
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3075326, IEEE Internet
Computing

FLEET– Fast Lanes for Expedited Execution at 10 Terabits:

Program Overview

Fred Douglis
Perspecta Labs

Seth Robertson
Perspecta Labs

Eric van den Berg
Perspecta Labs

Josephine Micallef
Perspecta Labs

Marc Pucci
Perspecta Labs

Alex Aiken
Stanford University and SLAC

Keren Bergman
Columbia University

Maarten Hattink
Columbia University

Mingoo Seok
Columbia University

Abstract—
The DARPA FastNICs program targets orders of magnitude improvement in applications such as
deep learning training by making radical improvements to network performance: while raw
bandwidth has grown dramatically, the fundamental roadblock to application performance has
been in delivering that data to the application. FLEET provides a primarily off-the-shelf solution
with high-end servers and shared computational and storage resources connected via PCIe over
a reconfigurable MEMS optical switch; it uses custom Optical NICs to allow arbitrary topologies
that can be configured before or even during execution to take advantage of shared resources
and to flow data between components. FLEET’s software is derived from Stanford Legion, which
we are modifying to use the FLEET hardware and to plan application execution for these
dynamic network topologies.

Distribution “A” (Approved for Public Release, Distribution Unlimited). This research was developed with

funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or

findings expressed are those of the authors and should not be interpreted as representing the official views

or policies of the Department of Defense or the U.S. Government.

2021 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3075326, IEEE Internet
Computing

Introduction
In 2019, the U.S. Defense Advanced Research

Projects Agency (DARPA) solicited proposals
for a program on Fast Network Interface Cards
(FASTNICS) [4]. Dr. Jonathan M. Smith created
the four-year program in recognition of the large
gap between processor speeds and optical net-
works on the one hand, and network intercon-
nects on the other: network interfaces typically
operate 100 − 1000× slower than these other
components, and this gap significantly impacts
the performance of data-intensive applications.
From the call for proposals:

FASTNICS will speed up applications
such as the distributed training of
machine learning classifiers by 100x
through the development, implemen-
tation, integration, and validation of
novel, clean-slate network subsystems.
The program will focus on overcoming
the gross mismatches in computing and
network subsystem performance.

This article reports the initial design of a
platform for FASTNICS, called FLEET.1 FLEET

provides a primarily off-the-shelf architecture that
can leverage continuing advances of commercial
computing advances to meet or exceed the FAST-
NICS program goals. The project started in mid-
2020, thus this is a design overview and status
report rather than reporting a polished system.
FLEET requires innovations in both hardware and
software, which are described in greater detail in
“Hardware Overview” and “Software Overview.”
We then discuss “Related Work” and report “Con-
clusions.”

Hardware Overview
FLEET’s key hardware innovations are Optical

Network Interface Cards (O-NICs) that can be
plugged into the Peripheral Component Intercon-
nect Express (PCIe) slots to extend the PCIe
communication channels into the optical domain
at full PCIe bandwidth. PCIe in the optical do-
main allows fine-grained direct memory transfers
between servers or devices without the disadvan-
tages of a shared bus. Our choice of PCIe allows
for extremely efficient, low overhead, transpar-

1FLEET stands for Fast Lanes for Expedited Execution at
10 Terabits.

ent zero-copy Remote Direct Memory Access
(RDMA) memory transfer between cooperating
tasks, at aggregate speeds of 12 Tbps by the
end of the program. Critically, our choice of
PCIe networking also allows reconfigurable direct
access to all standard PCIe device resources, such
as Graphic Processing Units (GPUs), high per-
formance Non-Volatile Memory Express (NVMe)
storage drives, and data gathering sensors such as
radar sensors, digital radios, and all other PCIe
cards.

Once PCIe data is in the optical domain,
we use a Micro-ElectroMechanical (MEMS) op-
tical circuit switch to connect the FLEET O-NIC
cards to each other, allowing full-PCIe bandwidth
network communications between two servers, a
server and a PCIe device, or between two PCIe
devices. The O-NIC leverages work on photonic
interconnects at Columbia University [3], [7].

Figure 1 provides an overview of the FLEET

hardware architecture. Briefly, 1 shows how
multiple clusters can be interconnected via op-
tical switches, with 3Tbps aggregate system-to-
system throughput in the FLEET Generation 1
system (Gen1) and 12Tbps in FLEET Generation 2
(Gen2).

2 shows the details for a single cluster. Each
cluster nominally consists of four servers and up
to six chassis to hold PCIe devices. All of these
servers and devices are interconnected using opti-
cal fibers that carry the PCIe data channels using
16 wavelengths for the 16 PCIe lanes a single
O-NIC supports. The fibers are connected to a
Polatis Series 70002 384x384 Software Defined
Optical Circuit Switch, which configures mirrors
and lightpaths (using Software Defined Networks)
to allow the incoming and outgoing fibers to
be connected to any other O-NIC port (flipping
the incoming and outgoing signal paths). The 96
fibers not attached to servers or devices will be
used for intercluster and WAN communication.

Each cluster is further broken out into 3
eight GPUs (or NVMe RAID controllers), each
with its own O-NIC; and 4 eight CPUs, each
with three O-NICs. 5 A single CPU consists
of a sub-motherboard blade with 28 cores. Fi-
nally, 6 shows the O-NIC in detail. The use

2https://www.polatis.com/series-7000-384x384-port-software-
controlled-optical-circuit-switch-sdn-enabled.asp

2 © 2021 IEEE Published by the IEEE Computer Society Internet Computing



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3075326, IEEE Internet
Computing

Figure 1. FLEET hardware overview

of PCIe to attach our network interface card is
key to our hardware architecture because it will
accelerate acceptance, deployment, and transition
through use of proven, widely-available attach-
ment standards. Further, PCIe is expected to have
a long and productive roadmap for performance
improvements. In addition, we are working to-
ward improving compatibility, flexibility, and per-
formance by extending FLEET to Lambda Labs
A100 AMD systems3 using PCIe generation 4.

The O-NIC has two key features:

1) The use of two optical-ports on the O-
NIC card allows sophisticated data flows.
With only one optical port, communica-
tions is restricted to only one peer, for
example a GPU could use the O-NIC to
read data directly from an NVMe storage
device (meaning that the GPU could then

3https://lambdalabs.com/deep-learning/servers/hyperplane-a1
00

not send its results to another stage in
the processing pipeline without incurring
a significant optical switch reconfiguration
penalty). With multiple optical modules, the
GPU can receive full bandwidth streaming
input from the NVMe while sending full-
bandwidth output to the next processing
element. Multiple output pipes also allow
efficient data distribution such as ring or
tree network structures.

2) The O-NIC is more than a PCIe chan-
nel and two optical modules that convert
the PCIe bits to photonics; it also has
a sophisticated FPGA that runs a PCIe
Manager firmware core providing security
features, memory address translation, and
virtualized PCIe devices to resolve the in-
herent problems of reconfigurable direct ac-
cess to memory and physical PCIe devices.
Beyond this, it also provides a general-

2021 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3075326, IEEE Internet
Computing

purpose mechanism to allow in-network
computation on data to accelerate latency-
sensitive applications. Allowing arbitrary
user applications to securely deploy code
to the network FPGA interfaces minimizes
the stage-to-stage latency where it is impor-
tant; we use this functionality to meet the
FASTNICS latency metrics. As detailed in
“Related Work,” the use of FPGAs for in-
situ processing in network interface cards
is by now well established, but to our
knowledge the PCIe integration is unique.

In summary, FLEET provides a rapidly recon-
figurable hardware architecture that can build cus-
tom hardware clusters from available LAN and
WAN resources to execute specific applications,
or application phases, with dynamically reconfig-
urable flexible pipelines providing direct access to
shared resources. We provide a few examples of
this innovative feature. All examples use the same
underlying hardware platform, just with different
applications and PCIe circuit switch configura-
tions, effectively running a different hardware
cluster:

• Simple two party exchange of data: Servers A
& B can exchange data at 12Tbps.

• Direct data gathering. Server A can read radar
sensor data from the radar PCIe data acquisi-
tion cards (or stored radar data from NVMe
disks) at 12Tbps.

• Simple three party exchange of data: Server A
can exchange data at 2Tbps with server B and
at 10Tbps with server C. Any bandwidth ratio,
in units of 126Gbps (the bandwidth of a single
Phase 1 O-NIC), can be supported.

• Data multicast: Servers A, B, C, and D could
output data onto a ring topology, allowing data
generated at 12Tbps by server B to be received
by C, D, and A. Equally well, server D could
generate data to be received by servers A, B,
and C at 12Tbps.

• Phased three-party exchange of data: Server
A can exchange data at 12Tbps with server
B. After the initial exchange needed for the
first phase of processing is complete, server A
can exchange data at 12Tbps with server C.
While it is talking to server C, the switch may
be reconfigured to allow seamless high-speed
interaction with server D when it is done with

server C.
• Processing pipeline using direct disk-GPU

communications. Figure 2 depicts a number
of CPUs, GPUs, and JBODs (just a bunch
of NVMe disks), each with one or more
O-NICs.4 Here, the source image data from
NVMe disks D1 is sent directly (bypassing
server CPUs and PCI Root Complex) to GPU
G1. After GPU G1 has processed an image
block, it forwards the output to server A which
performs another stage of processing. After
that stage of processing, the data can be sent
to server C for processing, in conjunction
with data from NVMe disks D3, and with
streaming FPGA transformations performed in
O-NIC2A. Similar pipelining occurs in the
top half of the figure. All data transfers in
this pipeline may be simultaneously performed
at full PCIe bandwidth, allowing (if multiple
disks and GPUs are used) 80 Tbps5 of data to
be in flight across the entire cluster at once
provided the application could perform this
streaming processing.

Software Overview
FLEET’s software architecture builds on the

Legion [1], [20] system, as shown in Figure 3.
Legion is a well-established, open-source pro-
gramming system for writing high-performance
applications for distributed heterogeneous archi-
tectures. The blue components in the figure rep-
resent existing code, either in Legion or Linux.
Red components represent FLEET code, including
some new aspects of existing Legion code, as
follows.

We originally anticipated that FLEET applica-
tions would be written in Regent [18], a language
that supports implicit dataflow parallelism, or in
C++. However, as the project evolved we shifted
to Pygion [17], a flexible Python-based alternative
to Regent, and in particular FlexFlow [10], a
Legion application specifically focused on DNN
Training. FlexFlow supports C++ and Python,

4The devices are labeled things like G2 for GPU-2, or A for
CPU A; the O-NICs are labeled to match their devices except for
CPUs, which have multiple O-NICs and subscript which O-NIC
is referenced, as in O-NIC1A.

5The example of 80 Tbps is not a maximum limit: using
more servers in the local cluster or across the WAN to other
clusters could increase this simultaneous in-flight bandwidth
usage arbitrarily.

4 Internet Computing



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3075326, IEEE Internet
Computing

Figure 2. Sample topology

Figure 3. FLEET software overview

and it can support both Keras (TensorFlow) and
pyTorch applications. It can work directly with
the FLEET Planner, described in greater detail
below, to allocate resources. The Planner uses a
FlexFlow strategy interface and Legion mapper
interface to control where application components

(eg. DNN layers or operators) run; it is also
responsible for determining the best network con-
figuration to connect O-NICs through the MEMS
switch, and for adapting that configuration at
runtime.

Internally, Legion has a low-level portability
layer called Realm [20] that sits below a high-
level runtime (which we refer to as the Legion
runtime). Both the high-level runtime and Realm
need some modifications for the FLEET environ-
ment. For example, we are adding a transport
library to Realm that supports our FPGA O-NIC
communication protocol for message passing and
RDMA. It would also be possible to add support
for FLEET to a lower-level transport component,
such as GASNet [2] or UCX [16], but after
exploring those alternatives, we decided it would
be simpler and more efficient to support FLEET

directly in Realm.
Underneath the runtime, we have the FLEET

Planned Application Communication Environ-
ment (FPACE), which manages data movement as
tasks finish with stages of their processing. The
FPGA Application Acceleration Firmware Con-
troller functionality (FAAFC) permits applications
to use the FPGA on the O-NIC as an external
Legion processor, similar to how it offloads exe-
cution to GPUs.

The FLEET Linux drivers are shown at the

2021 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3075326, IEEE Internet
Computing

bottom of Figure 3, with most of them feeding
into the PCIe driver and ultimately the O-NIC.
The FLEET IP over PCIe Network Driver is
responsible for transmitting IP packets over the
PCIe, using the PCIe packet as the datalink layer
in the IP stack. The O-NIC Driver is designed
to recognize the O-NIC during Linux PCI Root
Complex enumeration for discovery and support
RDMA communication.

Regions are the primitive collection type in
Legion; regions are a form of table similar to
relations or dataframes, which are associated with
a task and then migrate to another task for fur-
ther processing. In the context of FLEET, these
tasks may be on different cores within a sub-
motherboard blade, on another blade, on another
server, or even on another cluster. It is the respon-
sibility of the runtime, using FPACE, to make the
data available when it is needed, and to ensure
coherence and performance.

FLEET Planner
The FLEET Planner creates the execution plan

for the application using the FlexFlow strategy
and Legion Mapper APIs. Legion already per-
forms planning for NUMA considerations, mem-
ory and cache sizes, and heterogeneous comput-
ing elements (such as tasks that could be executed
on GPUs or CPUs depending on what would
provide the overall best system performance).
However, our resource allocation problem is more
challenging than the existing Legion mapping
functionality of where to place data and compu-
tation. With FLEET, the PCIe channel bandwidth
must be managed over time. FLEET is using
an optical switch that can route PCIe slots to
different destination, but changing destinations
has an expensive reconfiguration time.6 Thus, it is
important for FLEET to plan the datapath through
the optical system when it is placing code on
processors to ensure that sufficient bandwidth
is available for all purposes and that topology
changes are seldom required and unobtrusive.

Accurate simulation of execution characteris-
tics is a critical prerequisite to accurate planning.
We have recently extended the FlexFlow [10]
simulator to more accurately model Legion’s run-

6Each reconfiguration of the MEMS optical switch takes many
milliseconds, but the optical interfaces can take still longer before
communication is reestablished.

time execution, including accounting for conges-
tion on overloaded links. We have also made
various improvements to the Legion profiler to
more accurately report the costs of network mes-
sages and task execution on accelerators, which
we expect will be important when we due detailed
studies of application performance using O-NICs.

The Planner will create the network topology
(the optical switch configuration assigning O-
NIC communication circuits) and the assignment
of tasks to servers, sockets, cores, GPUs, and
FPGA Application Accelerator Firmware Cores.
The FLEET Planner has the power to move the
code to the data, the data to the code, or trans-
form the data in-flight. If a particular application
requires more resources (CPUs, GPUs, FPGA, or
network bandwidth) than is available, the FLEET

Planner will break the application up into phases
where the network topology and resources can be
reassigned to a new configuration to continue the
application processing pipeline.

The FLEET Planner models the mapping prob-
lem as a graph partitioning problem, based on
two graphs: GA = (VA, EA), the application
task graph, and GT = (VT , ETf ), the FLEET
physical topology graph. We call the elements
of VA “vertices” (application compute tasks), and
the elements of VT “nodes” (compute nodes such
as CPUs, GPUs, FPGAs, and the MEMS switch
as well as memories (zero-copy, NVMe)). Nodes
have attributes such as processor type and speed,
memory type and capacity. The nodes in GT

are connected by edges e ∈ ET representing,
e.g., UPI buses and PCIe channels. The presence
of an edge expresses an affinity between e.g., a
processor and memory, or a processor and the
MEMS switch. The edge has attributes such as
bandwidth or latency (shared entities like Layer-2
cache and memory buses, are depicted as aggre-
gated edges with shared attributes). The number
of PCIe edges reflects the physical topology of
the cluster: each O-NIC has two PCIe ports:
∆max,PCIe = 2. Similarly, the total number
of PCIe edges in GT connecting to the switch
reflects the maximum number of ports on the
switch, which is ∆max,switch = 384.

In order to run the application, the FLEET

Planner needs to map each task vertex to a
compute node, and route each data transfer along
a shortest route in the physical topology graph

6 Internet Computing



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3075326, IEEE Internet
Computing

Figure 4. Notional FLEET Execution Plan: (i) Initial allocation of 6 tasks to cluster resources; (ii) Planner
optimizes task allocation using cluster resources on cores, GPU, and O-NICs

from the compute node running its “source” task
to the compute node mapped to its “destination”
task. There is large preference to minimize the
routing distance, e.g. 1-hop (direct connection)
or even 0-hop (shared memory). For example, if
these compute nodes are neighboring cores, then
we can use page mapping so that the two nodes
can use the same physical address. If the compute
nodes are two CPUs in the same server, they can
use the UPI on the motherboard that allows send-
ing memory data between CPUs. If the source
and destination are two servers, they can use the
PCIe channels on the O-NIC to communicate.
The FLEET Planner trades off bandwidth, latency,
bus contention and cache contention, in order to
optimize placement of tasks.

Figure 4 depicts the result of FLEET Plan-
ner processing. The initial chordal optical switch
configuration and task mapping are shown in
Figure 4(i). Figure 4(ii) shows the result of the
Planner co-optimizing task placement and optical
switch link configuration: it uses an alternate
implementation of task 1 to execute on the GPU;7

discovers that a direct link from the source data
to the GPU running task 1 is more efficient; as
part of the processing pipeline, it sends the GPU
results directly to task 2 running on server A; the
results of that task are forwarded simultaneously
over the UPI bus to task 3 on server A and over
the FLEET network to another copy of task 3
on server B; both task 3 results are forwarded

7This is a simplified example; in practice many GPUs would
be used.

to the Application Acceleration Firmware cores
loaded on two of the O-NICs running task 4 ;
the results of task 4 are forwarded to server
C, where they are loaded in memory for both
CPUs; task 5 executes on all cores of server
C, taking advantage of the low latency costs
for inter-core communication; finally, after all
processing of task 5 is complete, task 6 finishes
the application processing, also on server C.

FLEET’s approach to jointly planning switch
configuration and task mapping is to first find
a good task partitioning independent of topol-
ogy (switch) constraints, and find a good initial
topology (meeting switch constraints) taking into
account only structural information in the task
graph. Second, we update the task mapping based
on the “initial” topology. Third, we use itera-
tive improvement (e.g. via stochastic search (e.g.
Markov Chain Monte Carlo (MCMC) [6])) to
improve on the initial solution, until the Planner
solution is satisfactory or upon reaching a maxi-
mum iteration or time limit.

The initial task partitioning takes into account
the application task graph GA and hardware de-
vice graph. Since optimal scheduling is an NP-
hard problem in general, so we will use heuristics
and LP approximations in order to solve this
approximately, based on the stated main objec-
tives: balancing the application workload, and
minimizing task communication cost.

FPGA Integration
To make use of the FLEET system, Legion

needs two changes with respect to the FPGAs.

2021 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3075326, IEEE Internet
Computing

First, there needs to be a “shim” with enough
of a Legion runtime executing on the O-NICs
to be able to move memory regions without the
involvement of the CPUs. Second, Legion needs
to be augmented to treat FPGAs as an execution
environment. Realm [20] provides a interface for
adding new kinds of processors to the Legion
runtime, which needs to support only a relatively
small number of methods: launching a task on
the device, triggering a finish event when a task
has completed, transferring data to the device
and transferring data back from the device are
the main services that are required. (There are
also methods associated with gathering profiling
information, initiaizing the device on startup, and
registering new tasks that can be launched on
the device.) The main complication with FPGAs
is that switching from launching a task A to a
different task B can be very expensive if the
FPGA needs to be re-flashed to load the code
for task B. The cost of flashing is expensive, so
ideally the FPGA can be programmed at the start
of execution to include all functionality needed
throughout a run; if the FPGA kernels do not fit
or are more dynamic, the cost of flashing must
be incorporated into both the Legion profiler and
the simulator used for estimating FlexFlow costs.

Related Work
There is a long history of programmable net-

work interfaces using FPGAs, e.g. P4 [8], and the
programmability of the O-NIC is similar to recent
work geared toward optimizing network through-
put, such as Catapult v2 [5] and FlexNIC [11].
Catapult v2, from Microsoft, accelerated Bing
searches via a “bump in the wire” inserting FP-
GAs between the NICs and the CPUs. FlexNIC
allows the OS to add rules to packet processing
in the NIC, which provide control over how
packets are DMA’d to reduce memory pressure at
high throughput. These research solutions also are
generally restricted to fixed-purpose accelerator
cores that do not change based on the application
that is executing. Switching in datacenters has
evolved in recent years; see [3] for a discussion.

While products from companies such as Dol-
phin [12], [13] permit servers to use PCIe to
access memory and devices within other servers,
that approach has significant restrictions: (a)
Resource sharing requires double-PCIe band-

width/lanes, latency, and server PCIe controller
resources; (b) latency is high; (c) it cannot scale
to 10Tbps (even theoretically) while still having
“other” PCIe devices; and (d) there are no user-
accessible computing resources on the PCIe Op-
tical NIC. FLEET overcomes all these limitations.

High-performance custom-designed GPU fab-
rics such as NVLink/NVSwitch8 interconnect
GPUs (and sometimes CPUs9) with higher per-
formance than PCIe. However, they are limited
to short distances (typically an enclosure) and
a fixed, and small, number of nodes. FLEET

allows GPUs to be used by any CPU, interconnect
directly with NVMe and other PCIe devices, and
adapt arbitrary topologies through the O-NICs
and MEMS switch.

There has been extensive work recently on
training of deep neural networks of larger and
larger size, including various pipelining tech-
niques showing promising speedups by judi-
ciously overlapping communication and compu-
tation [15], [14], [19], [9]. FLEET can add to
these speedups by taking into account more fine-
grained hardware details.

Conclusions
FLEET has been underway for less than a

year as of this writing, so it is early in its R&D
process. To summarize its capabilities:

• FLEET is a unique computing system that com-
bines novel photonics interfaces (by Columbia
University) with PCIe-based FPGA acceler-
ators for orders of magnitude reduction in
execution time of machine learning tasks. It is
expected to reduce key workflows from days to
minutes (100× improvement), not achievable
on today’s state-of-the-art commercial hard-
ware (or their roadmaps).

• High bandwidth is important, but it’s not
enough. FLEET achieves low-latency by tightly
integrating photonics and computing chips
without the need for the high-level protocols
used by state-of-the-art communication inter-
faces (e.g., Ethernet, RoCE, or Infiniband). It
reduces overhead and latency and increases
flexibility by using datacenter-scale PCIe as the

8https://www.nvidia.com/en-us/data-center/nvlink/
9One example is IBM POWER8 (https://www-355.ibm.com/

systems/power/openpower/tgcmDocumentRepository.xhtml?alias
Id=POWER8 with NVIDIA NVLink)

8 Internet Computing



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3075326, IEEE Internet
Computing

underlying data transport protocol, a standard
ubiquitous protocol with continuous perfor-
mance improvement in its roadmap.

• FLEET allows for a global pool of PCIe re-
sources (GPUs, NVMe disks, or any other)
to be used by different hosts and different
workloads with zero overhead, unlike today’s
state of the art fixed-topology supercomputers
or machine learning clusters, and

• it dynamically reconfigures its topology to
provide efficient execution of machine learning
workloads (and others).

We look forward to reporting additional progress
as the project progresses.

REFERENCES

1. M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Le-

gion: Expressing locality and independence with logical

regions. In SC ’12: Proceedings of the International

Conference on High Performance Computing, Network-

ing, Storage and Analysis, pages 1–11, 2012.

2. Dan Bonachea and Paul H Hargrove. Gasnet-ex: A

high-performance, portable communication library for

exascale. In International Workshop on Languages

and Compilers for Parallel Computing, pages 138–158.

Springer, 2018.

3. Qixiang Cheng, Sébastien Rumley, Meisam Bahadori,

and Keren Bergman. Photonic switching in high per-

formance datacenters. Optics express, 26(12):16022–

16043, 2018.

4. DARPA. Broad agency announcement: Fast

network interface cards (fastnics), August 2019.

HR001119S0082.

5. Daniel Firestone, Andrew Putnam, Sambhrama Mund-

kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,

Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric

Chung, et al. Azure accelerated networking: Smartnics

in the public cloud. In 15th {USENIX} Symposium

on Networked Systems Design and Implementation

({NSDI} 18), pages 51–66, 2018.

6. W.R. Gilks, S. Richardson, and D. Spiegelhalter. Markov

Chain Monte Carlo in Practice. Chapman & Hall/CRC

Interdisciplinary Statistics. Taylor & Francis, 1995.

7. J. Gonzalez, A. Gazman, M. Hattink, M. G. Palma,

M. Bahadori, R. Rubio-Noriega, L. Orosa, M. Glick,

O. Mutlu, K. Bergman, and R. Azevedo. Optically

connected memory for disaggregated data centers. In

2020 IEEE 32nd International Symposium on Computer

Architecture and High Performance Computing (SBAC-

PAD), pages 43–50, 2020.

8. Ilija Hadžić and Jonathan M Smith. Balancing perfor-

mance and flexibility with hardware support for network

architectures. ACM Transactions on Computer Systems

(TOCS), 21(4):375–411, 2003.

9. Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and

Salman Avestimehr. Pipetransformer: Automated elas-

tic pipelining for distributed training of transformers. In

https://arxiv.org/pdf/2102.03161.pdf, 2021.

10. Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond

data and model parallelism for deep neural networks.

In Proceedings of the 2nd Conference on Systems and

Machine Learning (SysML’19), 2019.

11. Antoine Kaufmann, SImon Peter, Naveen Kr Sharma,

Thomas Anderson, and Arvind Krishnamurthy. High

performance packet processing with flexnic. In Pro-

ceedings of the Twenty-First International Conference

on Architectural Support for Programming Languages

and Operating Systems, pages 67–81, 2016.

12. Venkata Krishnan, Tim Miller, and Herman Paraison.

Dolphin express: A transparent approach to enhancing

pci express. In 2007 IEEE International Conference on

Cluster Computing, pages 464–467. IEEE, 2007.

13. Jonas Markussen, Lars Bjørlykke Kristiansen, and

Hugo Kohmann. Nvme over pcie fabrics using device

lending, 2019.

14. Deepak Narayanan, Aaron Harlap, Amar Phanishayee,

Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,

Phillip B Gibbons, and Matei Zaharia. Pipedream:

generalized pipeline parallelism for dnn training. In

Proceedings of the 27th ACM Symposium on Operating

Systems Principles, pages 1–15, 2019.

15. Jay H Park, Gyeongchan Yun, M Yi Chang, Nguyen T

Nguyen, Seungmin Lee, Jaesik Choi, Sam H Noh, and

Young-ri Choi. Hetpipe: Enabling large {DNN} training

on (whimpy) heterogeneous {GPU} clusters through

integration of pipelined model parallelism and data par-

allelism. In 2020 {USENIX} Annual Technical Confer-

ence ({USENIX}{ATC} 20), pages 307–321, 2020.

16. Pavel Shamis, Manjunath Gorentla Venkata, M Graham

Lopez, Matthew B Baker, Oscar Hernandez, Yossi Itigin,

Mike Dubman, Gilad Shainer, Richard L Graham, Liran

Liss, et al. Ucx: an open source framework for hpc

network apis and beyond. In 2015 IEEE 23rd Annual

Symposium on High-Performance Interconnects, pages

40–43. IEEE, 2015.

17. Elliott Slaughter and Alex Aiken. Pygion: Flexible,

scalable task-based parallelism with python. In 2019

2021 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3075326, IEEE Internet
Computing

IEEE/ACM Parallel Applications Workshop, Alternatives

To MPI (PAW-ATM), pages 58–72. IEEE, 2019.

18. Elliott Slaughter, Wonchan Lee, Sean Treichler, Michael

Bauer, and Alex Aiken. Regent: A high-productivity pro-

gramming language for hpc with logical regions. In Pro-

ceedings of the International Conference for High Per-

formance Computing, Networking, Storage and Analy-

sis, SC ’15, New York, NY, USA, 2015. Association for

Computing Machinery.

19. Jakub Tarnawski, Amar Phanishayee, Nikhil Devanur,

Divya Mahajan, and Fanny Nina Paravecino. Efficient

algorithms for device placement of dnn graph operators.

In NeurIPS, 2020.

20. Sean Treichler, Michael Bauer, and Alex Aiken. Realm:

An event-based low-level runtime for distributed mem-

ory architectures. In Proceedings of the 23rd Interna-

tional Conference on Parallel Architectures and Compi-

lation, PACT ’14, pages 263–276, New York, NY, USA,

2014. Association for Computing Machinery.

Acknowledgments
Thanks to our DARPA program manager,

Jonathan M. Smith, for initiating the program and
providing helpful guidance. We greatly appreciate
the support of Zhihao Jia, Elliot Slaughter, and
Sean Treichler, members of the Legion team
not directly involved in FLEET. The project is
a large team effort, including the FLEET team
at Perspecta Labs, the Legion team at SLAC,
the Lightwave Research Lab at Columbia, and
our collaborators on the FASTNICS project at
Raytheon and USC.

Authors

Fred Douglis is a Chief Research Scientist with
Perspecta Labs. He has a background in distributed
operating systems and resource management, stor-
age, and other systems areas. He is a fellow of the
IEEE and a member of the IEEE Computer Society
Board of Governors. He served as editor in chief of
Internet Computing from 2007-2010 and has been
on its editorial board since 1999. Contact him at
fdouglis@perspectalabs.com .

Seth Robertson is a Chief Research Scientist
with Perspecta Labs. He has decades of exper-
tise in large distributed systems, dynamic networks,
cloud computing, DDoS Defense, avionics cyber de-
fense, and deceptive, defensive, and offensive Com-
puter Network Operations. Contact him at srobert-

son@perspectalabs.com .

Eric van den Berg is a Research Manager with
Perspecta Labs. He has a background in applied
mathematics, and has recently worked on distributed
resource allocation in networks, planning and orches-
trating cyber defensive maneuvers, and analyzing re-
source needs of quantum algorithms, among others.
Contact him at evandenberg@perspectalabs.com .

Josephine Micallef is a Fellow and Senior Research
Director of the Systems and Cyber Security Re-
search group at Perspecta Labs. She is responsible
for research initiatives on computing and networking
platforms, technology, methodologies, and tools to
support the construction and validation of large, com-
plex, software-intensive distributed systems to ensure
highly dependable operation even under cyber-attack.
Contact her at jmicallef@perspectalabs.com .

Marc Pucci is a Chief Research Scientist with Per-
specta Labs. He has worked on programs rang-
ing in size from processor microcode to large-scale
systems-of systems. He has developed a variety of
operating systems including uni- and multi-processor,
distributed, real-time, and embedded. Recent work
includes the analysis of the power grid for incon-
sistencies, and the detection of aberrant device be-
havior using side-channel emissions. Contact him at
mpucci@perspectalabs.com .

Alex Aiken is a Professor of Computer Science
at Stanford University and the director of the Com-
puter Science Division at SLAC. He leads the Le-
gion project, which involves researchers from Stan-
ford, SLAC, Los Alamos National Lab, and NVIDIA.
He is a Fellow of the ACM. Contact him at
aiken@stanford.edu .

Keren Bergman is the Charles Batchelor Profes-
sor of Electrical Engineering at Columbia Univer-
sity where she leads the Lightwave Research Lab-
oratory and also serves as the Scientific Director
of the Columbia Nano Initiative. Prof Bergman is
a leading expert in high performance photonic in-
terconnect systems with extensive experience lead-
ing project teams for DARPA, DOE, and ARPA-E.
She is a Fellow of IEEE and OSA. Contact her at
bergman@ee.columbia.edu .

Maarten Hattink is a graduate student with Columbia
University. He received his B.S. and M.S. from the
Eindhoven University of Technology, Netherlands, in
2015 and 2017. While pursuing these degrees he

10 Internet Computing



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MIC.2021.3075326, IEEE Internet
Computing

worked at Prodrive Technologies B.V. as a software
and FPGA engineer. He is now pursuing a Ph.D.
degree and his research interest lies in photonic
device integration and optical switching. Contact him
at mh3654@columbia.edu .

Mingoo Seok is an associate professor in the De-
partment of Electrical Engineering at Columbia Uni-
versity. He has been working on high-performance
and low-power VLSI design with extensive experience
in designing and prototyping analog, mixed-signal,
digital, and power-management integrated circuits.
Contact him at ms4415@columbia.edu .

2021 11


