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Abstract—A deep neural network based equalizer is proposed to
mitigate the intersymbol interference observed in next generation
high speed passive optical network (PON) links. The DNN based
equalizer is shown to outperform the best known conventional
equalizer, the maximum likelihood sequence estimator (MLSE)
both in back-back and through fiber experiments. To reduce the
hardware complexity of DNN based equalizer for PON systems,
we investigate the use of embedded parallelization within a DNN
structure having multiple symbol outputs from one DNN. We
further investigate using a classification output stage with cross
entropy cost to perform joint decision on multiple symbol outputs
and demonstrated that the sensitivity gain of such scheme over
regression output. To understand the complexity of hardware im-
plementation, the fixed-point DNN based equalizers are developed
and implemented in FPGA. The impact of fixed-point resolution on
the receiver sensitivity and hardware resource utilization in FPGA
implementation is analyzed and reported in detail. We show that a
reduction of over 40% in LUTs (look up table) utilization is possible
by reducing the DNN’s weight resolution from 8-bit to 4-bit while
incurring a small penalty in receiver sensitivity.

Index Terms—Artificial intelligence, feedforward neural
networks, neural network hardware, neural networks, optical
fiber communication.

I. INTRODUCTION

WHILE the highest speed PON system available today is
at 25Gp/s as per 25GS-PON MSA (DNN) (multi-source
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agreement) [1] and IEEE 802.3ca [2], the ITU-T has already ap-
proved the next generation PON standard (G.hsp) with 50Gbaud
NRZ downstream signaling [3]. One of the most distinguishing
aspects of the G.hsp PMD (physical medium dependent) layer
is that for the first time in a PON standard, the received signal
is expected to be equalized using DSP (digital signal process-
ing). The necessity of such signal equalization arises from the
fact that 50Gbaud signal experiences intersymbol interference
(ISI) both from the signal bandwidth limitation of cost-effective
components and chromatic fiber dispersion at 1342 +/−2 nm
wavelength designated by the standard. The current assumption
for DSP in G.hsp is based on the use of FFE (feedforward
equalizer) which achieves an optical path penalty (OPP) of
3.5 dB after equalization for 20 km of worst case fiber at the
1344 nm wavelength. Even though such traditional DSP is ap-
plicable to recover large part of the penalty caused by the signal
distortion, ISI mitigation in IMDD (intensity-modulation direct
detection) system is worth the careful attention for potentially
improving power budget due to reduction in OPP and enabling
longer reaches by being more tolerant to ISI. This is because
the ISI in IMDD is generally not an 100% reversible effect in
which there is signal loss in high frequency components due to
bandwidth limitation and signal fading due to transmitter chirp
and fiber’s chromatic dispersion. The choice of the equalizer
and its effectiveness can have a non-negligible impact on the
receiver sensitivity and the optical path penalty, both of which
are important in PON to meet the stringent power budgets as
well as reach.

Although machine learning for signal equalization was pro-
posed as early as in 1990 [4], significant increase in research
interest of machine learning as signal equalizer is seen only
recently [5]–[8]. The deep neural network (DNN) as one of the
machine learning techniques is the general term which refers to
multilayer neural networks with no specific topologies of how
neural networks are connected. Among many possible DNN
architectures, the most conventional feedforward deep neural
network, which is the same as multilayer perceptrons (MLPs)
[9], are extensively studied for signal equalization techniques in
highspeed optical communications [8]. The feedforward DNN
has the information flow from the input to output of neural
networks without feedback path and is analogous to the finite
impulse response (FIR) filter [10] in conventional DSP design.
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This is the most practical and feasible architecture of DNN
suitable for the highspeed communication with over Gbaud
signal throughput. In addition to dealing with the high through-
put in optical communications, the application space of DNN
based techniques may be limited to generally static channels
rather than rapidly changing dynamic channels. This is because
the adapting speed of the DNN neurons are generally limited
due to the sheer number of neuron updates required to achieve
convergence in DNN training. The DNN as signal equalizer
for PON or short reach optical link is attractive as the optical
link is based on IMDD principle where the source of the signal
distortion in the received signal is mostly static and deterministic
after successful symbol timing recovery [11]. In the previous
works [5]–[8], the effectiveness of DNN as signal equalizer is
reported and compared to various equalizers. Based on those
reported results [8], it is safe to conclude that the DNN based
equalizer can be as good as or even better than the conventional
equalizers such as FFE, FFE/DFE (decision feedback equal-
izer) and MLSE (Maximum Likelihood Sequence Estimation)
[12], [13].

Since the effectiveness of DNN as equalizer has been vali-
dated, the next logical important question is how much hardware
resources are required to implement DNN. Although previous
research on a physical layer DSP implemented in a general-
purpose GPU (graphic processor unit) has been reported [14],
such a solution is generally not preferred for a choice of phys-
ical layer DSP hardware in high speed optical communications
transceivers operating at tens of Gbaud due to the higher cost
and higher power consumption of a GPU compared to an ASIC
(application specific integrated circuit). Further, prototyping
ASIC implementations on FPGA is a well-established method-
ology for rapid evaluation of design choices and implementation
complexity. While many studies have been reported on FPGA
prototyping of various DSP techniques in optical communi-
cations [15]–[20], most of the work published so far for the
DNN applications in optical communications are using offline
processing [5], [7]. Further, hardware implementation of DNN
for optical applications that do not demand very high throughput
have been investigated in [21], [22]. A much higher throughput
is required when DNNs are used for physical layer equalization
[6], [8], [23]. Our previous work [8] and, also in [23] have taken
initiatives in studying the requirement of hardware resource
when DNN is used as signal equalizer in an 50G PON system
by implementing DNNs in a FPGA. The work in [6] however
uses implementations with 8-bit fixed-point resolution and no
other fixed-point resolutions were considered while the FPGA
implementation was utilizing DSP resources that can implement
MAC (multiplier and add computation) with dedicated hardware
which obscures true hardware complexity of the implemented
DNN. In addition, DNNs with multiple outputs are commonly
considered in the machine learning community [9] and have also
been proposed as a part of DNN application in the physical layer
equalization [24] for general communication systems. However
in optical communities including PON systems, where one of the
highest data throughput is demanded among all communication
systems, an extensive study on the parallel output DNN equalizer
has not been considered until it was reported in [8]. In this work,

Fig. 1. Deep neural network with 2 hidden layers for NRZ signal equalization.
(a) with 1 linear soft symbol output (b) with 2 linear soft symbol outputs.

we analyze the impact of reducing the fixed-point resolution on
the neural network performance which is evaluated in terms
of receiver sensitivity curve using experimental data obtained
from a 50G PON link. We then demonstrate how the reduced
resolution DNN can lower the hardware resource needed by im-
plementing designs with various fixed-point resolution in FPGA.
We also investigate a neural network with joint classification
based output stages in embedded parallel DNN architecture as
opposed to the regression-based (linear) output stage compu-
tation. The obtained results for this configuration suggest such
classification output can improve DNN equalizer performance
especially when the resolution becomes very low.

II. DEEP NEURAL NETWORK WITH MULTIPLE OUTPUTS

A. Embedded Parallelism With Linear or Classification
Outputs

We choose the standard feedforward DNN architecture as
shown in Fig. 1 to construct a signal equalizer for a distorted
NRZ signal from 50Gbaud G.hsp PON link. The structure has no
feedback path so it is suitable for pipelined implementation and
therefore can achieve high data throughput. The DNN shown
in Fig. 1 has 11 inputs sampled consecutively at symbol rate,
2 hidden layers with 33 and 14 neurons, and one or two soft
outputs before the output is sliced for 0 or 1 output. The number
of outputs can be either one in Fig. 1(a) or two as in Fig. 1(b)
with each representing a soft output of one or two OOK symbols,
respectively. In this way, parallelization is embedded within
the DNN design to help reduce the hardware resources in the
implementation. The neurons between layers are fully connected
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as follows,

�ak = σ
(
W k�ak−1 +�bk

)
(1)

σ (z) =

⎧⎨
⎩

1− 21−D, when z > zmax,
z, when zmax ≥ z ≥ 0,
0, when z < 0

(2)

σ (z) =

⎧⎨
⎩

1− 21−D, when z > zmax,
z, when zmax ≥ z ≥ zmin,
−1, when z < zmin

(3)

Equation. (1) is representing the input-output signals of each
layer where −→ak is the output signal vector of each layer,

−→
bk

is the bias vector and Wk is the weight matrix at kth layer.
We use the data range between −1 to 1−21−D to capture the
constraints of fixed-point representation where D is the number
of fixed-point bits. Therefore, the fixed-point quantized and
saturated version of the rectified linear unit (ReLU) which is
represented in (2) is used as the activation function σ for the
2 hidden layers, while the fixed-point quantized and saturated
linear function shown in (3) is used at the output neurons. Note
that both (1) and (2) have bounds at 1−21−D or −1 which
may not be normally considered in floating-point computations,
but this is necessary for fixed-point computations. While the
usage of bipolar activation functions [6], [7] have been reported
previously, ReLU is unsigned with 1 bit more efficient usage of
resolution and the simplest to realize in hardware. The output
layer in the Fig. 1 has linear regression output and the soft
output that are sliced at zero to provide binary symbols. The
cost function for DNN training is mean square error between
the true symbol and the estimated soft output. The same cost
function and the same procedure of training are used for both 1
output and 2 output DNN.

In Fig. 2, on the other hand, we show basically the same
DNN as Fig. 1 except (a) with a classification output layer with
one output symbol and (b) with joint classification output layer
with 2 simultaneous symbol outputs. When we use classification
output, we double the number of output neurons which does the
same linear regression operation as defined in (1) with linear
activation function in (3). The difference is that the output from
one output neuron in Fig. 2(a) represents the probability of
the symbol interpreted as logic 0 and the other output neuron
represents the probability of the symbol interpreted as logic 1.
In Fig. 2(b), we propose to use 4 output neurons with linear
output (logit) as in (3) just as the same way as Fig. 1. To train
the neurons, we use softmax function [9] defined in (4) as our
probability function and minimize the cross entropy between
the target probability distribution and the tested probability
distribution [9]. The goal is to maximize the probability of the
logit to be one of the four classes denoted as i = {1, 2, 3, 4} in
(4). The classes correspond to the four possible consecutive bit
patterns, and they are 00, 01, 10 and 11.

P (zi = i |�xk ) = softmax (�z) =
exp (zi)∑
j exp (zj)

(4)

Fig. 2. Deep neural network with 2 hidden layers for NRZ signal equaliza-
tion. (a) with a classification output stage for 1 output symbol (b) with joint
classification output stage for 2 output symbols.

Since we are dealing with 2 consecutive output patterns in
one classification training rather than dealing with two outputs
independently, we consider this a joint classification output
stage.

B. Hardware Efficiency Improvement of Parallelized DNN

When we consider the hardware complexity of DNN based
equalizers, we can obtain good insights by comparing it to a
conventional FIR filter implementation. One of the major advan-
tages of conventional FIR filter is its adaptability to frequency
domain implementation with overlap-save (OLS) approach [10]
for hardware efficient parallel data processing. Although the
feedforward DNN is constructed similarly to a FIR filter, due
to its nonlinear function in activation layer as well as its fully
connected neuron topologies, it is not straightforward to find effi-
cient frequency domain implementation of DNN. Instead of find-
ing frequency domain translation of DNN, we can consider DNN
to directly perform overlap-save filter with both time-domain
inputs and outputs data stream. In this view, the major difference
between DNN based overlap-save and the conventional overlap-
save filter implementation is the overlap rate [25] which can be
defined using the number of input samples (L) and the number
of output (N) as R = N/L. In this definition, the overlap ratio
corresponds to data throughput of the digital filter. Although
the required overlap rate of the overlap-save filter depends on
the impulse response of the filter, using DFT (discrete Fourier
transform) as linear convolution within overlap-save scheme, the
smallest overlap rate for conventional FIR filter implementation
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Fig. 3. Experimental setup of 50Gb/s downstream PON at 1342 nm. The
captured data in the scope is then transferred to FPGA board for on chip
processing.

is 50%. The overlap rate of the DNN filter on the other hand can
be very low. For the case of Fig. 1(a) which has 11 input and 1
output, the overlap rate is 9.1%. For Fig. 1(b) the overlap ratio is
18.2% which is still much smaller compared to the conventional
FIR filter implementation but at least it is doubled compared to
the Fig. 1(a) DNN.

In the case of linear system with OLS, we know that the
requirement of overlap comes directly from the impulse response
of the filter, in this case the length of the inverse channel response
to deal with the dispersive channel. For DNN based equalizer,
the same analogy should apply where the input size needs to
be increased when the output size is increased. In addition,
we observe the number of output symbols can be more than
1 without significantly sacrificing BER performance only when
the first hidden layer is sufficiently larger than the input width.
This observation is consistent with the study reported in [26] of
2 hidden layer DNN being sufficient.

The weights and biases are obtained by the backward propaga-
tion method of DNN using Python TensorFlow with quantization
embedded into the outputs, weights and biases of all DNN layers
during the training. Note that the training of DNN especially
for downstream PON link can be done offline even in the field
deployment, since the IMDD channels are essentially stationary
and exhibit slow changes only primarily due to temperature
fluctuations.

III. EXPERIMENTAL SETUP AND FPGA IMPLEMENTATION

Although FPGAs provide useful prototyping platforms, an
FPGA has limited hardware resources and IO data throughputs.
Due to such practical limitations, some of the past DNN demon-
strations in FPGAs are performed at low signal baud rates at
around 4Gbaud [6]. Low signal baud rate signals, however, do
not face similar ISI issues that high baud rate signals experience
from chromatic dispersion with practical transmission distance,
therefore the equalizer capability and requirement are more diffi-
cult to evaluate for 50G PON systems with such low level of ISI.
It is therefore important that equalizer complexity in hardware
is evaluated with practical channel distortion at practical signal
speeds. In this work, we use 50Gbaud signal baud rate and an
optical link specified in G.hsp as the target optical link where
the ISI from components bandwidth limitation and chromatic
dispersion is a real issue with as much as 3.5 dB optical path
penalty [3] even after equalization for an FFE type receiver
equalizer.

Fig. 4. Design flow of DNN hardware implementation. The captured data
based on experimental setup is used for training DNN in offline process. While
the DNN inference is implemented in FPGA with pipelined and continuous data
processing.

The experimental setup of 50 Gb/s PON is shown in Fig. 3.
The Lithium niobate (LN) Mach-Zehnder modulator (MZM) is
used for ease of downstream wavelength selection. We set the
tunable laser wavelength to 1342 nm to emulate the elevated
amount of dispersion for PON downstream. We used up to 30
km single-mode fiber to test the capability of our DNN equalizer.
The zero dispersion of the fiber used is believed to be∼1310 nm,
translating into 83 ps/nm total fiber dispersion for 30 km which
is equivalent to 20 km of fiber with worst case zero dispersion
wavelength per G.hsp [3]. The signal is modulated with 88
GS/s CMOS 8-bit DAC (digital to analog converter) with pulse
shaping to compensate for the bandwidth profile of the DAC and
its eval board. The exact data rate used is 50.2857 Gb/s to adopt
1.75 sample per symbol. The 25 Gb/s class APD (avalanche
photo diode) integrated with TIA (transimpedance amplifier)
is used as the photoreceiver and the output of the receiver is
captured in the real-time sampling scope. The received eye in
Fig. 3 shows large distortion from bandwidth limitation and
∼83 ps/nm fiber dispersion. The same captured data is used
to compare DNN based equalizer and MLSE which is one of the
best conventional equalizers.

Fig. 4 illustrates the design flow of the DNN implementation
in FPGA. The captured data is first preprocessed offline down
to 1 sample per symbol and used in the offline DNN training,
verification and testing offline. Each measured dataset has about
1e6 time-domain samples in 8-bit effective resolution and the
first 2.5e5 samples are used for training, the next 1e5 samples
for verification and the following 5e5 samples for testing. The
training of the DNN is done separately for each measured point
and for each DNN. The number of epochs used is typically 50.
The training and testing results are found to be quite similar
and the overfitting problem is avoided by careful design of
the choice of pseudorandom data pattern and the input size
of DNNs as described later. The same measured data are also
later used for testing of the DNN in FPGA. The FPGA used in
the test is the Xilinx XCZU9EG-FFVC900 device which is a
ZynqMPSoC device with 4 onchip ARM application processors
[27]. The custom FPGA carrier board is developed to interface
with a Trenz Electronic SoM (system on module) child board
that has 4 GByte DDR4 memory directly connected to the PS
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(processor system) side of the FPGA. The measured data as well
as the weights and bias values are stored first in a SD (secure
digital) card, then read into the DDR4 memory and finally are
loaded into the FPGA fabric for the online DNN process. Using
Petalinux tools [28], we build the embedded Linux kernel on
Xilinx FPGA, and use it as the operating system (OS) to handle
the data flow between storage, memories and FPGA fabric as
well as to interface the user commands. We use a PRBS15 pattern
based on the polynomial X15+X14+1 = 0 as transmit pattern.
Since we center the 1 or 2 output symbols in the middle of the
DNN input signal vector as in Fig. 1, the DNN is not capable
of learning the PRBS15 pattern until DNN input width exceeds
28 [29], therefore it is ensured that the presented results are
not overfitted. To verify that DNN is learning channel distortion
but is not overfitted to the noise (mostly thermal in our case),
we cross check the obtained weights and biases from one input
power with other input power levels of the same channel and
DNN conditions, and ensure the results are approximately the
same. Furthermore, the sensitivity values obtained after DNN
equalization in this measurement come close but does not ex-
ceed the expected 50G sensitivity derived from (non-equalized)
25Gb/s sensitivity [30] while overfitted results often exhibit the
performance that are even better than theoretical values by many
decades in BER [29].

For preparation of RTL (register transfer level) description
of DNN for FPGA implementation, we use Xilinx Vivado
high level synthesis (HLS) [31] in this work. The HLS can
semi-automatically translate C programming codes to hardware
description language (HDL) codes and has been gaining both
capability and popularity over the years due to the fast develop-
ment cycle for the initial prototyping. One of the key aspects in
writing hardware in C language is the throughput of the logic
we implement. This is because HLS by default produce the RTL
logic that requires multiple clock intervals to generate the output,
and this can lead to the designed circuit that is not capable of
handling signal streams. To address this problem, we carefully
pipeline all steps of the DNN computation represented in (1)-(3)
including matrix element multiplications and summation at each
layer to make sure that the throughput is 100% of the data rate
and the logic is capable to process the signal stream at every
clock cycle.

IV. DNN EQUALIZER PERFORMANCE AND FPGA HARDWARE

RESOURCE

A. DNN Equalizer in Comparison to Conventional Equalizers

The DSP diagrams for processing captured data both in MLSE
and DNN in Fig. 1 are shown in Fig. 5. The samples at 80Gs/s are
first upconverted to approximately 2 times oversample data at
100.5714 Gb/s before the clock recovery and decimation to sym-
bol spaced samples are applied using the technique explained
in [11]. The BER vs received optical power for both MLSE
and 8-bit fixed-point DNN with a regression output stage as in
Fig. 1(a) and (b) are plotted in Fig. 6. The number of taps used
for MLSE is 6 and no gains are observed by increasing MLSE
taps beyond 6 for both BtB (back-to-back) and 30 km data.
When they are compared at BER = 1e-2, the DNN outperforms

Fig. 5. DSP diagrams for MLSE and DNN processing. The data captured at
80Gs/s is first symbol synchronized and is decimated to 1 sample per symbol.

Fig. 6. Measured sensitivity of MLSE and DNN receiver equalizers for
1342 nm 50Gb/s PON link. sample per symbol.

MLSE by 0.7 dB in sensitivity with 30 km link and∼0.2 dB with
back-back measurement. The DNN results for 1 and 2 symbol
outputs are almost overlapping near 1e-2 while the 1 output DNN
outperforms at BER = 1e-3 by 0.6 dB. This indicates that we
can find a DNN topology with embedded parallelization which
results in small performance penalty. However, when the number
of output symbols of a single DNN are increased beyond 2, the
presented DNN shows a larger BER degradation. Note that we
show the BER results with more than 5 error counts per data
point with fixed sample size, as such the confidence level near
1e-5 BER point is lower.

B. FPGA Resource of Highest Throughput DNN At 8-bit
Resolution

There are two parts in the study of required FPGA resources
needed for DNN based equalizations for 50G PON links. We
will first present the hardware resource needed to achieve the
highest data throughput by using an 8-bit fixed-point resolution
for both 1 output and 2 output DNN before moving on to
studying the impact of reducing the fixed-point resolution on
DNN performance as equalizer and the impact of it on hardware
resources. Table I shows the summary of the resource utilization
for 2 different DNN designs implemented in FPGA. One has 1
symbol output while the other has 2 symbol outputs per DNN
as shown in Fig. 1. For both DNN designs, 4 copies of DNNs
are implemented to increase the total throughput. The resource
utilization shows only a small increase for the 2 outputs DNN
while its throughput is doubled. All designs met the timing at
325 MHz FPGA clock with 100% throughput, with a total data
throughput up to 2.6 Gb/s is presented in Table I. To meet the
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TABLE I
RESOURCE UTILIZATION OF 2 DIFFERENT DNN EQUALIZERS IMPLEMENTED IN

A FPGA

LUT: look-up table, RAM: random access memory, FF: Flip-flop, DSP48: 48-bit DSP
unit.

50Gb/s data rate, the same DNN needs to be parallelized by
20 times. This suggests higher resource requirements for DNN
equalizer compared to the 32-state MLSE (equivalent to 6-tap)
implemented in a similar-size FPGA for 10 Gb/s [13] albeit an
exact comparison is not available. To further reduce hardware
complexity a number of approaches including reducing the total
number of neurons, pruning neuron cross-connects, having more
parallel outputs per DNN need to be explored.

C. DNN Performance Impact With Reduced Resolution

It is expected that DNN performance is impacted when the
fixed-point resolution is reduced but it is important to quanti-
tatively understand the degradation of equalizers’ performance.
In this section, we present results on how the reduced reso-
lution impact DNN performance as equalizer and if different
DNN structure as shown in Figs. 1 and 2 have any impacts.
Fig. 7 shows the measured receiver sensitivity for both BtB and
30 km link experiments with 11x33x14x1 DNN architecture,
when the fixed-point resolution is reduced from floating point
(16-bit) all the way down to 2-bit. Since the hardware resources
are expected to be mainly constrained by the multipliers in the
DNN equations, we decided to only change the resolution of the
DNN weights and kept all other signals namely input, output,
and bias at each layer to 8-bit resolution. For our previous results
as depicted in Fig. 6 and also reported in [8], an 8-bit resolution
was used for all signals including weights. From Fig. 7 it can
be observed that the resolution of weights can be reduced to
at least 4-bit without any significant impact on performance,
namely degradation on BER, for the DNN architecture of 1
output. When the resolution of the weights is reduced further
to 3-bit, however, we see about 0.5 dB sensitivity penalty at
BER = 1e-2 and at 2-bit resolution we see about 1 dB penalty
for BtB and approximately 2 dB penalty for a 30 km fiber link.
The DNN with classification output stage shows slightly better
performance but the most improvement in this case is still limited
to negligible value ∼0.2 dB with a 30 km fiber and at very low
resolution.

Fig. 8 shows the measured receiver sensitivity for both BtB
and 30 km link experiments with 11x33x14x2 DNN architec-
ture, when the fixed-point resolution of the weights is reduced
from floating point (16-bit) down to 2-bit. The main difference

Fig. 7. Measured sensitivity of DNN receiver equalizers based on 11x33x14x1
architecture with various fixed-point resolutions. (a) For BtB link with fixed-
point linear output stage (b) for BtB link with classification output stage (c) for
30 km link with linear output stage (d) for 30 km link with classification output
stage.

compared to Fig. 7 which shows the result with 1 output DNN
is that the performance of the DNN already starts to degrade
when the resolution is reduced to 4-bit. Especially when there
is 30 km fiber, the result with 4-bit weight resolution shows
about 0.3 dB penalty at BER = 1e-2 when two parallel linear
output stage is used. This penalty however is entirely removed
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Fig. 8. Measured sensitivity of DNN receiver equalizers based on 11x33x14x2
architecture with various fixed-point resolutions. (a) for BtB link with linear
output stage (b) for BtB link with classification output stage (c) for 30 km
link with linear output stage (d) for 30 km link with classification output
stage.

Fig. 9. FPGA resource utilization vs. fixed-point resolution of DNN weight.
The estimated resource is after synthesis not implementation.

when a joint classification output is used as in Fig. 2(b). Also,
when the resolution of the weights is further reduced to 3-bit and
even 2-bit, the joint classification output outperforms the linear
parallel output with small improvement in receiver sensitivity.
Based on these results in Figs. 7 and 8, we can conclude that even
though a joint classification output stage does not improve the
DNN performance when the hardware’s fixed-point resolution is
sufficiently high, it helps to mitigate the quantization distortion
when the hardware resolution is reduced to 4-bit or lower.

Once we obtain the RTLs based on the procedure described in
the previous section, the FPGA hardware resource is analyzed in
Xilinx Vivado tool [32] with the target implementation in Xilinx
XCZU9EG-FFVC900 FPGA device. As opposed to the previous
implementation, since this effort is specifically targeted to under-
stand the hardware resource utilizations of different fixed-point
resolution, we implement all designs using FPGA standard logic
resource namely LUT (look-up table), LUTRAM (look-up table
random access memory) and FF (flip-flop) without using DSP
blocks in the device. The results are shown in Fig. 9 which
corresponds to the implementation of DNN architecture depicted
in Fig. 1(b) with various fixed-point resolution. The hardware
resource utilization numbers are coming from the post-synthesis
reports not post-implementation reports. This is because when
8-bit resolution is used, the post-synthesis hardware utilization
exceeds 100% of available LUT and no longer fits in a sin-
gle FPGA. Despite the resource utilization exceeding 100%,
post-synthesis hardware utilization is generally considered to
be valid and accurate. This is verified in the designs with up
to 4-bit resolution where the designs do fit in a device and the
post-implementation utilization are basically the same (within
1% difference) as the post-synthesis utilization estimate. The
results show how the resolution change of DNN weights alone
proportionally affects the hardware complexity of the entire
DNNs. One of the important facts we can observe from the
plot is that the LUT resources are reduced by almost 50%, by
going from 8-bit to 3-bit resolution on DNN weight. In Fig. 9,
the increase in FF utilization is not observed as the resolution for
the weight increases. This may indicate that the multiplication
logics in these FPGA designs are mostly realized in LUTs with
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little help from FFs. At the pipeline stages however between
multipliers and DNN layers, we always use 8-bit resolution
regardless of weight resolution. Based on Fig. 9, we believe FFs
are mainly used for the pipeline registers but not in multiplier
logics.

The general complexity of DNN is roughly proportional to the
number of real multiplications between weights and neuron in-
puts. For the fully connected DNN studied in this work, the num-
ber of multipliers can be computed as

∑L
k=2 Nn(k) ·Nn(k − 1)

where Nn(k) stands for the number of neurons at the k stage
of the DNN with total L stages. For the Figs. 1(a) and 2(a)
the number of real multiplications is 839 and Figs. 1(b) and
2(b) the number of multiplications is 853. By varying the
resolution of the weights involved in the multiplication, we
can learn the impact of the complexity of each multiplication
on both BER performance and FPGA resource utilization. We
can use the scaling based on the number of multiplications
to apply the results presented here to different DNNs. The
presented results here therefore can be used as a guideline
to design and to implement a DNN with a good balance be-
tween DNN performance and DNN power consumption and/or
throughput. In addition, we can view these results as further
study points for the trade-off between resolution and the size
of DNN.

V. DNN EQUALIZER FOR UPSTREAM PON LINK

PON is a point to multi-points system and while the down-
stream link uses continuous signal streams, the upstream link
is operated with burst mode data streams. Although we have
focused on DNN equalizer as a downstream receiver equalizer,
all our analysis on the hardware complexity of DNN inferences
is applicable regardless of whether DNN is used in downstream
or upstream links. The additional technical requirements for
upstream link however need to be addressed to cope with the
multiple end users with different channel responses. Although
such study is out of scope in this work, there are a few dif-
ferent approaches that are related to our study. One is to use
over-dimensioned layers so that a DNN can be trained to cope
with multiple users multiple channel responses [7]. The other
technique [33] also relies on over-dimensioned DNN to cope
with multi users channel response but with help of a dedicated
part of NN (sub-NN) with received signals amplitude histogram
as inputs. In either technique, the fully connected DNN is the
basis of DNN equalization, and our study of hardware complex-
ity should serve as a valuable reference point in their hardware
implementations. The other approach to deal with the upstream
traffic can be based on the fact that PON’s OLT (optical line
terminal) has full knowledge of ONU (optical network unit)
schedule. With such knowledge at OLT, once the DNN is trained
for different ONUs, we can swap out the DNN weight and
bias in time for the arrival of each ONU data frame. The latter
approach can let us avoid using over-dimensioned DNNs which
have higher hardware complexity than the optimally designed
DNNs [7].

VI. CONCLUSION

While the performance of DNN based equalizers has been
demonstrated to exceed conventional equalizer capability, its
hardware complexity, and the research into approaches needed to
reduce hardware complexity has just started. This work extends
our previous work [8] of DNN equalizer implementation in
FPGA with fixed-point resolution analysis on the BER per-
formance and improvement in hardware resource requirement
in FPGA implementation. To our knowledge this is the first
time that the performance metric of DNN equalizer for optical
communication link is reported over varying fixed-point reso-
lutions and corresponding hardware resource usages in actual
FPGA implementations. We also investigate joint classification
output stages and verify that they can help us recover sensitivity
penalty when the fixed resolution is low. While this work is
limited up to two embedded parallel output per DNN equalizer,
the techniques and results presented here can help us extend
the number of parallel outputs beyond two without linearly
increasing hardware complexity.
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