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The expected halt of traditional technology scaling is motivating increased heterogeneity in high-
performance computing (HPC) systems with the emergence of numerous specialized accelerators. As het-
erogeneity increases, so does the risk of underutilizing expensive hardware resources if we preserve today’s
rigid node configuration and reservation strategies. This has sparked interest in resource disaggregation to en-
able finer-grain allocation of hardware resources to applications. However, there is currently no data-driven
study of what range of disaggregation is appropriate in HPC. To that end, we perform a detailed analysis of
key metrics sampled in NERSC’s Cori, a production HPC system that executes a diverse open-science HPC
workload. In addition, we profile a variety of deep-learning applications to represent an emerging workload.
We show that for a rack (cabinet) configuration and applications similar to Cori, a central processing unit with
intra-rack disaggregation has a 99.5% probability to find all resources it requires inside its rack. In addition,
ideal intra-rack resource disaggregation in Cori could reduce memory and NIC resources by 5.36% to 69.01%
and still satisfy the worst-case average rack utilization.
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1 INTRODUCTION

Future high-performance computing (HPC) systems are1 driven toward heterogeneity of com-
pute and memory resources in response to the expected halt of traditional technology scaling,
combined with continuous demands for increased performance [56, 78] and the wide landscape of
HPC applications [69]. In the long term, many HPC systems are expected to feature a variety of
graphical processing units (GPUs), partially programmable accelerators [62, 77], fixed-function
accelerators [11, 61, 68], reconfigurable accelerators such as field-programmable gate arrays

(FPGAs) [40, 70], and new classes of memory [80] that blur the line between memory and storage
technology.

If we preserve our current method of allocating resources to applications in units of statically
configured nodes where every node is identical, then future systems risk substantially underutiliz-
ing expensive resources. This is because not every application will be able to profitably use special-
ized hardware resources as the value of a given accelerator can be very application-dependent. The
potential for waste of resources when a given application does not use them grows with the num-
ber of new heterogeneous technologies and accelerators that might be co-integrated into future
nodes.

This observation, combined with the desire to increase utilization even of “traditional” resources,
has led to research on systems that can pool and compose resources of different types in a fine-grain
manner to match application requirements. This capability is referred to as resource disaggregation.
In datacenters, resource disaggregation has increased the utilization of GPUs and memory [19,
33, 35, 50, 64, 67]. Such approaches usually employ a full-system solution where resources can be
pooled from across the system. While this approach maximizes the flexibility and range of resource
disaggregation, it also increases the overhead to implement resource disaggregation, for instance
by requiring long-range communication that stresses bandwidth and increases latency [21, 55, 83].
As a result, some work focuses on intra-rack disaggregation [34, 75].

While resource disaggregation is regarded as a promising approach in HPC in addition to
datacenters, there is currently no solid understanding of what range or flexibility of disaggre-
gation HPC applications require [13, 47] and what is the expected improvement of resource
utilization through this approach. Without any data-driven analysis of the workload, we risk over-
designing resource disaggregation that will make it not only unnecessarily expensive but also
may overly penalize application performance due to high latencies and limited communication
bandwidth [34, 75].

To that end, we study and quantify what level of resource disaggregation is sufficient for typical
HPC workloads and what the efficiency increase opportunity is if HPC embraces this approach,
to guide future research into specific technological solutions. We perform a detailed, data-driven
analysis in an exemplar open-science, high-ranked, production HPC system with a diverse scien-
tific workload and complement our analysis with profiling key machine learning (ML) applica-
tions. For our system analysis, we sample key system-wide and per-job metrics that indicate how
efficiently resources are used, sampled every second for a duration of three weeks on NERSC’s
Cori [38]. Cori is a top 20, open-science HPC system that supports thousands of projects, multiple
thousands of users, and executes a diverse set of HPC workloads from fusion energy, material sci-
ence, climate research, physics, computer science, and many other science domains [3]. Because
Cori has no GPUs, we also study machine learning (ML) applications executing on NVIDIA GPUs.
For these applications, we examine a range of scales, training, and inference while analyzing uti-
lization of key resources.

1New article, not an extension of a conference paper.
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Based on our analysis, we find that for a system configuration similar to Cori, intra-rack disag-
gregation suffices the vast majority of the time even after reducing overall resources. In particular,
in a rack (cabinet) configuration similar to Cori [38] but with ideal intra-rack resource disaggre-
gation where network interface controllers (NICs) and memory resources can be allocated to
jobs in a fine-grain manner but only within racks, we show that a central processing unit (CPU)

has 99.5% probability to find all resources it requires inside its rack. Focusing on jobs, with 20%
fewer memory modules and NIC bandwidth per rack, a job has an 11% probability to have to span
more racks than its minimum possible in Cori. In addition, in our sampling time range and at worst
across Haswell and KNL nodes, we could reduce 69.01% memory bandwidth, 5.36% memory capac-
ity, and 43.35% NIC bandwidth in Cori while still satisfying the worst-case average rack utilization.
This quantifies how many resources intra-rack disaggregation can reduce at best.

In summary, our contributions are as follows:

• We perform a data-driven, detailed, and well-rounded study of utilization metrics for key
resources in a top 20, open-science, production HPC system.
• We profile important ML applications executing on NVIDIA GPUs focusing on utilization of

key resources, which is an emerging workload on HPC systems.
• We propose and measure new metrics relevant to resource disaggregation. In particular, we

show how soon a job’s resource utilization becomes a good predictor for the future, how
quickly node resource utilization changes, and how a job’s utilization of different resources
correlates.
• We demonstrate spatial usage imbalance of resources to motivate job scheduling policies

that use resource utilization as an optimization metric.
• We quantify the probability that a job has to span more racks than the minimum as a function

of how aggressively we reduce intra-rack resources in our model system (Cori).
• We quantify how many rack resources we can reduce with ideal intra-rack disaggregation.
• For HPC systems with workloads or hardware configurations substantially different than

Cori, our analysis serves as a framework to show what metrics are relevant to resource dis-
aggregation and how to translate system measurements to quantify expected effectiveness
of intra-rack disaggregation as a function of how aggressively we reduce resources. This
helps repeating our analysis in other HPC systems.
• In summary, we show that for an HPC system similar to Cori, intra-rack disaggregation suf-

fices the vast majority of the time. Demonstrating this insight with concrete data is important
to guide future research.

2 BACKGROUND AND RELATED WORK

2.1 Resource Heterogeneity in HPC

Future HPC systems are expected to have a variety of compute and memory resources as a means to
reduce cost and preserve performance scaling [78]. The onset of this trend is evident in recent HPC
systems that feature partially programmable compute accelerators, with GPUs quickly gaining
traction [62, 77]. For instance, approximately a third of the computational throughput of today’s
top 500 HPC systems is attributed to accelerators. At the same time, recent literature proposes fixed-
function accelerators such as for artificial intelligence [11, 61, 68]. Further work has demonstrated
reconfigurable accelerators that rely on FPGAs [40, 70] or ASICs [81].

Consequently, past work has examined how job scheduling should consider heterogeneous re-
source requests [8, 30], how the operating system (OS) and runtime should adapt [42, 57], how
to write applications for heterogeneous systems [8, 32], how to partition data-parallel applica-
tions onto heterogeneous compute resources [48], how to consider the different fault tolerances

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 29. Publication date: March 2022.



29:4 G. Michelogiannakis et al.

of heterogeneous resources [41], how to fairly compare the performance of different heteroge-
neous systems [44], and what the impact of heterogeneous resources is to application perfor-
mance [52, 74, 80].

2.2 Resource Disaggregation

Resource disaggregation refers to the ability of a system to pool and compose resources in a fine-
grain manner and thus be capable of allocating exactly the resources an application requests. This
is in contrast to many systems today where nodes are allocated to applications as a unit with
identical fixed-sized resources; any resources inside nodes that the application does not use have
no choice but to idle. Following the trend for hardware specialization and the desire to better utilize
resources as systems scale up, resource disaggregation across the system or a group of racks has
been actively researched and deployed in commercial hyperscale datacenters in Google, Facebook,
and others [17, 55, 64]. In addition, many studies focus on disaggregation of GPUs [35] and memory
capacity [33, 67].

Resource disaggregation is slowly coming into focus for HPC in addition to the existing hyper-
scale datacenter deployments. Earlier studies have demonstrated GPU sharing by using virtualiza-
tion as a means to increase utilization [53, 54]. Further studies identified that memory capacity
is frequently over-provisioned in modern HPC systems and thus proposed disaggregating mem-
ory modules in a manner similar to hyperscale datacenters [51]. This is further motivated by the
observation that many HPC applications already share memory across nodes. Later studies take
the first steps to show the promise of resource disaggregation in HPC to increase resource utiliza-
tion [13, 47].

Related studies demonstrate that emerging high-bandwidth-density silicon-photonic com-
munication technology is a promising means to deliver resource disaggregation with high
bandwidth density and low latency [47, 58, 83]. However, just the photonic link bandwidth and
efficiency alone cannot fully satisfy the bandwidth, energy, and latency requirements of fully
flexible, fine-grain, system-wide disaggregation, making system-wide disaggregation impractical
in many cases [19, 21, 55, 83]. For this reason, a few studies argue for rack-level disaggregation of
GPUs [34, 75]. In addition, other studies rely on electrical networks [31] in some cases with the
aid of software-defined networks (SDNs) [17]. Finally, how the software stack should adapt
to best take advantage of resource disaggregation remains a significant challenge both for the
OS [71] and job scheduler [10, 27].

3 SYSTEM-WIDE ANALYSIS

3.1 Motivation of Cori and Description

Cori is an open-science top 20 HPC system that is operated by NERSC and supports the diverse
set of workloads that are in scope for USA’s department of energy (DOE) [38]. Cori supports
in the order of one thousand projects, a few thousand users, and executes a vastly diverse set of
representative single-core to full-machine workloads from fusion energy, material science, climate
research, physics, computer science, and many other science domains [3]. In this work, we use Cori
as a model system to represent the common requirements of HPC systems that are also typical of
many other HPC systems in the sciences. We recognize that HPC systems with vastly different
workloads or hardware configurations should consider repeating an analysis similar to ours, but
the broad user base of this system should provide a microcosm of potential requirements across
a wide variety of systems across the world. Furthermore, over the 45-year history of the NERSC
HPC facility and 12 generations of systems with diverse architectures, the workload over time has
evolved very slowly despite substantial changes to the underlying system architecture, because
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the requirements of the scientific mission of such facilities take precedence over the architecture
of the facility.

Cori is an approximately 30 Pflop/s Cray XC40 system and consists of 2,388 Intel Xeon “Haswell”
and 9,688 Intel Xeon Phi “Knight’s Landing” (KNL) compute nodes [73]. Each Haswell node has
two 2.3 GHz 16-core Intel Xeon E5-2698 v3 CPUs with two hyperthreads per core. Each KNL node
has a single Intel Xeon Phi 7250 central processing unit (CPU) with 68 cores at 1.4 GHz and four
hyperthreads per core. Haswell nodes have eight (four per CPU socket) 16 GB 2,133 MHz DDR4
modules with a peak transfer rate of 17 GB/s per module [12, 84]. KNL nodes have 96 GB of 2,400
MHz DDR4 modules and 16 GB of MCDRAM modules. Therefore, Haswell nodes have 128 GB of
memory while KNL 112 GB. Each XC40 cabinet housing Haswell and KNL nodes has three chassis;
each chassis has 16 compute blades with four nodes per blade.

Cori also has a Lustre file system and uses the Cray Aries interconnect [9]. Similar to many mod-
ern systems, hard disk space is already disaggregated in Cori by placing hard disks in a common
part of the system [36, 38]. Therefore, we do not study file system disaggregation. Nodes connect
to Aries routers through NICs using PCIe 3.0 links with 16 GB/s sustained bandwidth per direc-
tion [1, 2, 26, 65]. The four nodes in each blade share a network interface controller (NIC). Cray’s
Aries in Cori employs a Dragonfly topology with over 45 TB/s of bisection bandwidth and support
for adaptive routing. An Aries router connects eight NIC ports to 40 network ports. Network ports
operate at rates of 4.7 to 5.25 GB/s per direction [1, 65].

Currently, Cori uses SLURM version 20.02.6 [46] and Cray OS 7.0.UP01. When submitting a job,
users request a type of node (Haswell or KNL typically), number of nodes, and a job duration. Users
do not indicate an expected memory or CPU usage, but depending on their expectations they can
choose “high memory” or “shared” job queues. The maximum job duration that can be requested
is 48 h.

3.2 Methodology

We collect system-wide data using the lightweight distributed metric service (LDMS) [7] on
Cori. LDMS samples statistics in every node every second and also records which job ID each node
is allocated to. Statistics include information from the OS level such as CPU idle times and memory
capacity usage, as well as hardware counters at the CPUs and NICs. After collection, statistics are
aggregated into data files that we process to produce our results. We also calibrate counters by
comparing their values against workloads with known metric values, by comparing to literature,
and by comparing similar metrics derived through different means, such as hardware counters,
the OS, or the job scheduler. For generating graphs, we use python 3.9.1 and pandas 1.2.2.

We sample Cori from April 1 to April 20 of 2021 (UTC-7). However, NIC bandwidth and memory
capacity are sampled from April 5 to April 19 due to the large volume of data. Sampling more
frequently than 1s or for longer periods would produce even more data to analyze than the few
TBs that our analysis already processes. For this reason, sampling for more than three weeks at a
time is impractical. Still, our three weeks sampling period is long enough such that the workload
we capture is typical of Cori [3]. Unfortunately, since we cannot capture application executable files
and input data sets, and because we find job names to not be a reliable indicator of the algorithm a
job executes, we do not have precise application information to identify the exact applications that
executed in our captured date ranges. For the same reason, we cannot replay application execution
in a system simulator.

To focus on larger jobs and disregard test or debug jobs, we also generate statistics only for nodes
that are allocated to jobs that use at least four nodes and last at least 2 h. Our data does not include
the few tens of high memory or interactive (login) nodes in Cori. Because statistics are sampled
no more frequently than every second (at second boundaries), any maximum values we report
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Table 1. Cori Measured Data Summary

Metric Median Mean Max Std Dev Median Mean Max Std Dev

Node-wide statistics Nodes with jobs ≥4 nodes & ≥2 h

Haswell nodes. 41% were allocated to jobs ≥4 nodes and ≥2 h

Nodes in job 1.0 4.49 1024 17.8 14.0 26.5 1024 39.8

Job duration (hours) 0.15 0.51 73.1 1.68 6.62 8.74 73.1 6.4
CPU idle (%) 49.98 53.73 100 28.77 49.95 51.63 100 26.42

Memory occupied (%) 9.25 14.97 100 16.36 10.08 14.89 100 14.44
NIC Bi-Dir BW (%) 0.01 0.74 99.99 1.90 0.01 0.85 99.96 2.07

Memory BW (GB/s) 0.07 0.84 101.6 2.79 0.09 0.7 89.5 2.0

KNL nodes. 21% were allocated to jobs ≥4 nodes and ≥2 h

Nodes in job 2.0 13.95 2475 82.37 16 95.35 2064 270.36
Job duration (h) 0.36 2.32 93.98 6.47 5.64 10.82 93.98 11.89

CPU idle (%) 76.53 73.62 100 20.57 76.52 73.36 100 20.67

Memory occupied (%) 26.3 34.27 100 23.73 27.32 35.82 100 24.29
NIC Bi-Dir BW (%) 0.08 0.95 99.99 1.69 0.15 0.99 99.99 1.7

such as in Table 1 are values calculated within each second boundary and thus do not necessary
accurately capture peaks that last for less than one second. Therefore, our analysis focuses on
sustained workload behavior. Memory occupancy and NIC bandwidth are expressed as utilization
percentages from the aforementioned per-node maximums. We do not express memory bandwidth
as a percentage, because the memory module data is placed in and the CPU that accesses the data
affect the maximum possible bandwidth.

We present most data using node-wide cumulative distribution function (CDF) graphs that
sample each metric at each node individually at every sampling interval. Each sample from each
node is added to the dataset. This includes idling nodes, but NERSC systems consistently assign
well over 99% of nodes to jobs at any time. This method is useful for displaying how each metric
varies across nodes and time, and is insensitive to job size and duration, because it disregards job
IDs. Table 1 summarizes our sampled data from Cori. Larger maximum utilizations for KNL nodes
for some metrics are partly, because there are more KNL nodes in Cori.

3.3 Job Size and Duration

Figure 1 shows area plots for the size of jobs nodes are assigned to, as a percentage of total nodes.
For each node, we determine the size of the job (in nodes) that the node is assigned to. We record
that size value for each node in the system individually. Results are shown as a function of time,
with one sample every 30s. We only show this data for a subset of our sampling period because of
the large volume of data, particularly for KNL nodes, because there are 4× more KNL nodes than
Haswell nodes. There are no KNL jobs larger than 2,048 nodes in the illustrated period.

As shown, the majority of jobs easily fit within a rack in Cori. In our 20-day sample period,
77.5% of jobs in Haswell and 40.5% in KNL nodes request only one node. Similarly, 86.4% of jobs
in Haswell and 75.9% in KNL nodes request no more than four nodes. 41% of jobs in Haswell
and 21% for KNL nodes use at least four nodes and execute for at least 2 h. Also, job duration
(Table 1) is multiple orders of magnitude larger than the reconfiguration delay of modern hardware
technologies that can implement resource disaggregation, such as photonic switch fabrics that can
reconfigure from a few tens of microseconds to a few tens of nanoseconds [20, 60]. Our data set
includes a handful of jobs in both Haswell and KNL nodes that use special reservation to exceed
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Fig. 1. Area plots for the size of jobs nodes are assigned to, for Haswell (left) and KNL (right) nodes.

Fig. 2. Left: Node-wide memory occupied. Right: Maximum memory occupied across all nodes sampled

every 1s. Red lines illustrate a method for interpreting CDF graphs: Starting from the Y axis at a point that

represents a percentage of jobs, drawing a horizontal line to the right, and determining the point in the X axis

where the graph lines intercept our drawn horizontal line.

the normal maximum number of hours for a job. In Alibaba’s systems, batch jobs are shorter with
99% of jobs under two minutes and 50% under ten seconds [36].

3.4 Memory Capacity

Figure 2 (left) shows a CDF of node-wide memory occupied by user applications, as calculated from
“proc” reports of total minus available memory [14]. Figure 2 (right) shows a CDF of maximum
memory occupancy among all nodes, sampled every 1s. Occupied memory is expressed as percent-
age utilization from the capacity available to user applications (total memory in “proc” reports),
and thus does not include memory reserved for the firmware and kernel binary code.

As shown by the red example lines, three quarters of the time, Haswell nodes use no more
than 17.4% of on-node memory and KNL nodes 50.1%. Looking at the maximum occupancy
among all nodes in each sampling period, half of the time that is no more than 11.9% for
Haswell nodes and 59.85% for KNL nodes. Looking at individual jobs instead of nodes (not il-
lustrated), 74.63% of Haswell jobs and 86.04% of KNL jobs never use more than 50% of on-node
memory.

Our analysis is in line with past work. In four Lawrence Livermore National Laboratory clusters,
approximately 75% of the time, no more than 20% of memory is used [67]. Other work observed
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Fig. 3. Left: Node-wide bi-directional (read plus write) memory data bandwidth for Haswell nodes. Node-

wide statistics are shown separately for (i) all nodes and (ii) only for nodes assigned to jobs of at least four

nodes and 2 h. Right: Maximum bi-directional memory data bandwidth across all Haswell nodes, sampled

every 1s.

that many HPC applications use in the range of hundreds of MBs per computation core [85].
Interestingly, Alibaba’s published data [36] show that a similar observation is only true for ma-
chines that execute batch jobs, because batch jobs tend to be short and small. In contrast, for on-
line jobs or co-located batch and online jobs, the minimum average machine memory utilization
is 80%.

These observations suggest that memory capacity is overprovisioned by average. Overprovi-
sioning of memory capacity is mostly a result of (i) sizing memory per node to satisfy memory-
intensive applications or phases of applications that execute infrequently but are considered im-
portant, and (ii) allocating memory to nodes statically.

3.5 Memory Bandwidth

Figure 3 (left) shows CDFs of bi-directional (read plus write) node-wide memory bandwidth for
data transfers to and from memory. These results are calculated by the last-level cache (LLC)

line size and the load and store LLC misses reported by “perf” counters [25] and crosschecked
against PAPI counters [16]. Due to counter accessibility limitations, LLC statistics are only avail-
able for Haswell nodes. In Haswell, hardware prefetching predominantly occurs at cache lev-
els below the LLC [43]. Thus, prefetches are captured by the aforementioned LLC counters we
sample.

As shown, three quarters of the time Haswell nodes use at most 0.46 GB/s of memory band-
width. 16.2% of the time Haswell nodes use more than 1 GB/s. The distribution shows a long tail,
indicative of bursty behavior. In addition, aggregate read bandwidth is 4.4× larger than aggregate
write bandwidth and the majority of bursty behavior comes from reads. If we focus on individual
jobs (not illustrated), then 30.9% of jobs never use more than 1 GB/s per node.

To focus on the worst case, Figure 3 (right) shows a CDF of the maximum memory bandwidth
among all Haswell nodes, sampled in 1s periods (i.e., sustained maximums). As shown, half of the
time the maximum bandwidth among all Haswell nodes is at least 17.6 GB/s and three quarters of
the time 31.5 GB/s. In addition, sustained system-wide maximum memory bandwidth at 30s time
windows within our overall sampling period rarely exceeds 40 GB/s, while 30s average values
rarely exceed 2 GB/s.

Inevitably, our analysis is sensitive to the configuration of Cori’s Haswell nodes. Faster or more
computation cores per node would place more pressure on memory bandwidth [18] as already ev-
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Fig. 4. Left: CDF of node-wide CPU idle % measurements. Idle percentage is calculated as the average per-

centage among all hardware threads in the node. Right: CDF of node-wide NIC bandwidth utilization com-

pared to the bi-directional 16 GB/s per-node maximum.

ident in GPUs [29]. Still, our data hints that memory bandwidth is another resource that may
be overdesigned by average in HPC. However, we cannot relate our findings to the impact to
application performance if we were to reduce available memory bandwidth. That is because ap-
plications may exhibit brief but important phases of high memory bandwidth usage that may be
penalized if we reduce available memory bandwidth [18].

3.6 CPU Utilization

Figure 4 (left) shows a CDF of average idle time among all compute cores in nodes, expressed as a
percentage. These statistics were generated using “proc” reports [14] of idle kernel cycles for each
hardware thread. To generate a sample for each node every 1s, we average the idle percentage of
all hardware threads in each node. As shown, about half of the time Haswell nodes have at most
a 49.9% CPU idle percentage and KNL nodes 76.5%. For Haswell nodes, average system-wide CPU
idle time in each sampling period never drops lower than 28% in a 30 s period and for KNL 30%
(not illustrated). These statistics are largely due to the two hardware threads per compute core in
Haswell and four in KNL, because in Cori 80% of the time Haswell nodes use only one hardware
thread and 50% in KNL [3]. Similarly, many jobs reserve entire nodes but do not use all cores in
those nodes. Datacenters have also reported 28%–55% CPU idle in the case of Google trace data [66]
and 20%–50% most of the time in Alibaba [36].

3.7 Network Bandwidth

We measure per-node injection bandwidth at every NIC by using hardware counters in the
Cray Aries interconnect [23]. Those counters record how many payload bytes each node sent
to and received from the Aries network. We report results for each node as a percentage utiliza-
tion of the maximum per-node NIC bandwidth of 16 GB/s per direction [2, 65]. We also verify
against similar statistics generated by using NIC flit counters and multiplying by the flit size. In
Cori, access to the global file system uses the Aries network so our statistics include file system
accesses.

Figure 4 (right) shows a CDF of node-wide NIC bandwidth utilization. As shown, 75% of the time
Haswell nodes use at most 0.5% of available NIC bandwidth. For KNL nodes the latter percentage
becomes 1.25%. In addition, NIC bandwidth consistently exhibits a sustained bursty behavior. In
particular, in a two-week period, sustained 30s average NIC bandwidth in about 60 separate occur-
rences increased by more than 3× compared to the overall average.
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Fig. 5. CDF of the standard deviation of all the values throughout each job’s execution, for each metric.

Standard deviation is expressed as a percentage of the per-job average for each metric.

3.8 Variability of Job Requirements

In this section, we analyze how much metrics change across a job’s lifetime. Figure 5 shows a CDF
of the standard deviation of all values throughout each job’s execution, calculated separately for
different metrics. This graph was generated by calculating the standard deviation of values for each
metric that each job has throughout the job’s execution. A high standard deviation indicates that
the metric varies substantially throughout the job’s execution. To normalize for different absolute
values of each job, standard deviation is expressed as a percentage of the per-job average value for
each metric. A value of 50% indicates that the job’s standard deviation is half of the job’s average
for that metric.

As shown, occupied memory and CPU idle percentages do not highly vary during job execu-
tion, but memory and NIC bandwidths do. The variability of memory and NIC bandwidths is in-
tuitive, because many applications exhibit phases of low and high memory bandwidth. Network
and memory bandwidth have been previously observed to have bursty behavior for many appli-
cations [45, 49, 82]. In contrast, once an application completes reserving memory capacity, the
reservation’s size typically does not change significantly until the application terminates.

These observations are important for provisioning resources for disaggregation. For metrics
that do not considerably vary throughout a job’s execution, average system-wide or per-job
measurements of those metrics are more representative of future behavior. Therefore, provi-
sioning for average utilization, with perhaps an additional factor such as a standard deviation,
likely will satisfy application requirements for those metrics for the majority of the time. In
contrast, metrics that vary considerably have an average that is less representative. Therefore,
for those metrics resource disaggregation should consider the maximum or near-maximum
value.

3.9 Rate of Change of Metrics

As a next step, we analyze how quickly metrics change across nodes. This is a useful metric to
indicate how quickly future hardware implementations of resource disaggregation should be able
to reconfigure to satisfy changing resource demands. To that end, we calculate the percentage
change of our metrics from one 1s sample to the next. For instance, if memory occupied in one
sample is 4 GB and in the next sample it becomes 5 GB, we add 20% to our rate of change dataset.
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Fig. 6. Left: CDF of the node-wide rate of change of occupied memory across 1s intervals. Right: CDF of the

maximum rate of change across all nodes every 1s.

Fig. 7. Node-wide rate of change CDFs of memory bandwidth (left) and NIC bandwidth (right) across 1s

intervals.

Due to the computational intensity of this analysis and our large data set, memory occupancy and
NIC bandwidth graphs only consider data from April 5 to 9.

Figure 6 shows the rate of change for occupied memory both node-wide and maximum across
nodes. As shown, occupied node memory is a metric that rarely changes substantially. Ninety-
eight percent of the time, occupied memory changes by less than 0.1% from one second to the
next. Even if we consider the maximum rate of change across all nodes every 1 s, 90% of the time
the maximum rate of change is no more than 1%.

Figure 7 shows node-wide CDFs for the rate of change of memory and NIC bandwidth. From one
1 s sample to the next, memory and NIC bandwidth do not substantially change with a probability
of 80%. However, 2% (10%) of the time from one second to the next, the change exceeds 100% for
memory (NIC) bandwidth. This indicates a burst of usage from a low near-idle value to a high value.
In fact, the CDF distributions have long tails. These results quantify the magnitude and frequency
of the bursty nature of both memory and NIC bandwidths.

3.10 Spatial Load Imbalance

To show the results of current job scheduling policies that do not take into account resource utiliza-
tion, Figure 8 shows a heatmap of average, standard deviation, and maximum memory occupancy
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Fig. 8. Heatmaps of average, standard deviation, and maximum memory occupancy (%) for Haswell (left) and

KNL (right) nodes. Each row represents a node. Rows are sorted by node ID so neighboring rows typically

correspond to nodes that are physically close.

for Haswell and KNL nodes, sampled across our 20-day sample period. As shown, memory occu-
pancy is unequal across nodes. In fact, even the standard deviation of maximum memory occupan-
cies is 15.22% for Haswell nodes and 4.76% for KNL nodes. KNL nodes are more balanced in mem-
ory occupancy but still show considerable imbalance. These observations motivate future work
on resource disaggregation-aware job schedulers. Even though they are not illustrated, heatmaps
for memory bandwidth and NIC bandwidth provide similar insights. For instance, the standard
deviation of the maximum memory bandwidth across Haswell nodes is 17.34 GB/s and for NIC
bandwidth 23.14% across all nodes.

3.11 How Soon Jobs Become Predictable

Subsequently, we ask the question of how soon a job’s resource usage becomes a good predictor
(i.e., indicative) of its future usage. This is useful to determine how soon a system can observe a
job’s behavior and make an informed decision on how many resources to assign to it. Figure 9
illustrates the percentage runtime of a job until each of the three metrics shown reach at least 80%
of the job’s average usage throughout its lifetime. For instance, in the case of memory occupancy,
a value of 20% means that at 20% of its runtime, a job reserves 80% or more memory of the job’s
average memory occupancy, calculated throughout the job’s entire runtime.

As shown by the CDFs, the majority of jobs become predictable early. For instance, over 85% of
jobs reach their 80% of average memory occupancy by 20% of their runtime. This number becomes
92% for NIC bandwidth and 79% for memory bandwidth. In fact, over 60% of jobs are predictable
by 5% of their runtime for all three metrics. This observation is encouraging in that systems that
rely on observing job resource usage do not have to wait long after a job starts to gain a good
understanding about a job’s resource usage.

3.12 Temporal Behavior

In this section, we investigate the temporal variability of average and maximum memory band-
width across Haswell nodes. We choose memory bandwidth to focus on memory usage, and be-
cause we observe that memory occupancy does not vary substantially with time, as we discuss
in Section 3.9. Temporal variability is useful to indicate how many valleys and peaks appear in
system-wide usage and what is their spacing.
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Fig. 9. Percentage runtime until jobs reach 80% of their lifetime mean for memory occupancy, memory band-

width, and NIC bandwidth.

Figure 10 shows a time–series graph for the first 15 days of our sampling period, to better observe
behavior in detail. Maximum memory bandwidth shows bursts, usually correlated with a burst in
average memory bandwidth. Maximum memory bandwidth also shows a noticeable 30s variability,
as indicated by the shaded region. Average memory bandwidth remains low, but does show short
bursts of 2× or 3× a few times a day. Relatively, these are more frequent and more intense bursts
than maximum memory bandwidth, but not significantly. Also, an important observation is that
even though system-wide average memory bandwidth shows these bursts, it never exceeds 5 GB/s.

3.13 Correlation Between Metrics

In this section, we investigate whether there is correlation between how jobs use different re-
sources. Figure 11 shows scatterplots that correlate different metrics. Each data point represents
a single job, defined by a separate job ID in Cori’s job queue. A data point’s X and Y values are
that job’s average resource utilization (for each metric in the axes) throughout its runtime. A job’s
average IPC is measured by averaging the IPC of all cores in nodes assigned to the job. A core’s
IPC is calculated by dividing the core’s total executed instructions by the number of cycles, for the
duration the core was assigned to each job. A core’s instructions and cycles are reported by PAPI
counters [16].

Graphs also include the calculated correlation factor between the two metrics in each graph for
all job samples. The correlation factor ranges from −1.0 to 1.0, where −1 means strong negative
correlation, 0 means no correlation, and 1.0 means strong positive correlation. For instance, no
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Fig. 10. A time-series graph of average and maximum memory bandwidth for Haswell nodes. At each second,

the average and maximum are calculated across all Haswell nodes over a 30 s period to show sustained values.

Each metric is shown as a solid line and is surrounded by a shaded area. The shaded area represents half

a standard deviation of the value’s range within 30 s of each sample. A small shaded area around a sample

indicates low variability of the metric within 30 s of the sample.

Fig. 11. Scatterplots that correlate memory occupancy, memory bandwidth, NIC bandwidth, and IPC. Each

data point denotes the average usage of a single job. Graphs include the correlation factor of all job samples.
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correlation means that one value increasing shows no tendency for the other value to change in
either direction.

As shown, jobs that occupy more memory have a small probability to use more memory band-
width than other jobs. Similarly, jobs that use higher NIC bandwidth are slightly more likely to use
higher memory bandwidth. Finally, there is practically no correlation between IPC and memory
bandwidth as well as memory occupancy and NIC bandwidth.

4 DEEP-LEARNING APPLICATIONS ANALYSIS

Many of today’s HPC systems deploy GPUs as accelerators [76]. At the same time, an increasing
amount of ML workloads execute on HPC systems and cloud providers continue to increase their
HPC offerings. Therefore, to supplement our system-wide data, we analyze a set of ML workloads
that run on a GPU-accelerated system to illustrate resource underutilization and show how much
disaggregation these workloads motivate. We study ML/DL workloads, as we believe these are a
significant share of applications in future HPC systems. We therefore conduct a set of controlled
experiments using representative workloads on a typical GPU-accelerated system.

4.1 Methodology

The workloads we study are part of the MLPerf benchmark suite version 0.7 [59]. MLPerf is main-
tained by a large consortium of companies that are pioneering AI in terms of neural network design
and system architectures for both training and inference. The workloads that are part of the suite
have been developed by world-leading research organizations and are representative of workloads
that execute in actual production systems. We select a range of different neural networks, repre-
senting different applications:

Transformer [79]: Transformer’s novel multi-head attention mechanism allows for better par-
allel processing of the input sequence and therefore faster training times, but it also overcomes
the vanishing gradient issue that typical RNNs suffer from [39]. It is for these reasons that Trans-
formers became state-of-the-art for natural language processing tasks. Such tasks include machine
translation, time series prediction, as well as text understanding and generation. Transformers are
the fundamental building block for networks like bidirectional encoder representations from

transformers (BERT) [24] and GPT [15]. It has also been demonstrated that Transformers are
used for vision tasks [28].

BERT [24]: The BERT network only implements the encoder and is designed to be a language
model. Training is often done in two phases; the first phase is unsupervised to learn representations
and the second phase is then used to fine-tune the network with labeled data. Language models
are deployed in translation systems and human-to-machine interactions. We focus on supervised
fine-tuning.

ResNet50 [37]: vision tasks, particular image classification, were among the first to make DL pop-
ular. First developed by Microsoft, ResNet50 (Residual Network with 50 layers) is often regarded
as a standard benchmark for DL tasks and is one of the most used DL networks for image classifi-
cation and segmentation, object detection, and other vision tasks.

DLRM [63]: the last benchmark in our study is the deep-learning recommendation model

(DLRM). Recommender systems differ from the other networks in that they deploy vast embed-
ding tables. These tables are sparsely accessed before a dense representation is fed into a more
classical neural network. Many companies deploy these systems to offer customer recommenda-
tions based on their history of items they bought or content they enjoyed.

All workloads are ran using the official MLPerf docker containers on the datasets that are also
used for the official benchmark results. Given the large number of hyperparameters to run these
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networks, we refer to the docker containers and scripts that are used to run the benchmarks. We
only adapt batch sizes and denote them in our results.

4.1.1 Test System for Our Experiments. We run our experiments on a cluster comprising of
NVIDIA DGX1 nodes [4]. Each node is equipped with eight Volta-class V100 GPUs with 32 GB
of HBM memory. GPU of a single node are interconnected in a hybrid mesh-cube using NVLink,
giving each GPUs a total NVLink bandwidth of 1.2 Tbps. Furthermore, each node provides four
ConnectX-4 Infiniband EDR NICs for a total node-to-node bandwidth of 400 Gbps. We run ex-
periments on up to 16 nodes. A DGX1 system is a typical server configuration for training and
therefore representative of real deployments. For example, Facebook deploys similar systems [72].
We note that inference is often run on a different system and a more service-oriented architecture.
However, we still run inference on the same system to highlight differences in resource allocation,
showing that a disaggregated system can support both workloads efficiently.

4.1.2 Measurement of Resource Utilization. CPU and host memory metrics are collected
through psutil [6], GPU metrics (utilization, memory, NVLink, and PCIe) come from the NVML
library [5], and InfiniBand statistics are collected through hardware counters provided by the NICs.
NVML also provides a “memory utilization” metric, which is a measure of how many cycles the
memory is busy with processing a request. A utilization of 100% means that the memory is busy
processing a request every cycle.

We launch a script that gathers the metrics at a sampling period of 1s before starting the work-
load. We found the overhead of profiling to be small and therefore negligible. Although a full
training run of the aforementioned neural nets can take many hours, the workloads are repetitive
so it is sufficient to limit measurements to a shorter period.

For compute utilization, we only consider utilization above 5% in the geometric mean calcula-
tions. This excludes idle periods at the beginning, for example. For memory capacity, we take the
the maximal capacity during the workload’s runtime. Similar to our Cori results, here we also find
that once memory is allocated, it remains mostly constant. Bandwidth is shown as the geometric
mean. We exclude outliers by filtering out values that are outside of 1.5× interquartile range (IQR),
including values of zero. It is important to note that a sampling period of 1s is insufficient to de-
termine peak bandwidth for high-speed links. However, it is still a valuable proxy for average
utilization.

4.2 Training Versus Inference

Machine learning typically consists of two phases: training and inference. During training the net-
work learns and optimizes parameters from a carefully curated dataset. Training is a throughput-
critical task and input samples are batched together to increase efficiency. Inference, however, is
done on a trained and deployed model and is often sensitive to latency. Input batches are usu-
ally smaller and there is less computation and lower memory footprints, as no errors need to be
backpropagated and parameters are not optimized.

We measure various metrics for training and inference runs for BERT and ResNet50. Results are
shown in Figure 12 (left). GPU utilization is high for BERT during training and inference phases,
both in terms of compute and memory capacity utilization. However, the CPU compute and mem-
ory capacity utilization is low. ResNet50, however, shows large CPU compute utilization, which
is also higher during inference. Inference requires significantly less computation, which means
the CPU is more utilized compared to training to provide the data and launch the work on the
GPU. Training consumes significantly more GPU resources, especially memory capacity. This is
not surprising, as these workloads were designed for maximal performance on GPUs. Certain
parts of the system, notably CPU resources, remain underutilized, which motivates disaggregation.
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Fig. 12. Left: Resource utilization during single-node training and inference. Results are shown for a single

GPU. Right: Resource utilization during single-node training of various MLPerf networks.

Further, training and inference have different requirements and disaggregation helps to provision
resources accordingly.

The need for disaggregation is also evident in NVIDIA’s introduction of multi-instance GPU [22],
which allows to partition a GPUs into seven independent and smaller GPUs. Our work takes this
further and considers disaggregation at the rack scale.

4.3 Training Resource Utilization

Figure 12 (right) shows resource utilization during the training of various MLPerf workloads. These
benchmarks are run on a single DGX1 system with 8 Volta V100 GPUs. While we can generally
observe that CPU utilization is low, GPU utilization is consistently high across all workloads. We
also depict bandwidth utilization of NVLink and PCIe. We note that bandwidth is shown as an
average effective bandwidth across all GPUs for the entire measurement period. In addition, we
can only sample in intervals of 1 s, which limits our ability to capture peaks in high-speed links
like NVLink. Nonetheless, we can observe that overall effective bandwidth is low, which suggests
that links are not highly utilized by average.

All of the shown workloads are data-parallel, while DLRM also implements model parallelism.
In data parallelism, parameters need to be reduced across all workers, resulting in an all-reduce
operation for every optimization step. As a result, the network can be underutilized during compu-
tation of parameter gradients. The highest bandwidth utilization is from DLRM, which is attributed
to the model parallel phase and its all-to-all communication.

4.4 Inter-node Scaling

Another factor of utilization is inter-node scaling. We run BERT and ResNet50 on up to 16 DGX1
systems, connected via InfiniBand EDR. The results are depicted in Figure 13. For ResNet50, we
also distinguish between weak scaling and strong scaling. BERT is shown for weak scaling only.
Weak scaling is preferred as it generally leads to higher efficiency and utilization, as shown by our
results. In data parallelism, this means we keep the number of input samples per GPU, referred to
as sub-batch (SB), constant, and while we scale-out the effective global batch size increases. At
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Fig. 13. Resource utilization during multi-node training for BERT and ResNet50.

some point the global batch size reaches a critical limit after which the network stops converging
or converges slower so that any performance benefit diminishes. At this point, strong scaling
becomes the only option to further reduce training time.

As Figure 13 shows, strong scaling increases the bandwidth requirements, both intra- and
inter-node, but reduces compute and memory utilization of individual GPUs. While some under-
utilization is still beneficial in terms of total training time, it eventually becomes too inefficient.
Many neural nets train for hours or even days on small-scale systems, rendering large-scale train-
ing necessary. This naturally leads to some underutilization of certain resources, which motivates
disaggregation to allow resources to be used for other tasks.

5 TRANSLATING TO RESOURCE DISAGGREGATION REQUIREMENTS

5.1 System-wide Data

To understand what our observations mean for resource disaggregation, we assume a Cori cabinet
that contains Haswell nodes [38]. That is, each cabinet has 384 Haswell CPUs, 768 memory modules
of 17 GB/s and 16 GB each, and 192 NICs that connect at 16 GB/s per direction to nodes [2, 26]. We
use memory bandwidth measurements from Haswell nodes, and memory capacity and NIC band-
width from both Haswell and KNL nodes. Since a benefit of resource disaggregation is increasing
the utilization factor that can help to reduce overall resources, we define and sweep a resource
reduction factor percentage for non-CPU resources. For instance, a resource reduction factor of
50% means that our cabinet has half the memory and NIC resources of a Cori Haswell cabinet. The
resource reduction factor is a useful way to illustrate the tradeoff between the range (or reachabil-
ity) of disaggregation and how aggressively we reduce available resources. We assume resource
disaggregation hardware capable of allocating resources in a fine-grain manner, such as fractions
of memory capacity of the same memory module to different jobs or CPUs.
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Fig. 14. Left: The probability that any one CPU in a Cori Haswell cabinet (rack) has to cross the cabinet

boundary to find additional resources of each type. This is shown as a function of the percentage reduction

of cabinet memory modules and NICs. Right: The maximum (worst-case) probability that a job spans more

racks than the minimum to find enough resources of each type.

5.1.1 Probability to Cross the Rack Boundary. We perform two kinds of analyses. The first anal-
ysis is agnostic to job characteristics and quantifies the probability that a CPU will have to connect
to resources in other racks. This more readily translates to inter-rack bandwidth requirements for
system-wide disaggregation. To that end, we make the assumption that a CPU can be allocated
to any application running in the system with uniform random probability. We use the CDFs of
resource usage from Section 3 as probability distributions.

As shown in Figure 14 (left), with no (0%) resource reduction a CPU has to cross a rack 0.01% of
the time to find additional memory bandwidth, 0.16% to find additional memory capacity, and 0.28%
to find additional NIC bandwidth. With a 50% resource reduction factor, these numbers become
20.2%, 11%, and 2%, respectively.

Our second analysis focuses on behavior of jobs to quantify the probability that a job will have
to span more racks to find resources compared to the minimum number of racks the job can oc-
cupy based on its requested number of nodes. In addition, this way we capture the correlation of
different resource types that are assigned to the same job. In particular, we sample 210 randomly
chosen timestamps from our dataset. For each timestamp, we record which jobs are executing, their
resource utilization, and their size in nodes. Because KNL jobs lack memory bandwidth measure-
ments, we focus only on Haswell jobs. For each job’s resource utilization metric, such as memory
occupancy, we measure the maximum utilization among all nodes reserved to the job through-
out the job’s execution. We use a job’s maximum node utilization to account for the worst-case
scenario. Then, we execute 16 of the following random experiments for each randomly chosen
timestamp and report the maximum (worst-case) probability across experiments.

In each random experiment, we look at all jobs running at the chosen timestamp and assign
them to nodes. Though job placement that prioritizes resource disaggregation would likely yield
better results, we leave this as future work, since such job placement policies are still emerging.
Therefore, in each experiment (i.e., one iteration of job placement for a given timestamp), we allo-
cate racks of Haswell nodes and assign them to jobs in a random fashion. For each job, the number
of nodes is the same as when it was running on Cori. The random placement pessimistically as-
sumes that job schedulers are agnostic to resource disaggregation. For each randomly chosen rack,
we reserve resources to cover the job’s utilization at the randomly chosen timestamp. If the job
still has resource requirements remaining, then we continue by allocating another random rack.
At the end of each experiment, we record the percentage of jobs that had to allocate resources

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 2, Article 29. Publication date: March 2022.



29:20 G. Michelogiannakis et al.

Table 2. How Much We Can Reduce Each Resource Type

and Still Satisfy the Worst-case Average Rack Utilization

Mem occupied Mem BW NIC BW

Haswell 39.95% 69.01% 59.17%

KNL 5.36% — 43.35%

from more racks than the minimum number of racks they could be placed in based on their size in
nodes. These are the jobs that had to span more racks because of a lack of resources. This analysis
is performed for each resource type separately.

Results are shown in Figure 14 (right). Without reducing resources, there is still some worst-case
probability for a job to span more racks than the minimum to allocate memory capacity because
of unfavorable random job placement. However, the average across our random experiments re-
mains near zero (not illustrated). With a 20% reduction, the same worst-case probability becomes
11%, with a 50% reduction the probability becomes 22.3%, and with 80% reduction the probability
becomes 56%. For NIC and memory bandwidth, for up to a reduction of 85% the probability is near
zero. For a reduction of 95%, the probability for NIC bandwidth is 12.2% and for memory bandwidth
15.5%. While these results are sensitive to our assumptions and random choices of our algorithm,
they indicate that intra-rack disaggregation suffices the majority of the time except when reducing
resources aggressively.

5.1.2 Resource Reduction with Disaggregation. To illustrate potential benefits and thus further
motivate intra-rack resource disaggregation, we use per-node statistics to calculate an average
resource utilization of each rack. We do this for the node-to-rack mapping in Cori but also for a
large set of randomized mappings of nodes to racks, because Cori’s scheduler is agnostic to re-
source disaggregation. This increases the computational complexity of this analysis, so we only
perform it across four days of our data set. For each mapping, we use node statistics to calcu-
late per-rack utilization for each resource, by average across the four-day sampling period. We
then take the maximum utilization for each resource among all the node-to-rack mappings and
all racks within each mapping, to capture the worst-case (highest) rack utilization for each met-
ric. We use that maximum to derive how much we could reduce in-rack resources and still sat-
isfy the worst-case average rack utilization in our chosen four-day period. This does not indicate
that no job will have to cross a rack boundary to find resources, or that application performance
will be unaffected. Instead, this analysis focuses on resource utilization statistics. Memory band-
width reduction is based on the per-node theoretical maximum of 136 GB/s from the eight memory
modules.

The percentage we can reduce each resource and still satisfy the worst-case average rack utiliza-
tion is shown in Table 2. As shown, except for memory capacity in KNL racks, the other resources
can be reduced substantially. Resource disaggregation-aware job scheduling may further improve
these findings.

5.2 Deep-learning Application Data

Based on Section 4, there are also opportunities for rack-level disaggregation in ML workloads
and GPU-accelerated systems. We observe a strong variability of resource requirements among
different neural networks and therefore application domains but also among inference and training
(Figure 12). Inference usually requires higher CPU-to-GPU ratios than training and uses less GPU
memory. In contrast, training leads to high GPU utilization in terms of computation and memory
but lower CPU utilization. However, this also varies with the workload. Job schedulers can use
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a disaggregated system by allocating more CPUs and less GPU memory for inference and give
the remaining resources to a training job, which requires lots of memory and generally less CPU
time.

While we observe that GPU utilization is generally high, CPU resources and network bandwidth
are underutilized most of the time. Although we cannot determine peak bandwidth demands with
our methodology, we see that the average bandwidth utilization over longer periods is low. As
we strong-scale training to multiple nodes, the bandwidth demands increase but other resources
become less utilized, such as GPU memory (Figure 13). A disaggregated system allows us to provi-
sion unused GPU memory for other jobs, and since bandwidth depends on the scale, we can give
more bandwidth to large-scale jobs and less bandwidth to small-scale jobs.

6 DISCUSSION

6.1 Limitations of Sampling a Production System

Sampling a production system has significant value, because it demonstrates what users actually
execute and how resources are used in practice. At the same time, sampling a production system
inevitably has practical limitations. For instance, it requires privileged access and sampling infras-
tructure in place. In addition, even though Cori is a top 20 system that executes a wide array of
open-science HPC applications, observations are affected by the set of applications and hardware
configuration of the system. Therefore, HPC systems substantially different than Cori can use our
analysis as a framework to repeat a similar study. In addition, sampling typically does not capture
application executable files or input data sets. Therefore, reconstructing our analysis in a system
simulator is impossible but also impractical due to the vast slowdown of a simulator for large-scale
simulations compared to a real system. Similarly, sampling a production system has no method to
differentiate when application demands exceed available resources as well as the resulting slow-
down. For this reason and our 1s sampling period, our study focuses on sustained behavior and
cannot make claims for the impact of resource disaggregation to application performance.

6.2 Hardware Implementation of Disaggregation

As we outline in Section 2.2, past work pursued a variety of hardware implementations and job
schedulers for resource disaggregation. Our study quantitatively shows potential benefits of intra-
rack disaggregation in a system similar to Cori to allow future research on hardware implementa-
tions to perform a more informed cost-benefit analysis. In addition, we study topics in the second
half of Section 3 that assist in guiding important related topics such as how often a disaggregated
system should be reconfigured. Therefore, future work can better decide whether to pursue full-
system, intra-rack, or a hierarchical implementation of resource disaggregation and for which
resources.

6.3 Future Applications and Systems

While it is hard to speculate how important HPC applications will evolve over the next decade, we
have witnessed little change in HPC fundamental algorithms during the previous decade. It is those
fundamentals that currently cause imbalance that motivates resource disaggregation. Another
consideration is application resource demands relative to available resources in future systems.
For instance, if future applications require significantly more memory than the memory available
per CPU today, then this may motivate full system disaggregation of memory, especially if there
is significant variability across applications. Similarly, if a subset of future applications request
non-volatile memory (NVM), then this may also motivate full system disaggregation of NVM,
similar to how file system storage is disaggregated today.
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However, future systems may have larger racks or nodes with more resources, strengthening
the case for intra-rack resource disaggregation. When it comes to specialized fixed-function accel-
erators, a key question is how much data transfer they require and how many applications can use
them. This can help determine which fixed-function accelerators should be disaggregated within
racks, hierarchically, or across the system. Different resources can be disaggregated at different
ranges. Ultimately, the choice should be made for each resource type for a given mix of applica-
tions, following an analysis similar to our study.

6.4 Future Work

Future work should explore the performance and cost tradeoff when allocating resources to appli-
cations whose utilization is dynamic. For instance, providing enough memory bandwidth to satisfy
only the application’s average demand is more likely to degrade the application’s performance, but
increases average resource utilization. Future work should also consider the impact of resource dis-
aggregation to application performance, which should also consider the underlying hardware to
implement resource disaggregation and the software stack. Job scheduling for heterogeneous HPC
systems [27] should be aware of job resource usage and disaggregation hardware limitations. For
instance, scheduling all nodes of an application in the same rack benefits locality but also increases
the probability that all nodes will stress the same resource, thus hurting resource disaggregation.

7 CONCLUSION

In the approaching era of heterogeneous HPC systems, the variety of application demands creates
a significant risk of underutilizing expensive compute and memory resources if we preserve to-
day’s rigid node configuration and reservation strategies. We demonstrate that key resources are
consistently underutilized in NERSC’s Cori and important ML applications executing on NVIDIA
GPU. Based on our analysis, we show that unless we aggressively reduce resources inside a rack,
resource disaggregation in an HPC system similar to Cori typically does not have to cross the
rack boundary. In addition, with ideal intra-rack resource disaggregation, racks similar to Cori
can reduce available memory and NIC resources by 5.36% to 69.01% and still satisfy the worst-case
average rack utilization.
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