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Abstract: We present a new architecture for performing learning-based tasks directly on
an integrated photonic chip. We experimentally realize logical 2-bit gates AND, OR, and
XOR to accuracies of 96.8%,99%, and 98.5%, respectively. © 2022 The Author(s)

1. Introduction

Neuromorphic photonics has blossomed into a rich field of research and engineering as researchers continue to
seek improved methods for efficient computing. The notably attractive attribute of this field is light’s linear behav-
ior, which is well-suited to neural network algorithms. Specifically, either with simple beam splitters and phase
shifters (wavelength coherent designs) or ring-resonators and photodetectors (wavelength incoherent designs),
an integrated photonic circuit can implement any arbitrary vector-vector, or vector-matrix multiplication [1-3].
Wavelength coherent designs fall prey to poor scaling laws, both in physical size and individual optical element
count [1,2]. Wavelength incoherent designs, on the other hand, rely on destroying the signal through detection in
order to impart the activation step [3].

Here, we demonstrate a new architecture, which leverages the interference of the coherent design outlined in
Ref. [1] and the wavelength parallelism of resonant modulators to dramatically reduce the footprint of a network’s
linear stage. We use this architecture to demonstrate the learned classification task of recognizing the 2-bit logic
gates directly on chip.

2. Circuit Design

The coherent optical linear neuron (COLN) presented in Ref [1] utilizes Mach-Zehnder modulators (MZMs)
arranged in a nested branch configuration. The signal is passed to a fan-out, wherein each branch feeds to an input
MZM (x;), a phase shifter (=), and a weight MZM (w;); finally all the branches are combined at the fan-in — which
plays the role of coherently summing the N signals. This circuit maintains a mathematical equivalence to the linear
stage of a neural network, where the circuit results in the equation

N
Linear Stage = inwi. (D
i

For a silicon photonic application platform, we recognize that MZMs are generally large (~ 1 mm?) on-chip
elements. In order to decrease the footprint, we employ microresonator modulators (MRMs) in place of MZMs,
since MRMs have an on-chip size of ~ 10~* mm?. In addition, MRMs enable the same physical circuit to perform
coherent operation at multiple channel frequencies — effectively creating wavelength diversity for operation, such
that we have the result of Eq. 1 for each wavelength. We call this architecture concept a wavelength diverse
integrated photonic linear neuron (WDIPLN).

3. On-Chip Recognition of Logic Gates

We designed a simple, single wavelength WDIPLN circuit for a first principle demonstration. In Fig. 1 (a), we
show a full schematic of the designed photonic integrated circuit (PIC) and experimental setup. The PIC contains
two input MRMs — X, X, — and two weight MRMs — W, W,. We place a bias path in order to validate the full
range of [—1,1] for the weights; however, this path is not part of the trained network. We define a simple neural
network design with two inputs, one hidden layer with two nodes, and a single output node, as seen in Fig. 1 (b).
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Fig. 1. (a) The PIC schematic and experimental set up. (b) The neural network architecture for
training and implementing the 2-bit logic gates. (c)-(e) The reconfiguration scheme for updating and
recycling the PIC in (a) for the full network. (f)-(h) The results of 2-bit gates as measured through
the PIC.

We trained the neural network offline, determined the appropriate weight parameters (w1, wi2, w21, w22,11,5),
and stored these values. We characterized the transfer function of a single MRM and used this to impart a given
weight by assuming all the rings in this circuit were identical. We represent a “1”” and “0” on-chip by tuning the
MRM to off-resonance or on-resonance, respectively. With these building blocks, we use the method outlined in
Fig. 1 (c-e) to implement the simple neural network by reconfiguring the circuit three times to capture the behavior
of the network. A future design would bypass reconfiguration by integrating multiple circuits on a single PIC.

The selected 2-bit logic gates are AND, which gives a response of “1” only when both inputs are also “1,” OR,
which gives a response of “1” when any of the inputs are 1, and XOR, which gives a response of “1”” when only
one of the inputs are “1.” Using the method in Fig. 1 (c-e), we implemented the three logic gates iteratively and
with no thermal corrections for resonant drift, at a single evaluation wavelength of A = 1,526 nm. The results are
presented in Fig. 1 (f-h), with each the AND, OR and XOR gates achieving accuracies of 96.8%,99%, and 98.5%,
respectively.
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