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Process Variation-Aware Compact Model of Strip
Waveguides for Photonic Circuit Simulation

Aneek James, Anthony Rizzo, Yuyang Wang, Asher Novick, Songli Wang, Robert Parsons, Kaylx Jang,
Maarten Hattink, and Keren Bergman

Abstract—We report a novel process variation-aware compact
model of strip waveguides that is suitable for circuit-level sim-
ulation of waveguide-based process design kit (PDK) elements.
The model is shown to describe both loss and—using a novel
expression for the thermo-optic effect in high index contrast
materials—the thermo-optic behavior of strip waveguides. A
novel group extraction method enables modeling the effective
index’s (neff ) sensitivity to local process variations without the
presumption of variation source. Use of Euler-bend Mach-
Zehnder interferometers (MZIs) fabricated in a 300 mm wafer
run allow model parameter extraction at widths up to 2.5 µm
(highly multi-mode) with strong suppression of higher-order
mode excitation. Experimental results prove the reported model
can self-consistently describe waveguide phase, loss, and thermo-
optic behavior across all measured devices over an unprecedented
range of optical bandwidth, waveguide widths, and temperatures.

Index Terms—Silicon photonics, compact modeling, process
variation.

I. INTRODUCTION

S ILICON photonics (SiPh) has seen explosive growth in
demand as a technology platform, driven by its adoption

in data centers (DC), high performance computing (HPC) [1]–
[3], quantum computing [4]–[8], and radio-frequency com-
munication systems [9]–[11]. SiPh’s rapid rise and matura-
tion has been enabled by its ability to leverage decades of
research in the complementary metal–oxide–semiconductor
(CMOS) industry, drastically reducing the typical research and
development (R&D) costs associated with new semiconductor
technologies [12]–[14]. SiPh, however, has not yet been able
to mimic CMOS yield prediction tools for evaluating photonic
integrated circuits (PICs). Yield is a ubiquitous metric used
across semiconductor manufacturing, with improvements in
yield being strongly correlated with reductions in the time
and costs associated with PIC design cycles [15]–[17]. The
need for predictive yield models can be mitigated to some
degree by designing variation-robust devices [18] or PICs
such that performance variations can be tolerated or cor-
rected for post fabrication [19], [20]. In each of these cases,
however, quantitative yield data cannot be determined prior
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TABLE I
FEATURES FOR MODELING STRIP WAVEGUIDE PERFORMANCE. THE

MODEL IN THIS WORK DESCRIBES PHASE, LOSS AND THERMAL BEHAVIOR
EFFECTS OVER A BROAD RANGE OF WAVELENGTHS AND WAVEGUIDE

GEOMETRIES.

Model Features [25] [26] This Work
Wavelength [nm] 1550 1520–1570 1450–1650

Nominal Width Range [nm] 480 480–500 400–2500
Considered Variation Sources w,t w,t Arbitrary

Statistical Parameter Variations ✓ ✓ ✓
Waveguide Scattering Losses ✗ ✗ ✓

Thermo-optic Effect ✗ ✗ ✓
w - Waveguide Width Variations
t - Waveguide Thickness Variations

to fabrication—an obstacle that will be exacerbated as the
number of components per PIC in silicon is projected to
scale well into the millions within the next decade [21].
Circuit designers also need tools to optimize system-level
performance through device-level design choices [22]. To meet
rising circuit design complexity, commercial foundries must
develop process design kits (PDKs) that include compact
models that are both parameterized over a wide range of
relevant design and environmental variables and describe all
important device figures of merit [23], [24]. It is essential
that strip waveguides in particular—a critical component of
most SiPh circuits—are accurately modeled according to their
expected fabricated performance.

Broadly speaking, there are three ways to construct compact
models: (i) look up table-based models, obtained directly from
measurements or device simulations, (ii) models based on
empirical fit functions, and (iii) physics-based models [23].
Most previously reported work falls under the look-up table-
based category [25]–[29]. These models can be parameterized
using look-up tables (LUTs), where interpolation is used to
predict the performance of designs not explicitly defined in
the table. Ensuring that LUT models are accurate over a wide
range of input parameters, however, requires measuring all
waveguide figures of merit for every combination of input
parameters; a task that scales exponentially with the number of
modeled independent variables. Prior demonstrations methods
also require the explicit connection of the measured effective
and group index variations to a predefined number of process
variation sources, introducing the possibility of error if any
systemic deviations exist between the simulation configuration
and the realities of the fabrication process.

In this paper, we report to the best of our knowledge, the first
geometry-parameterized compact model of strip waveguides
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Fig. 1. a, Example electric field profile taken from Lumerical MODE. b,
Simulated (scatter) and modeled (dashed) effective index vs wavelength for
several waveguide widths. Each waveguide was simulated with a thickness of
220 nm.

that can capture device performance over a wide range of
wavelengths and waveguide geometries (see Table I). Using a
novel derivation of the thermo-optic effect that is accurate for
high-index contrast waveguides, we demonstrate our model’s
ability to describe both scattering loss and the thermo-optic
effect as a function of both design and statistical parameters.
A novel group-extraction-based method allows the characteri-
zation of process variations without presumption of a source or
its associated sensitivity. This extraction methodology is used
to construct a model from dozens of geometric variations of
Mach-Zehnder Interferometers (MZIs) fabricated in a 300 mm
commercial foundry. These use of Euler bends in these MZIs
permits the characterization of wide waveguide performance
with minimal higher-order mode excitation. Experimental re-
sults validate the model’s accuracy in describing the phase,
loss, and thermo-optic performance across the entire wafer.
The model is also implemented in Verilog-A to demonstrate
compatibility with electronic-photonic co-simulation environ-
ments [30]–[32]. This work represents a key step toward
the modeling of waveguide-based PDK components, enabling
true-to-measurement circuit simulation at massive integration
densities.

II. PHYSICS-AWARE MODEL DEVELOPMENT

Because the mode condition of an optical waveguide
is described via a transcendental equation, completely
generalized analytical solutions for the effective index (neff)
are impossible to derive [33]. We therefore propose, as
discussed in [34], finding a behavioral model that accurately
captures its dependence on all design parameters over the
relevant ranges of interest. In this section, we develop
dependency models for the design parameters available.
The semi-physical nature of the model is then leveraged
to describe both the scattering loss and the thermo-optic
coefficient. Process variations, whether of a design parameter
or not, will be covered in Section IV.

Fig. 2. a-c, Plot of simulated (scatter) and modeled (dashed) neff parameters[
∂2neff/∂λ

2, ∂neff/∂λ, neff,0
]

vs waveguide width (respectively). These
values were for a waveguide with a thickness of 220 nm at a wavelength
of 1550 nm. d, Comparison of the model (dashed) and simulated (scatter)
neff vs waveguide width for different thicknesses. Simulated at 1550 nm.

A. Wavelength Dependence

The wavelength dependence of the waveguide neff is first
considered. The neff of several silicon-on-insulator (SOI)
waveguide geometries were simulated in Lumerical MODE
(Fig. 1a). From the results, it is shown that the wavelength
dependence over the S-, C-, and L-bands for all geometries is
well-approximated by a second-order Taylor expansion for a
wide range of waveguide widths sufficiently above the cutoff
condition (Fig. 1b):

neff, model(λ) =

2∑
i=0

1

i!

∂ineff

∂λi

∣∣∣∣
λ=λ0

(λ− λ0)
i. (1)

B. Geometric Dependence

As the Taylor expansion only captures the wavelength-
dependence, it is clear that the fitting parameters ∂2neff/∂λ

2,
∂neff/∂λ and ∂0neff/∂λ

0 (hereafter referred to as neff,0) are
responsible for capturing the dependence on waveguide geom-
etry. With respect to width, all three fitting parameters were
previously found in [35] to be well described by the following
behavioral model:

∂ineff

∂λi
(w) = pi0 ·

w2 + pi1w + pi2
w2 + pi3w + pi4

, (2)

for a total of fifteen model parameters. To verify correctness
of the model, all three parameters were fitted to the simu-
lation data with (1)-(2) using ordinary least squares (OLS)
regression. The model was able to match all three parameters
over the entire range of the width sweep (Fig. 2a-c). The
close matching of the modeled and extracted Taylor parameters
means that our modification of (2) still preserves its ability to
match the behavior of effective index as a function of wave-
length. By extension, these three Taylor parameters allow for
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Fig. 3. Comparison between modeled (dashed) and simulated (scatter) neff

for higher order modes and the fundamental TM mode. All waveguides were
simulated with a thickness of 220 nm.

a robust description of neff as a function of waveguide width
(Fig. 2d). The data also demonstrates this agreement is not
unique to any particular waveguide thickness, with different
thicknesses producing different sub-parameter fits. Finally, it
should be noted that both the numerator and denominator in
(2) are polynomials of equal order. Our model consequently
predicts that, for a given wavelength, the effective index will
asymptotically approach a constant value as w approaches
infinity. The value that the model approaches as w tends
towards infinity can be interpreted as the equivalent neff of
an infinite slab of the same thickness:

lim
w→∞

neff(λ,w) = nslab(λ). (3)

In this way, our behavioral model can elegantly capture all
significant features of effective index for the design parameters
of interest. The model’s accuracy holds true for higher order
modes as well, provided that they are sufficiently far away
from their respective waveguide cutoff condition (Fig. 3).

C. Scattering Loss

Scattering loss due to sidewall roughness (SWR) can be a
significant source of loss in most reported waveguide designs,
making it critical for designers to accurately model [36]. In this
section, we demonstrate our model’s ability to capture SWR
loss as a function of waveguide geometry. It was first noted
in [37] that the traditional Payne and Lacey model of SWR-
induced loss [38], [39] was found to be identical in behavior to
the derivative of the effective index with respect to waveguide
width:

αSWR(λ,w) = R
∂

∂w
[neff(λ,w)] , (4)

where R is a proportionality constant. As our model can
describe neff as a function of width, a closed-form repre-
sentation of ∂neff/∂w can be exactly derived. This equation
can then be fitted to measured waveguide loss data to extract
the proportionality constant. We validate this by fitting (4)
to the scattering loss of a 7 µm long SOI waveguide with
some SWR wall roughness in Lumerical 3D-FDTD (Fig. 4a).
The roughness Root Mean Square (RMS) and correlation
length were arbitrarily chosen to be σrms = 5 nm and

Fig. 4. a, Graphical representation of a waveguide simulated with some
sidewall roughness. The inset is a magnified view of the waveguide to clarify
the definition of σrms. b, Scattering losses estimated from FDTD compared
to the fit using our model based on Lumerical MODE data.

Lcorr = 1 µm respectively. These parameters were then used to
generate a random, anisotropic SWR on the waveguide walls
[40]. Propagation losses were simulated for waveguide widths
ranging from 450 nm to 850 nm. The results of the fitting are
shown in Fig. 4b, with our model closely matching trend of
the scattering loss behavior extracted from FDTD simulations.

D. Thermo-Optic Effect

Our model can also completely describe the thermo-optic
coefficient of an arbitrary waveguide geometry without the
need for any thermal measurements. The thermo-optic co-
efficient of a waveguide mode most importantly requires
knowledge of the confinement factor, which is the fraction of
a mode’s power confined within each constituent waveguide
material. Kawakami showed in [41] that for a waveguide
made up of N materials, each with with an index nk and a
confinement factor Γk:

N∑
k

Γkn
2
k = ngneff (5a)∑
k

Γk = 1, (5b)

where (5b) is derived from noting that the sum of all con-
finement factors must equal unity due to power conservation.
A closed-form of the confinement factor for a two-material
waveguide (e.g. SOI wires) can then be derived:

Γcore =
ngneff − n2

clad

n2
core − n2

clad
(6a)

Γclad =
n2

core − ngneff

n2
core − n2

clad
, (6b)
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where Γcore is the power contained in the waveguide core and
Γclad is the power contained in the cladding.

Next, we must obtain an expression that describes the
thermo-optic effect on neff in terms of the confinement factor.
A common approximation of the thermo-optic coefficient of
neff is

∂neff

∂T
≈ Γ1

∂n1

∂T
+ Γ2

∂n2

∂T
+ . . . , (7)

where δ represents a small perturbation in the values, Γn is
the confinement of the mode within material n and ∂nn/∂T
is the thermo-optic coefficient of material n [42]. Though
this equation is widely used [43]–[45] and may be accurate
in certain scenarios, to the authors’ knowledge it has never
been demonstrated to be a generally accurate approximation.
We therefore start from first principles and consider a general
perturbation of the wave equation [46]:

δ
[
β2
eff

]
= Γcore

ω2

c2
δ
[
n2

core

]
+ Γclad

ω2

c2
δ
[
n2

clad

]
, (8)

where βeff is the effective wavenumber, Γcore is the con-
finement in the waveguide core, Γclad is the confinement in
the waveguide cladding, and ncore and nclad are the core and
cladding indices respectively. Carrying this operation through
and combining with (1) (see Appendix A for details) yields:

neff(λ,w, T ) ≈ neff,T0
(λ,w) +

∂neff

∂T
(T − T0) (9a)

∂neff

∂T
= Γcore

ncore

neff, T0

∂ncore

∂T
+ Γclad

nclad

neff, T0

∂nclad

∂T
, (9b)

where neff,T0
is the neff at some reference temperature T0. The

key addition to (9) compared to prior literature is the scaling
of each thermo-optic term by ratio between the material and
effective indices. As the index contrast between the core and
cladding decreases, our model will approach the (7). Thus
it is clear that our model will outperform (7) in accuracy
when describing high index contrast materials, such as the
SOI waveguide geometries prevalent in SiPh.

With these expressions, our confinement factor and the
thermo-optic coefficient models can be validated. The simu-
lated confinement factor is compared to our model prediction
at 1550 nm in Fig. 5a. The optical properties of silicon and
silicon dioxide used in our model were taken directly from
[47]. There was a near perfect agreement between the modeled
and simulated confinement factor, showing that the general
behavior of confinement factor is captured by our model
(Fig. 5a). The modeled thermo-optic coefficient is validated
by simulating how the neff of a SOI waveguide varies with
temperature using Lumerical MODE (Fig. 5b). Silicon was
assumed to have a thermo-optic coefficient of 1.9×10−4 K−1

[48] and SiO2 was assumed to have a thermo-optic coefficient
of 1 × 10−5 K−1 [49]. The model and simulations show
exceptional agreement from 300 - 1200 K, despite the fact that
our model does not require any data from thermal simulations
or measurements. As predicted, the previously reported model
of the thermo-optic effect (7) significantly under-predicts the
expected change in neff . It should be noted that in real devices,
waveguide geometry itself is a function of T due to thermal
expansion. This can be accounted for by modeling w as a func-
tion of T . Experimental results in Section V-C, however, show

Fig. 5. a Modeled (dashed) and simulated (scatter) confinement factor vs
waveguide width for different thicknesses. b, Comparison between simulated
(scatter), previously reported model (dotted, Eq. (7)) and our work (dashed
line, Eq. (9)) describing neff vs Temperature of a 480 x 220 nm waveguide.

that assuming a constant width geometry provides sufficient
accuracy.

Having a model of the thermo-optic effect that is accurate
over a wide range of conditions like this one holds a great
deal of potential to enable more robust design exploration,
such as evaluating photonic waveguide heater designs [50],
[51], characterizing self-heating in micro-resonators [52], or
studying the effect of ambient temperature fluctuations in a
system.

E. Parameter Extraction

The practical utility of a compact model is greatly deter-
mined by the associated parameter extraction procedure to
connect the model to a given foundry process. This is particu-
larly important when developing statistical models, as accurate
parameter extraction is the only way to guarantee that process
variations are accurately reflected in the model. A popular
solution is to leverage the phase-sensitivity of interferometric
optical filters—such as Mach-Zehnder interferometers (MZIs),
microresonators, or arrayed waveguide gratings (AWGs)—to
monitor process variations across a wafer. Regardless of the
chosen device, a shared difficulty lies in accurately guessing
what particular interference fringe position corresponds to a
particular fringe order [25], [26], [53]. Our method is based on
the curve-fitting method presented in [25] and [54], with some
additional steps described to include waveguide dispersion as
an extracted parameter.

The first step in parameter extraction is to characterize
the group index (ng) of a fabricated interferometer from
a wavelength sweep of the device. To enable this, (1) is
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rearranged into a more suitable form:

neff(λ) =
1

2

∂2neff

∂λ2
λ2 +Bλ+ C (10a)

B =
∂neff

∂λ
− ∂2neff

∂λ2
λ0 (10b)

C =
1

2

∂2neff

∂λ2
λ2
0 −

∂neff

∂λ
λ0 + neff,0, (10c)

where B and C are fitting parameters that aggregate the 1st and
0th order terms from (1) respectively. Following the procedure
described in [54], it is first noted that the fringe condition of
an inteferometric device is described by

ϕ =
2π

λ
neff(λ)L = 2πm, (11)

where ϕ is the phase difference between the interferometry
arms, L is the path length of the interferometer, λ is a partic-
ular fringe wavelength, and m is an integer corresponding to
the particular fringe order. To extract our model parameters,
a wavelength sweep of the interferometric device is required.
Once this is performed, a peak finding algorithm can be used
to detect the wavelength of all detected fringes. A function that
relates the relative fringe locations to the ng of the waveguide
is now required. This can be done by defining a continuous
function that will yield an integer value at each of the detected
fringe locations. Let m0 represent the particular fringe order
corresponding to an arbitrarily chosen reference fringe located
at λ0. The fringe order m of any other fringe can be defined
relative to this reference as

m = m0 +

∫ λ

λ0

dm

dλ
dλ = m0 + ngL ·

(
1

λ
− 1

λ0

)
. (12)

This continuous function now allows us to redefine the mea-
sured fringes into a form suitable for parameter extraction.
A reference fringe variable n is now defined by letting
m = (m0 + n). Inserting this back into (12) produces:

n = ngL ·
(

1

λn
− 1

λ0

)
, (13)

where each relative fringe n is located at an associated
wavelength λn. Using (13), the ng of the measured device
is now directly related to the measured fringe locations. This
fitting equation must now be extended to our specific model
parameters. The ng of a waveguide is defined to be

ng = neff − λ
∂neff

∂λ
. (14)

Combining with (10a) yields an expression for ng in terms of
our compact model:

ng = C − 1

2

∂2neff

∂λ2
λ2. (15)

By inserting (15) back into (13), we can derive an OLS
regression-compatible expression:

n = CΛC − ∂2neff

∂λ2
ΛS (16a)

ΛC = L ·
(

1

λn
− 1

λ0

)
(16b)

ΛS =
L

2
·
(
λn − λ2

n

λ0

)
, (16c)

Fig. 6. a, Captured spectrum of simulated MZI used for parameter extraction.
The waveguide mode was simulated in Lumerical MODE, and then exported
to a MZI waveguide simulation block in Lumerical INTERCONNECT. b,
Linear Regression of fringe wavelengths to extract the ng performed on the
detected fringes from a. c, Possible neff solutions (black, dashed), along with
the actual solution (red), determined by the ng extracted in b.

where [ΛC ,ΛS ] are explanatory variables. Performing an OLS
regression between n and [ΛC ,ΛS ] gives us two of our three
fitting parameters in (10). Finally, B can be calculated by
combining equations (11) and (10a):

B =
m

L
− 1

2

∂2neff

∂λ2
λm − C

λm
, (17)

where the only uncertainty is what fringe order m corresponds
to each measured fringe λm. Once B is determined from (17),
(10b) and (10c) can be used to determine the original fitting
parameters in (1). It should be noted that each detected fringe
(m, λm) location will yield very small variations in the B value
due to resolution-based uncertainty in the exact value for λm.
For a best guess, all values Bm taken from each measured
fringe λm should be averaged together.

To validate this method under ideal conditions, an MZI
constructed using 480 nm x 220 nm waveguides is simulated in
Lumerical INTERCONNECT. To ensure accuracy, the wave-
guide’s neff was first simulated in MODE and then exported
to a MODE Waveguide element in INTERCONNECT. The
spectrum of the simulated MZI is shown in Fig. 6a. Fringe
locations were extracted using a peak finding algorithm.
The fringe located closest to the center of the sweep was
arbitrarily chosen as n = 0. Using (16), OLS regression
found ∂2neff/∂λ

2 = −0.136 µm−2 and C = 3.9215 (Fig.
6b). From here, the family of solutions for neff is plotted in
Fig. 6c. Each particular solution corresponds to a different
guess on the fringe orders detected, e.g. m0 = 52 vs.
m0 = 53. The separation between each neff solution plotted
in 6c is determined by the free-spectral range (FSR) of the
interferometer, with a larger FSR corresponding more widely
separated solutions.

To determine the correct fringe order of the reference we
use the fact that, from the simulations performed in Section
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Fig. 7. a, Plot of the ng error function for one sample. The error function
shows a minimum at roughly 491.5 nm, which closely agrees with the actual
waveguide width of 490 nm. b, Convergence of the etch bias estimate for
different numbers of samples averaged.

II, we know the waveguide geometry has an neff of 2.411 at
the reference fringe location. In Section III we explain how
to increase the accuracy of this estimation to avoid errors
introduced by this simulation. From this, the reference fringe
order is found to be m0 ≈ 114.03. Since fringe orders must
be integer numbers, the result is rounded to the nearest integer
114. By combining (10a)-(10c), the original fitting coefficients
are found to be ∂neff/∂λ = −1.078 µm−1 and neff,0 = 2.411.
To evaluate accuracy of our extraction, we define the relative
error between the extracted and simulated neff’s σerror by:

σerror =

√∫
(neff, model − neff, sim)

2 dλ∫
n2

eff, simdλ
, (18)

where neff, sim is the effective index from the MODE simula-
tion, used as a reference to quantify our method’s accuracy,
and neff, model is the result from applying our extraction method
to the simulated MZI. Upon evaluation, the total relative error
was found to be 0.017%. Since the order of the reference
fringe is correct, the remaining model error is attributed to
inaccuracies in the initial regression fit using (16a)-(16c).

III. MORE ROBUST neff EXTRACTION UNDER PROCESS
VARIABILITY

The reliability of the extraction is highly sensitive to the
guessed value of the reference fringe order. For the example
in Section II-E, we used a priori knowledge of the neff at the
reference fringe to estimate its order. Therefore, any deviation
between the assumed and actual waveguide dimensions risks
introducing error. By noting that the initial order estimate
rounded to the nearest integer, we can use (11) to define

a boundary beyond which our fringe order guess will be
incorrect [25]:

|∆m| = |neff, actual − neff, guess| ≤
λm0

2L
. (19)

We can see that, to raise confidence in the guessed fringe order,
either the accuracy of our neff guess must be increased or the
interferometric path length must be decreased. As explained in
Section II-E, our extraction method begins by directly extract-
ing the ng of a given interferometer via optical sweep. Process
variations will therefore appear as variations in the extracted
values for ∂2neff/∂λ

2 and C. By measuring several devices
of the same drawn width across the all measured dies, wafers,
and lots, the influence of the random width and thickness
variations can be eliminated by averaging their extracted fitting
parameters. As the sample size becomes sufficiently large—
with the necessary sample size being a function of the severity
of the process variations—any remaining deviation between
the nominal and averaged parameters will be the result of a
systemic etch biases on the waveguide width. We therefore
propose estimating this etch bias by creating a preliminary neff
model based on the results of a photonic mode solver, such as
Lumerical MODE. Using this model, an equivalent waveguide
width can be found by minimizing the error function

min
w

√∫
[ng, model(w, λ)− ng, meas(λ)]

2 dλ∫
n2

g, meas(λ)dλ
, (20)

where ng, meas is the extracted model of ng using the averaged
extracted parameters and ng, model is the simulation-based,
width-dependent a priori model of neff. The neff of our
equivalent waveguide width can then be plugged into the a pri-
ori model to provide a more accurate fringe order estimate.
In this way, we can increase the accuracy of our guessed
effective index, regardless of whether the modeled waveguide
composition is accurate to the virtual device composition.

We now discuss the robustness of this optimization routine
in the presence of other systemic non-idealities and its ability
to perform etch bias correction. To do this, we need a ’ground
truth’ value for neff , which we obtain by simulating all the
non-idealities in Lumerical MODE. Subsequently we perform
the parameter extraction using Lumerical INTERCONNECT.
By comparing the extracted neff to the known simulated
value for neff , we can directly evaluate the robustness of our
methodology.

A. Statistical Geometric Variation

To test the extraction procedure’s accuracy under process
variations, a simulation of 100 random variations on the
waveguide geometry was run. The nominal waveguide di-
mensions were assumed to be 480 x 220 nm. To simulate
systemic variations, each waveguide was arbitrarily assumed
to have an etch bias of +10 nm. Random fluctuations were
simulated by subjecting each device to a normally distributed
variation of 3σ = 5 nm on both the waveguide width and
thickness, as this value is consistent with the worst-case
reported values for geometric variations [25]–[27]. Each mode
profile was then exported to INTERCONNECT and simulated

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2023.3238847

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



7

Fig. 8. Plot of mean error in neff over the simulation bandwidth per simulated
device. Each FSR was simulated with 100 random deviations from the target
waveguide geometries. Both width and thickness were assumed to have a
3σ = 5 nm.

with interferometer FSRs ranging from 4 - 40 nm to investigate
the effect this had on the extraction error. The resulting error
function for one of these samples, with a ground truth width of
490nm, is shown in Fig. 7a. We see the convergence behavior
of the etch bias estimate evolves as a function of device sample
size increases for several FSR designs in Fig. 7b. It can be seen
that all FSR designs can yield at least an estimated etch bias
within 2 nm of the actual value, indicating the utility of our
etch bias correction.

Fig. 8 shows the relationship between the average, per sam-
ple error and the interferometer FSR. The error is measured
in three scenarios: i.) a ‘naı̈ve’ case, where the fringe order is
estimated assuming no etch bias; ii.) where the fringe order is
estimated through our etch bias prediction methodology, based
on 30 measured samples; and iii.) where the exact neff from
simulations is used to determine the actual fringe orders. The
last scenario, that produced an average per sample error of
roughly 0.017% represents an error floor for the first two.
This error floor is completely determined by errors in the
initial ng regression, as well as any fundamental limitations
in our chosen behavioral model. As the FSR is increased,
the average per sample error in both cases improves steadily
until it reaches the aforementioned floor. This is consistent
with (19), indicating that a larger FSR corresponds to a wider
margin of error for the fringe order estimate. For both the naı̈ve
and bias compensation methods, there is a critical FSR value
beyond which the fringe order is correctly estimated for all
samples. It is clear, however, that estimating the presence of
any etch biases drastically improves the fringe order accuracy,
reaching the error floor for a much smaller FSR than when
using the naı̈ve method.

B. Sidewall Angle

We now consider how the parameter extraction behaves
when used for waveguides with some sidewall angle. Up
to this point, our simulations assumed the waveguides to
have no sidewall angle. Real waveguides, however, typically
deviate from this ideal [55]. To study how our bias correction
behaves under these conditions, a SOI waveguide with the
same nominal (480 x 220 nm) design as before was simulated

Fig. 9. a, ng relative error vs simulated sidewall angle. b, Comparison
between the simulated (scatter) and estimated (dashed) neff for different
sidewall angles.

with a series of sidewall angles from 85 to 90 degrees as
this is a range typical of foundries [25], [56]. As only the
aggregate behavior is being studied, width and thickness
variations were not included. As seen in Fig. 9a, the minimum
of the error function optimized in the etch bias estimation step
remain roughly constant for all considered sidewall angles.
This results in very accurate predictions of the effective index
from our model, even though the fundamental geometry is
different. We interpret this as our optimization routine is
picking an ‘equivalent’ waveguide width that matches the
extracted ng profile. This equivalent width always seems to
result in a waveguide design with a similar confinement factor
and effective index—and therefore behavior—as seen in Fig.
9b.

C. Material Variation

This method for increasing the accuracy of the guessed neff

relies on the assumption that the material properties of the
fabricated waveguides generally match the assumed material
properties used in the simulation data used to construct the
model. In practice, however, there can be a great deal of
deviation between the assumed and actual optical properties of
the waveguide materials. As a workaround, the authors suggest
extracting and building a model based around the dispersion
of the waveguide ∂2neff/∂λ

2, as this waveguide parameter
can be extracted exactly from measurements. The nominal
model of ∂2neff/∂λ

2 can then replace ng in (20) to estimate
the width of the measured device. This width can then be
used in conjunction with simulation data to assign it an neff

guess. Though the limits of such a technique are unclear to the
authors, experimental results in Section V demonstrate to be
effective enough for describing the neff , loss, and thermo-optic
effect for all measured device performance.
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Fig. 10. a, Illustration of measured reticles on a custom 300 mm wafer, with a blown-up microscopic image of a die with 135 MZIs. b, Nominal neff and
ng model extracted from device measurements. c, Width-based model extraction for each die tested. d, Total model parameter µm variance σ explained vs
number of principal components included.e, Plot of the width-independent subparameters for neff,0, ∂neff/∂λ0,and ∂2neff/∂λ

2
0 vs V .

IV. EXTRACTING LOCAL PARAMETER VARIATIONS

Process variations (e.g. thickness variation, cladding and
core index variations) will appear in our model as varia-
tions in the fifteen model parameters that comprise Eq. (1).
Capturing these variations requires the ability to extract their
value locally, which cannot be done just by looking at the
performance of any individual device. It is commonly assumed
in prior literature that most process parameters slowly vary
across the entire wafer [25]. This assumption implies that
the values of the parameters comprising our model also
vary slowly across the wafer. The authors therefore propose
analyzing the performance of several waveguide width designs
in close proximity to each other to locally extract all of the
fifteen model parameters. Each local extraction serves as the
observations of each model parameter that are tracked across
the entire wafer.

The simplest way to create a statistical model is to treat each
of fifteen sub-parameters as independent statistical variables.
This is not ideal, however, as each additional variable drasti-
cally increases the number of required iterations for accurate
Monte Carlo simulations. To minimize model complexity, we
would like to represent each sub-parameter as a linear function
of an ensemble of variables:

pni = pni,avg. + s⃗ · V⃗ . (21)

V⃗ is the vector of variables that represent the process varia-
tions. Minimizing model complexity would be the equivalent
of minimizing the size of V⃗ . s⃗ describes the corresponding
sensitivities of a given parameter to each element in V⃗ . To
minimize the size of V⃗ , we leverage the fact that each extracted
model parameter will be strongly correlated to one another.

This is because the variations in each model parameter share
common origins such as wafer thickness, annealing time,
etc. We therefore propose using principal component analysis
(PCA), a technique for transforming a number of possibly
correlated variables into a smaller number of uncorrelated
variables (i.e principal components) [57], to minimize model
complexity. The chosen principal components are then the
variables that make up V⃗ . The chosen principal components
are then the variables that make up V⃗ . The number of
components in V⃗ is flexible (see Appendix B for details).
Since our waveguide geometry is primarily a function of two
process variables—waveguide width and thickness—we use
only the first principal component to preserve its physical
interpretation. The result is a model of effective index as a
function of width and our process variations–∆w, representing
width variations and an additional variable we will call V ,
representing an aggregate of other process variations, including
thickness variation:

neff,model(w +∆w, V ). (22)

This full model of neff is then used in the local optimization
and re-extraction of each measured device. The cost function
is defined as the sum of the relative neff and ng errors to match
both the measured fringe locations and FSR respectively.

Thus, we can employ a two-stage direct statistical com-
pact model extraction procedure [24]. In the first stage, we
use group extraction to obtain the complete set of fifteen
parameters for a uniform device. In a second step, a subset
of model parameters are re-extracted for each member of a
large ensemble of devices measurements. This approach will
be the most accurate representation of how device performance
varies across the wafer without any presumption of variation
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Fig. 11. a, Measured vs modeled optical spectrum of a 480 nm waveguide MZI with ∆L = 100 µm. b, (i) Histogram of extracted V data along with its
associated Gaussian distribution (red, dashed) overlaid on top. (ii) Spatial map of the average value for V per measured die across the wafer. c, Mean and
standard deviation of ∆w, neff , and ng .

source, statistical distribution, correlation, and the resulting
model sensitivity to the variation. An inherent strength of
this approach over others is that it is potentially useful for
modeling other waveguide geometries as well. This potential
is due to the model designer having the option of picking
the number of principal components based on a physical
assumption on the key process variables or optimize the
percentage of explained parameter variance (see Appendix B).
While further investigation would be required to confirm this,
the methodology’s flexibility holds a great deal of promise.

V. EXPERIMENTAL DEMONSTRATION

We measured 7 reticles, each with 135 MZIs consisting of
27 different waveguide widths (w) from 400 nm to 2500 nm
and 5 different arm length delays (∆L) from 100 µm to
500 µm, fabricated on a custom 300 mm full wafer through
AIM Photonics (Fig. 10a). All 135 MZI were measured on
reticle 2 while a smaller subset of 30 MZIs were measured
on each of the remaining reticles, totaling 315 measured
devices. Devices with the same waveguide width are placed
adjacently to minimize the impact of local process variations
on device performance. All MZIs have a nominal waveguide
height of 220 nm, and grating couplers designed for quasi-TE
polarization are utilized for optical I/O. The two arms of each
MZIs consist of symmetric waveguide bends to mitigate the
impact of bending on the ng . For devices with waveguides
beyond the single-mode cutoff width, Euler bends are used to
maintain single mode operation and high mode isolation [18].
A tunable laser was swept from 1450–1610 nm at a 10 pm
resolution to characterize the transmission spectrum of each
MZI.

A. Nominal Extraction

A nominal model neff is created by averaging the extracted
parameters for all measured devices as shown in Fig. 10b. We
apply the extraction method described in Section II-E to every
collected transmission spectrum. A preliminary model is built
using the simulation data described in Section II to estimate
the expected device FSR for each waveguide width variation.
This estimated FSR is then fed into a peak finding algorithm
to extract the ng parameters, and then estimate fringe orders—
and, therefore the neff—of each measured device. As the
measured ng deviated a great deal from the simulated values,
the technique described in Section III-C is employed where a
preliminary model based on ∂2neff/∂λ

2 is created and used
to estimate waveguide geometry to estimate the fringe order.
All three Taylor-expansion parameters are then derived using
(10a)-(10c), and then averaged across for each width variation
across the entire wafer to create a nominal experimental model.
The extraction is then repeated locally for devices that are
close in proximity to one another to extract local values for
the model’s sub-parameters (Fig. 10c).

Fig. 10d shows that using (31) this first principal component
can explain 62.7% of all variance in the sub-parameter values
across the wafer. The authors determined that due to the clear
connection between the V and the three model parameters
that determine device behavior as w → ∞, this principal
component was likely capturing width-independent sources of
variance such as thickness variations (Fig. 10e). The authors
will now show that this provides a model robust enough for
capturing statistical behavior while preserving the goal for
clear physical interpretation.
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Fig. 12. a, Measured thermo-optic response of a measured MZI device. b,
Extracted value of ∂Tchip/∂Theater vs waveguide width using (9).

B. Statistical Extraction

The sum of the relative neff and ng errors is optimized using
the Nelder-Mead algorithm [58]. The drawn waveguide width
and the extracted V from the local extraction performed in
Fig. 10c are used as the initial guesses for w and V . Despite
the limited sample size of collected data, we can already see
several notable preliminary statistical trends in ∆w as a result
of our model. The model of neff extracted from each local
optimization was found to result in a close agreement between
the measured and modeled MZI performance. The extracted
values for V exhibits the intended physical behavior of process
parameter that varies slowly across the wafer (Fig. 11b). Local
optimization yielded a total, average intra-die, and average
local device standard deviation σV of 0.603, 0.386, and 0.167
respectively, showing a correlation between device proximity
and their extracted V values. The mean values of V for die
both (i) in close proximity to each other and (ii) equidistant
from the center of the wafer tend to be similar in value, as
shown in the inset of Fig. 11b.

Decoupling the process variations of V from the width
variations ∆w enables extraction of width-dependent systemic
effects, as shown in Fig. 11c(i). Our method estimates that
waveguide widths with smaller mean errors also tend to have
smaller σ∆w (Fig. 11c(ii)). This carries over as an explanation
for why for w = 2µm, neff varies more than for w = 1.2µm,
allowing insight on what waveguide geometry best minimizes
both σneff

and σng . This sort of process insight for circuit
designers is only possible due to the group benchmarking of
all device performance within a localized area.

Fig. 13. a, Microscopic image of a die with waveguide spiral test structures
for measuring width-dependent loss. Inset: magnified image showing three of
the test structures. b, Propagation loss measurement and fit data for a 440 nm
waveguide.

C. Thermo-optic Effect Model Validation

To validate the thermo-optic effect model developed in
Section II-D, we re-characterized the MZI transmission spectra
from a single die of the chip shown in Fig. 10a. The thermal
characterization was performed by adhering a Thorlabs TLK-
H polyimide heater to the side of the chip stage. The heater
was controlled by a Thorlabs TC200 Temperature Controller to
set the heater temperature. Thermal paste was applied between
the chip and the chip stage to minimize thermal resistance
between the chip and the heater. The thermal response of one
of the tested MZI is shown in Fig. 12. The fringe closest to
1550 nm is tracked at each temperature step and plotted against
temperature to extract ∂λ/∂T . This value is then compared to
our predicted value for ∂λ/∂T gained by taking the derivative
of λ in (11) with respect to temperature

∂λ

∂Tchip
=

∆L

m

∂neff

∂Tchip

∂Tchip

Theater

1− ∆L

m

∂neff,model

∂λ

, (23)

where m is the order of the tracked fringe, ∆L is the path
length difference between the two arms, and ∂Tchip/∂Theater

represents the heat transfer efficiency from the heater to the
chip itself. This last term is included as the authors only know
the temperature of the resistive heater rather than the chip
temperature itself. We know ∂Tchip/∂Theater ≤ 1 as heater
cannot raise the temperature of the chip to a value higher than
its own. The extracted parameters for ∆w and V are used in
calculating (23).
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Fig. 14. a, Plot of measured (scatter) and modeled (line) propagation loss
vs ∂neff/∂w. Slope of fit represents R in (4), while the intercept represents
non-SWR loss. b, Plot of measured (scatter) and modeled (line) propagation
loss vs waveguide width.

On average, the measured thermo-optic effect was found to
be 0.91× our model’s (9) prediction. This value was found to
be independent of waveguide geometry with the exception of
400 nm (Fig. 12b). This error for 400 nm is assumed to be be-
cause this width is close enough to the cutoff condition for our
model to lose accuracy. In contrast, the measured thermo-optic
effect was 1.21× the previously reported model’s prediction.
This implies that either the chip’s change in temperature is
greater than the heater’s or the previously reported model is
incorrect. The change in temperature of the PIC can only ever
be smaller than the heater’s temperature delta, making the old
model’s prediction clearly nonphysical.

D. Scattering Loss Model Validation

To validate the scattering loss model, we measured a die
with 25 spiral loss structures consisting of 5 different wave-
guide widths (w) from 400 nm to 500 nm and 5 different spiral
lengths (∆L) from 1 cm to 5 cm, fabricated on a custom 300
mm full wafer through AIM Photonics (Fig. 13). Again, all
spiral structures have a nominal waveguide height of 220 nm,
and grating couplers designed for quasi-TE polarization are
utilized for optical I/O. The losses of each spiral length were
recorded, and then fit to a linear equation. The slope of the
this fit was taken to be the propagation loss associated with
each waveguide width. The results of our model fit are shown
in Fig. 14. The model built in Section V-B was used to build
a model of ∂neff/∂w. Fitting our modeled ∂neff/∂w to the
measured propagation loss yields proportionality constant of
R = 6.206×10−8 cm and (Fig. 14a). The intercept of the loss
fit is interpreted as the aggregate non-SWR loss, with a value
of 0.901 dB. Fig. 14b shows the excellent agreement between
our model and the data, predicting the similar propagation
losses of both the 440 nm and 460 nm waveguides. As
mentioned in Section V-B, both 400 and 420 nm waveguide

Fig. 15. a, Cadence Virtuoso schematic of the MZI test circuit. All circuit
models were written in Verilog-A. The optical stimulus is provided by
a continuous-wave (CW) Laser and detected with a photodetector (PD).
b, Comparison of measured and simulated performance for an MZI with
w = 2 µm and ∆L = 100 µm.

widths are likely near the cutoff condition. Since (4) is only
valid sufficiently far away from this condition, those data
points are not included in the plot.

E. Verilog-A Implementation

To demonstrate its compatibility with electronic-photonic
co-simulation, the circuit model was implemented in Verilog-
A within Cadence Virtuoso (Fig. 15a). As Verilog-A does not
inherently support optical signals, some compatibility code as
well as a small library of photonic device models were built
based upon on previously reported demonstrations [32], [59],
[60].

VI. CONCLUSION

In summary, we have demonstrated a novel compact model
that can greatly expand the accuracy of circuit-level simulation
capabilities of silicon PICs. In contrast to prior work that
focused on providing metrology information that could be use
to fabrication engineers [26], [61], [62], we present this PDK
model as a tool suitable for true-to-measurement circuit simu-
lation and optimization. By leveraging this underlying physical
behavior and locally extracting process variations by perform-
ing group extraction, we have demonstrated a framework for
building a model of neff that is entirely driven by measurement
data. This model was shown to accurately describing the phase,
loss, and thermo-optic behavior of the measured integrated
waveguides over 4× the optical bandwidth and over 80×
the range of waveguides widths reported in prior work. We
envision that the advancement over prior demonstrations this
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work represents can support the development of waveguide-
based PDK components and enable the robust optimization of
next generation PICs.
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APPENDIX

A. Derivation of Thermo-Optic Model
Starting from (8) from [46], the effect of a thermal pertur-

bation on the effective index is investigated. Carrying out this
perturbation and following the chain rule yields:

2β
∂β

∂T
= 2Γcore

ω2

c2
ncore

∂ncore

∂T
+ 2Γclad

ω2

c2
nclad

∂nclad

∂T
. (24)

Noting that β = ωneff/c and inserting above, the relationship
simplifies to (25). Combining with (1) yields:

neff = neff, T0
+

∂neff

∂T
(T − T0) (25a)

∂neff

∂T
= Γcore

ncore

neff

∂ncore

∂T
+ Γclad

nclad

neff

∂nclad

∂T
. (25b)

It is noted that neff appears on both sides of the equation.
Multiplying both sides by effective index yields a quadratic
equation whose solution is:

neff =
neff, T0

2
+

1

2

√
n2

eff, T0
+ 4n′(T − T0) (26a)

n
′
= Γcorencore

∂ncore

∂T
+ Γcladnclad

∂nclad

∂T
. (26b)

The expression can be simplified by noting that n2
eff, T0

≫ 4n
′

for typical values for the thermo-optic coefficients. Under-
standing this, it is clear that the behavior of the square root
term is approximately linear. The 1st order Taylor expansion
of the square root term is:

neff, T0
+

1

2

4n
′√

n2
eff, T0

+ 4n′(T − T0)
(T − T0). (27)

Noting again that n2
eff, T0

≫ 4n
′
, (27) simplifies to:

neff, T0
+

2n
′

neff, T0

(T − T0). (28)

Replacing the square root term in (26) with this expression
and simplifying will then yield (9).

B. Principal Component Analysis
To start, we form a matrix X our of our list of local sub-

parameter extractions, where each column represents a model
parameter and each row is an observation of said parameter:

X =


∂0neff

∂λ0 0,1
∂0neff

∂λ0 1,1
· · · ∂2neff

∂λ2 4,1
∂0neff

∂λ0 0,2
∂0neff

∂λ0 1,2
· · · ∂2neff

∂λ2 4,2
...

...
. . .

...
∂0neff

∂λ0 0,n
∂0neff

∂λ0 1,n
· · · ∂2neff

∂λ2 4,n

 . (29)

A covariance matrix S is then created from X and find its
eigenvectors:

S =


v⃗0
v⃗1
...
v⃗n




λ0 0 · · · 0
0 λ1 · · · 0
...

...
. . .

...
0 0 · · · λn




v⃗0
v⃗1
...
v⃗n


−1

, (30)

where [v0, v1, · · · , vn] lists the eigenvectors and
[λ0, λ1, · · · , λn] are their associated eigenvalues. The
eigenvectors of the correlation matrix represent the directions
of the axes where there is the most variance (i.e. the most
information). Each eigenvalue λi is proportional to how much
variance is captured by its associated principal component
vi. Picking the eigenvectors with the largest eigenvalues
allows us to reduce data dimensionality at the expense of
some accuracy. The percentage of variability explained by a
principal component is calculated as∑M

i=0 λi∑N
i=0 λi

, (31)

where λi is the eigenvalue for each eigenvector, M is the
number of principal components the designer has chosen
to include, and N is the maximum number of principal
components.
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