 

improvements can reach up to 8.6 for ring all-reduce and 2 

for parameter server, respectively. Table I shows the 

performance improvements of different architectures 

including both experiments and simulations. 

 

 

  
VII. CONCLUSIONS 

 
In this work, we have shown a reconfigurable 

datacenter/HPC system architecture using SiP switches to 

accelerate distributed deep learning training workloads. We 

used VGG as the primary workload for our experiment, but 

our proposed architecture could work on a wide range of 

distributed machine learning applications that employ ring all-

reduce or parameter-server types of collective operations. 

Using silicon photonic switches, we introduce topological 

reconfigurability at two network levels to achieve two 

optimization goals: (1) server-regrouping by introducing SiP 

OCSs between the ToR switches and servers, and (2) 

bandwidth-steering by introducing SiP OCSs between the 

ToR and aggregation layers. We demonstrate our proposed 

architecture using a physical testbed with 16 nodes arranged 

in a fat tree topology and show up to 3.6 network 

improvement. At system scale, server regrouping delivers a 
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2.3 flow throughput improvement and higher-layer 

bandwidth steering provides a further 11% improvement in a 

2 tapered fat tree. These results show the proof-of-concept 

functionalities of our proposed system architecture and the 

potential of integrating SiP switches in datacenters and HPCs 

to improve DL training performance. 

 
TABLE I 

EXPERIMENT AND SIMULATION PERFORMANCE MEASUREMENTS 

 

 

Configurations 

 

 

Improvements 

Server regrouping compared to baseline for 

ring all-reduce training (experiment) 

 

3.6 

Server regrouping with bandwidth steering 

compared to server regrouping with limited 

point count for ring all-reduce training 

(experiment) 

 

2.6 

Server regrouping compared to baseline for 

parameter server training (experiment) 

 

3.0 

Server regrouping with bandwidth steering 

compared to server regrouping with limited 

point count for parameter server training 

(experiment) 

 

1.9 

Server regrouping using two OCSs on 2 

tapered fat tree compared to baseline for ring 

all-reduce training (simulation) 

  

2.3 

Server regrouping using two OCSs with 

bandwidth steering on 2 tapered fat tree 

compared to baseline for ring all-reduce 

training (simulation) 

 

2.5 

Server regrouping using two OCSs on 2 

tapered fat tree compared to baseline for 

parameter server training (simulation) 

 

1.2 

Server regrouping using two OCSs with 

bandwidth steering on 2 tapered fat tree 

compared to baseline for parameter server 

training (simulation) 

 

1.4 
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FIGURE CAPTIONS 
 

FIG. 1. (a) System architecture demonstration with server 

nodes arranged in the fat tree topology to show SiP switch-

based server regrouping and higher-layer bandwidth steering. 

(b) An example of before (left) and after (right) server 

regrouping. (c) An example of before (left) and after (right) 

bandwidth steering above the ToR. 

 

 

FIG. 2. (a) Overall network control plane. (b) SiP OCS 

subsystem including the SiP network controller, SiP switch 

controller, and SiP switches. (c) The SiP network controller 

board (ZCU106), SiP switch controller board (TR4), and PCB 

holding a packaged SiP switch. Revised from Zhu et al.22 

 

 

FIG. 3. (a) A 16-node experimental testbed with SiP OCSs and 

EPSs in a reconfigurable fat tree topology. (b) Experimental 

setup demonstrating the cases of server regrouping and 

bandwidth steering above the ToR. (c) A photograph of EPSs, 

CPU servers, GPU servers, SiP switches, SiP network 

controller, and SiP switch controller. 

 

 

FIG. 4. (a) Test case #1 for demonstrating the network 

performance improvement by server regrouping. (b) Test case 

#2 for demonstrating the network performance improvement 

by partial server regrouping and bandwidth steering above the 

ToR when SiP OCS port count is limited. 

 

 

FIG. 5. (a) Throughput of the links to server #9 and #10, from 

EPS #1 to EPS #5, and from EPS #5 to EPS #7 for the two test 

cases in the synchronized training of the VGG neural network. 

(b) Throughput of the links to server #9 and #10, from EPS #1 

to EPS #5, and from EPS #5 to EPS #7 for the two test cases 

in the asynchronized training of the VGG neural network. 

Revised from Zhu et al.22 
 
FIG. 6. A 1024-node untapered fat tree topology with SiP 

OCSs in between the server-ToR and ToR-aggregation layers. 

 

 

FIG. 7. Average flow throughput of all the flows as a function 

of the tapering ratio for all the traffic and job mapping 

scenarios. RG denotes regrouping and BS denotes higher-

layer bandwidth steering. With the exception of Uniform 

(uniform job-mapping), all other cases assume an adversarial 

interpod job mapping as described in the Simulation Setup 

Section. (a) Results for ring all-reduce flows. (b) Results for 

parameter server flows. 
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