Ultra-Efficient Foundry-Fabricated Resonant Modulators with Thermal Undercut

Anthony Rizzo1,* , Venkatesh Deenadayalan2, Matthew van Niekerk2, Gerald Leake3, Christopher Tison1, Asher Novick4, Daniel Coleman3, Keren Bergman4, Stefan Preble2, and Michael Fanto1

1Air Force Research Laboratory Information Directorate, Rome, NY 13441, USA
2Microsystem Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA
3College of Nanoscale Science and Engineering, University at Albany, Albany, NY 12203, USA
4Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
*anthony.rizzo.7@us.af.mil

Abstract: We demonstrate highly efficient vertical junction microdisk modulators with selective substrate undercut in a 300 mm CMOS foundry. The devices achieve record thermo-optic efficiency for sub-5 µm radius, enabling next-generation low-energy, highly-parallel DWDM links. © 2023 The Author(s)

1. Introduction and Results

Resonant modulators are essential devices for highly energy-efficient dense wavelength-division multiplexed (DWDM) silicon photonic links due to their inherent wavelength selectivity, compact footprint, and low energy consumption [1]. Enabled by silicon’s strong thermo-optic coefficient, integrated micro-heaters are typically necessary for such devices to tune and stabilize the resonant wavelength in the face of fabrication (static) and temperature (dynamic) variations. Previous demonstrations have shown modest electro-optic tuning to accommodate temperature variations on the order of 10 K [2, 3], but this range is an order of magnitude below the electronics-induced localized temperature swings possible in co-packaged optical interconnects. Thus, for realistic scenarios, integrated micro-heaters are required to achieve the necessary tuning range. However, such heaters can consume on the order of 25 mW P_π [4], which is prohibitive for low-power applications. Here, we demonstrate an ultra-efficient vertical junction microdisk modulator with an improvement in thermal tuning efficiency greater than $3 \times$ realized through a wafer-scale-compatible selective substrate undercut. Furthermore, the large overlap between the vertical junction and optical whispering gallery mode results in a large modulation efficiency compatible with small CMOS drive voltages. We measure key thermal metrics of $P_\pi = 8.4$ mW and $V_\pi = 2.7$ V for a representative 4.5 µm radius device, achieving record thermo-optic efficiency for a sub-5 µm radius resonant modulator while maintaining a CMOS-compatible voltage. The high efficiency, compact footprint, and wide free spectral range (FSR) of the demonstrated device will enable extreme scaling in the wavelength domain with ultra-low energy consumption for future DWDM silicon photonic links.

The detailed microdisk modulator device design is detailed in ref. [1]. Trench openings were defined in layout around the device (Fig. 1a) to enable the top-side undercut process. The integrated micro-heaters were designed using a doped silicon resistor in the interior of the disk with a 100 nm wide full silicon etch to isolate the heater from the junction contacts. The devices were fabricated on a dedicated 300 mm wafer through AIM Photonics and designed for full undercut processing at the wafer-scale. While the development fabrication process on test wafers fully released the designed devices (Fig. 1a), the devices from the first full-build wafer were not fully undercut and thus required additional post-processing to complete the isotropic substrate etch (inductively coupled plasma reactive ion etch to remove the ≈ 100 nm of remaining buried oxide and vapor phase xenon difluoride etch to selectively remove the silicon substrate [5]). Wafers using an updated undercut recipe are currently under fabrication and are expected to have fully released devices without any post-processing. The fully released devices were then optically characterized with a v-groove fiber array and electrical multi-contact wedge probes to measure the thermal and modulation efficiencies. Assuming that a $\frac{\pi}{2}$ phase shift is possible from temperature swings (Fig. 1c) and an additional $\frac{\pi}{2}$ phase shift is possible from fabrication variations, worst-case tuning of π is required for devices under realistic scenarios. We measure the modulation efficiency to be approximately 60 pm/V, which is on the same order as previous state-of-the-art demonstrations [2, 3]. However, the integrated micro-heater in our device enables a much larger tuning range ($> \pi$) than these previous demonstrations ($< \frac{\pi}{2}$) and only consumes 0.67 mW/nm, yielding a worst-case per-device energy consumption of 8.4 mW. From simulations, we anticipate that this value can be further reduced in next-generation designs to yield $P_\pi \approx 3$ mW ($10 \times$ improvement) through optimization of the heater geometry.
2. Conclusion

We have demonstrated ultra-efficient microdisk modulators in a commercial 300 mm foundry using vertical junctions to maximize the modal overlap with the depletion region for efficient high-speed modulation and a selective substrate undercut to realize optimal thermo-optic tuning. The optimized thermal tuning efficiency and modulation efficiency make the device fully compatible with state-of-the-art CMOS electronic voltages under realistic thermal loads, presenting an appealing path towards realizing future massively parallel DWDM co-packaged silicon photonic interconnects.

References

Acknowledgements: This work was supported in part by the U.S. Advanced Research Projects Agency—Energy under ENLITENED Grant DE-AR000843 and in part by the U.S. Defense Advanced Research Projects Agency under PIPES Grant HR00111920014. The wafer/chip fabrication and custom device processing were provided by AIM Photonics/SUNY Poly Photonics engineering team and fabricator in Albany, New York.