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Recent advances in integrated photonics enable the implementation of reconfigurable, high-bandwidth, 
and low energy-per-bit interconnects in next-generation data centers. We propose and evaluate 
an Optically Connected Memory (OCM) architecture that disaggregates the main memory from the 
computation nodes in data centers. OCM is based on micro-ring resonators (MRRs), and it does not 
require any modification to the DRAM memory modules. We calculate energy consumption from real 
photonic devices and integrate them into a system simulator to evaluate performance. Our results show 
that (1) OCM is capable of interconnecting four DDR4 memory channels to a computing node using 
two fibers with 1.02 pJ energy-per-bit consumption and (2) OCM performs up to 5.5× faster than a 
disaggregated memory with 40G PCIe NIC connectors to computing nodes.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Scaling and maintaining conventional memory systems in mod-
ern data centers is challenging for three fundamental reasons. First, 
the dynamic memory capacity demand is difficult to predict in the 
short, medium, and long term. As a result, memory capacity is 
usually over-provisioned [49,59,26,65,30], which wastes resources 
and energy. Second, workloads are limited to using the memory 
available in the local server (even though other servers might have 
unused memory), which could cause memory-intensive workloads 
to slow down. Third, memory maintenance might cause availability 
issues [55]; in case a memory module fails, all running applications 
on the node may have to be interrupted to replace the faulty mod-
ule. A promising solution to overcome these issues is to disaggre-
gate the main memory from the computing cores [45]. As depicted 
in Fig. 1, the key idea is to organize and cluster the memory re-
sources such that they are individually addressable and accessible 
from any processor in the data center [16]. Memory disaggrega-
tion provides flexibility in memory allocation, improved utilization 
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Fig. 1. Disaggregation concept for data centers.

of the memory resources, lower maintenance costs, and lower en-
ergy consumption in the data center [60].

Disaggregating memory and processors remains a challenge, al-
though the disaggregation of some resources (e.g., storage) is com-
mon in production data centers [43]. Electrical interconnections in 
rack-distances do not fulfill the low latency and high bandwidth 
requirements of modern DRAM modules. The primary limitation 
of an electrical interconnect is that it constrains the memory bus 
to onboard distance [70] because the electrical wire’s signal in-
tegrity loss increases at higher frequencies. This loss dramatically 
reduces the Signal-to-Noise Ratio (SNR) when distances are large. 
An optical interconnect is more appealing than an electrical in-
terconnect for memory disaggregation due to three properties: its 
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Fig. 2. Required electrical and optical IO counts (lower is better) for sustaining dif-
ferent amounts of aggregated bandwidth.

(1) high bandwidth density significantly reduces the number of IO 
lanes, (2) power consumption and crosstalk do not increase with 
distance, and (3) propagation loss is low. Silicon Photonic (SiP) de-
vices are likely suitable for disaggregation, delivering ≥ Gbps range 
bandwidth, as well as efficient and versatile switching.

The goal of this work is to pave the way for designing high-
performance optical memory channels (i.e., the optical equivalent of 
an electrical memory channel) that enable main memory disaggre-
gation in data centers. Our work provides an optical link design 
for DDR DRAM memory disaggregation, and it defines its physi-
cal characteristics, i.e., i) number of Micro-Ring Resonator (MRR) 
devices, ii) bandwidth per wavelength, iii) energy-per-bit, and iv) 
area. We evaluate the performance (see Section 4.2) and energy 
consumption (see Section 4.3) of a system with disaggregated com-
modity DDR DRAM modules.

We make three key contributions: (1) we propose the Optically 
Connected Memory (OCM) architecture for memory disaggregation 
in data centers based on state-of-the-art photonic devices, (2) we 
perform the first evaluation of the energy-per-bit consumption of 
a SiP link using the bandwidth requirements of current DDR DRAM 
standards, and (3) we model and evaluate OCM in a system-level 
simulator and show that it performs up to 5.5× faster than a 40G 
NIC-based disaggregated memory.

2. Motivation

Photonics is very appealing for memory disaggregation because: 
(1) the integration (monolithic and hybrid) between electronics 
and optics has already been demonstrated [3], which allows the 
design and fabrication of highly-integrated and complex optical 
subsystems on a chip, and (2) optical links offer better scaling in 
terms of bandwidth, energy, and IO compared to electrical links; 
e.g., optical switches (o-SW) show better port count scaling [68]).

New electrical interfaces, such as GenZ, CCIX, and OpenCAPI, 
can disaggregate a wide range of resources (e.g., memory, acceler-
ators) [15]. Optical devices can enable scalable rack-distance, and 
energy-efficient interconnects for these new interfaces, as demon-
strated by a previous work that disaggregates the PCIe interface 
with silicon photonics [79]. Our OCM proposal extends the mem-
ory interface with optical devices and does not require substan-
tial modifications to it, e.g., the memory controllers remain on 
the compute nodes. It is a direct optical point-to-point approach 
without additional protocols, such as PCIe. OCM can be used in 
next-gen disaggregated datacenters [33], as optical transceivers in-
tegration on the server motherboard reaches maturity [2].

Fig. 2 shows the IO requirements in the memory controller 
for electrical [50], and optical interconnects to achieve a specific 
aggregated bandwidth. We define IO as the number of required 
electrical wires or optical fibers in the interconnects. We use, 
for both electrical and optical interconnects, 260-pin DDR4-3200 
DRAM modules with 204.8 Gbps maximum bandwidth per mem-
ory channel. We make two observations. First, the required num-
ber of optical IOs (left y-axis) is up to three orders of magnitude 
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smaller than the electrical IOs because an optical fiber can con-
tain many virtual channels using Wavelength Division Multiplexing 
(WDM) [19,9]. Second, a single optical IO achieves up to 800 Gbps 
based on our evaluation, requiring 2 IOs for bidirectional commu-
nication (see Section 4.3). An optical architecture could reach the 
required throughput for a 4 memory channel system using only 2 
IOs (two fibers) and for a 32-channel system with only 10 IOs.

3. OCM: optically connected memory

To overcome the electrical limitations that can potentially im-
pede memory disaggregation, we introduce an OCM that does not 
require modifications in the commonly-used DDR DRAM proto-
col. OCM places commodity DRAM Dual Inline Memory Modules 
(DIMMs) at rack-distance from the processor, and it sustains mul-
tiple memory channels by using different wavelengths for data 
transmission. OCM uses conventional DIMMs and memory con-
trollers, electro-optical devices, and optical fibers to connect the 
computing cores to the memory modules. Our work explores the 
idea of direct point-to-point optical interconnects for memory dis-
aggregation and extends prior works [21,5], to reduce the latency 
overhead caused by additional protocols such as remote direct 
memory access (RDMA) and PCIe [78]. OCM is versatile and scales 
with the increasing number of wavelengths per memory channel 
expected from future photonic systems [33].

3.1. Architecture overview

Fig. 3a shows the main components of the OCM architecture 
configured with state-of-the-art photonic devices and DDR memo-
ries. OCM uses N optical memory channels, each one consisting of 
X memory modules (DIMM 1 to X) operating in lockstep.

OCM uses two key mechanisms to take advantage of the high 
aggregated bandwidth of the optical domain while minimizing 
the electrical-optical-electrical conversion latency overhead. First, 
it implements an optical memory channel with multiple wave-
lengths that can support multiple DIMMs in a memory channel. 
Second, it achieves high throughput by increasing the cache line 
size and splitting it across all the DIMMs in a memory channel. For 
example, if OCM splits a single cache line between two DIMMs, it 
halves the bus latency (i.e., data burst duration t BL), compared to 
a conventional DDR memory. Then, more data will be moved per 
memory transaction.

In our evaluation (Section 4), we use two DDR channels operat-
ing in lockstep to get a cache line of 128 bytes with similar latency 
as a cache line of 64 bytes in a single DDR channel (Section 3.2). 
OCM benefits from the use of a wide Xn-bit interface, where X is 
the number of DIMMs, and n is the width in bits of a DIMM bus. 
OCM transfers depend on the serialization capabilities of the SiP 
transceiver.

The serialization/deserialization latency increases with the 
number of DIMMs in lockstep. Notice that a commercial SERDES 
link supports serialization up to 256 B (i.e., four 64 B cache lines). 
A larger than 64 B cache line can help overcome serializer under-
utilization. For example, the latency of 28 serialized transactions 
of 128 B is only 50% higher than the required latency for 28 seri-
alized transactions of 16 B [37].

As shown in Fig. 3a, on the CPU side, there is a Master con-
troller, and on the memory side, there are N Endpoint controllers 
that respond to CPU requests. Both controllers have a structure 
called SiP Transceiver, and Fig. 3b shows a difference in the or-
ganization of the SiP transceivers per controller. Fig. 3c shows the 
SiP transceivers present in the Transmitter (TX) and Receiver (RX) 
lanes in both Master and Endpoint controllers. A TX lane consists 
of a serializer (SER) and Modulator (MOD) for transmitting data. An 
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Fig. 3. Optically Connected Memory organization: optical memory channels for disaggregation of the main memory system.

Fig. 4. OCM timing diagram for Read (top) and Write (bottom) requests.
RX lane contains a Demodulator (DEMOD), a Clock and Data Recov-
ery (CDR) block, and a Deserializer (DES) for receiving data. Both 
TX and RX lanes connect with a Xn-bit (e.g., X = 2 and n = 64
in our evaluation) bus to the Endpoint controller, which forms the 
bridge between the lanes and the DRAM module.

3.2. Timing model

OCM transfers a cache line as a serialized packet composed of 
smaller units called flits, whose number depends on the serializa-
tion capabilities of the SiP transceiver. Fig. 4 presents the timing 
diagram of the OCM Read (RD) and Write (WR) operations. For 
reference, a conventional DDR DRAM memory channel uses 64 B 
cache lines; a data bus transfers each line as 8 B data blocks in 
8 consecutive cycles, and the 1 B Command (CMD) and 3 B Ad-
dress (ADDR) use separate dedicated buses. In OCM, as depicted 
in Fig. 4, the cache line is transferred in AB-GH flits. We show 
OCM timing with a f lit size that doubles the width of the mem-
ory channel data bus, and is the reason for dividing the cache line 
between DIMMs 1 and 2 to perform parallel access and decrease 
latency. OCM splits a single cache line between two DIMMs, which 
halves the bus latency (i.e., t BL [40]), compared to conventional 
DDR DRAM memory.

For the RD operation, data A and B are read from different 
DIMMs to compose a flit (AB). Flit AB serialization and transmis-
sion occur after the Master controller receives the CMD/ADDR flit. 
For the WR operation, the Master controller sends the flit con-
taining data blocks AB immediately after the CMD/ADDR flit. After 
Endpoint deserialization, DIMM 1 stores A, and DIMM 2 stores B. 
For example, OCM with a commercial Hybrid Memory Cube (HMC) 
serializer [37] and 128 B cache line size, transfers 2 × (4 × 16 B 
of data) with 1 × 4 B CMD/ADDR initiator message (or extra flit).
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Compared to conventional electrical DDR memory, OCM adds 
serialization and optical packet transport latency to the overall 
memory access time (see Section 4). The DIMM interface can sup-
port the latency overhead that is imposed by our optical layer 
integration. In our evaluation, we consider both optimistic and 
worst-case scenarios. Past experimental works [5] show that the 
overhead is low in the order of a few nanoseconds, requiring no 
modification to the memory controller. However, if there is high 
latency imposed by the optical layer, the signaling interface from 
the memory controller needs to be adapted. Equation (1) shows 
the OCM latency model Tlat , which is defined as the sum of the 
DIMM controller latency Tcontr , DIMM WR/RD latency Tmem(A|B)

(latency is equal for both DIMMs), serialization/deserialization la-
tency Tserdes , modulation/demodulation latencies Tmod and Tdemod , 
distance propagation latency penalty Tdist , and system initializa-
tion time (e.g., Clock Data Recovery (CDR) latency, modulator reso-
nance locking [58]) Tsetup .

Tlat(t) =Tsetup + Tcontr + Tmem(A|B)(t) + Tserdes + Tmod

+ Tdemod + Tdist
(1)

Tsetup equals zero because it has no impact on the system once 
it is configured [5]. In the optical and millimeter wavelength bands, 
Tmod and Tdemod are in the order of ps [9], due to the small 
footprint of ring modulators (tens of micrometers) and the high 
dielectric constant of silicon.

3.3. Operation

Fig. 3a illustrates the five stages of a memory transaction.

Stage 1 : the processor generates a Read/Write (RD/WR) memory 
request. In the photonic domain, a laser source generates light in 
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Table 1
Baseline processor, memory, OCM, and NIC.

Baseline Processor 3 GHz, 8 cores, 128 B cache lines
Cache 32 KB L1(D+I), 256 KB L2, 8 MB L3

MemConf1 Mem 4 channels, 2 DIMMs/channel, DDR4-2400 [40]

MemConf2 Mem 1 channel, 2 DIMMs/channel, DDR4-2400
DRAM cache 4 GB stacked, 4-way, 4K pages, FBR [77], DDR4-2400

OCM SERDES latency: 10/150/340 cycles
Fiber latency: 30/60/90 cycles (2/4/6 meters roundtrip)

NIC 40G PCIe [57] latency: 1050 cycles
λ1,2,...,K wavelengths simultaneously [10].

Stage 2 : the data from the processor is serialized (SER) onto the 
Master Controller’s TX lane, and the generated electrical pulses 
p1,2,...,m(t) drive the cascaded array of Micro-Ring Resonators 
(MRRs) for modulation (MOD), represented as rainbow rings. We 
use non-return-to-zero on-off keying (NRZ-OOK) that represents 
logical ones and zeros imprinted on the envelope of light [9].

Stage 3 : the optical signal is transmitted through an optical fiber. 
At the end of the fiber, the combined optical WDM channels are 
coupled into an optical receiver.

Stage 4 : first, in the RX lane of an Endpoint, the WDM Demodula-
tor (DEMOD) demultiplexes the optical wavelengths using m MRRs. 
Each MRR works as an optical band-pass filter to select a single 
optical channel from λ1,2,...m . Second, these separated channels are 
then fed to DEMOD’s integrated photo-detectors (PD) followed by 
transimpedance amplifiers (TIA). Together the PD and TIA convert 
and amplify the optical signal to electrical pulses p′

1,2,...,m(t) suit-
able for sampling. Third, the data is sampled, deserialized (DES), 
and sent to the memory controller.

Stage 5 : the processor accesses memory with the DDR protocol 
using a RD or WR command and a memory address. For a RD com-
mand, the Endpoint TX transmits to the processor a cacheline with 
the wavelengths λ1,...,m (similar to Stages 1 to 4). For a WR com-
mand, the data received from the processor is stored in memory.

3.4. Enabling reconfigurability

OCM supports reconfigurability by placing an o-SW between 
the Endpoints and the Master controller, similar to previous 
work [5]. OCM uses optical switching to connect or disconnect 
a master controller from an endpoint. Switching can happen (1) 
in the setup phase, which is the first time that the system is con-
nected before starting execution, or (2) before executing a work-
load, to adapt the amount of assigned memory to the requirements 
of the workload.

As depicted in Fig. 5, an optical switch has multiple ports, 
through which a set of N processors can be connected to a config-
urable set of M OCMs, where N and M depend on the aggregated 
bandwidth of the SiP links. In Section 4, we evaluate OCM with a 
single CPU, and assume that the setup phase is already completed.

3.5. High aggregated bandwidth

OCM uses WDM [9,19] to optimize bandwidth utilization. WDM 
splits data transmission into multiple colors of light (i.e., wave-
lengths, λs).

To modulate data into lightwaves, we use Micro-Ring Resonator 
(MRR) electro-optical modulators, which behave as narrowband 
303
Fig. 5. Reconfigurable OCM with optical switches (o-SW).

resonators that select and modulate a single wavelength. We use 
MRRs because they have a small hardware footprint and low power 
consumption [10], and they are tailored to work in the commu-
nications C-band (1530-1565 nm). For more detail on photonic 
devices, please see [33,69,6].

OCM achieves high aggregated bandwidth by using multiple op-
tical wavelengths λ1,2,...,K (see laser in Fig. 3a) via WDM in a single 
link. The K wavelengths are evenly distributed among the con-
trollers, where the TX/RX lanes of a single DDR memory channel 
have the same number (m) of optical wavelengths (λ1,2,...,m , see 
Fig. 3c). All wavelengths have the same bit rate br , and the aggre-
gated bandwidth for N memory channels is BWaggr = br × m × N . 
Assuming that BWaggr is higher than the required bandwidth for 
a single memory channel BWmc , then BWaggr = BWmc × N . The 
total number of MRRs is 2 × 2 × 2 × N × m because each TX or RX 
lane requires m MRRs. OCM has two unidirectional links; each link 
needs both TX and RX lanes, and these lanes are located in both 
Endpoint controllers and Master controllers.

4. Evaluation

Before showing our evaluations of OCM system-level perfor-
mance (in Section 4.2), and SiP link energy estimation (in Sec-
tion 4.3), we describe our methodology for evaluation.

4.1. Evaluation methodology

OCM performance. To evaluate system-level performance, we 
implement OCM architecture in the ZSIM simulator [67]. Table 1
shows the configuration of our baseline system (a server proces-
sor), the two DDR4 memory configurations used in our evaluation 
(MemConf1 and MemConf2), the latencies of an OCM disaggre-
gated system, and the latencies of a disaggregated system using 
40G PCIe NICs. MemConf1 has 4 DDR4 memory channels as in 
conventional server processors, and MemConf2 has a single DDR4 
memory channel, and an in-package DRAM cache on the processor 
side.

The goal of the DRAM cache is to reduce the optical disaggre-
gation overhead [78], which can have a significant performance 
impact in memory-bound applications. Our DRAM cache resem-
bles the Banshee DRAM cache [77] that tracks the contents of the 
DRAM cache using TLBs and page table entries, and replaces pages 
with a frequency-based predictor mechanism. We configure our 
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Table 2
Evaluated SPEC06 & SPEC17 benchmark mixes.

SPEC06 mix1 soplex_1, h264, gobmk_3, milc, zeusm, bwaves, gcc_1, omnetpp
mix2 soplex_1, milc,povray, gobmk_2, gobmk_3, bwaves, calculix, bzip2_2
mix3 namd, gromacs, gamess_1, mcf, lbm, h264_2, hmmer, xalancbmk

SPEC17 mix1 exchange2, cactus, gcc_2, imagick, fotonik3d, xalancbmk, xz_2, lbm
mix2 gcc_1, nab, lbm, leela, mcf, xz_1, sroms, omnetpp
mix3 xalancbmk, nab, cactus, mcf, imagick, xz_1, fotonik3d, deepjeng
DRAM cache to have the same operation latency as commodity 
DDR4 memory.

We calculate the SERDES link latency values for the upcom-
ing years. We estimate the minimum at 10 cycles, which assumes 
3.2 ns serialization/deserialization latency [42]. We use 340 cycles 
(113 ns) maximum latency reported in a previously demonstrated 
optical interconnection system [63]. We simulate rack distances of 
2 m, 4 m, and 6 m with a 5 ns/m latency [1], which translates into 
30, 60, and 90 cycles latency in our system.

For a Network Interface Card (NIC) based system configuration, 
we evaluate a scenario using a 40G PCIe NIC. The 40G bitrate 
per link is similar to commercially available devices, e.g., Infini-
band HDR [52]. We consider a NIC latency of 1050 cycles (350 
ns) [1], a realistic NIC-through-PCIe latency is in the order of μs 
[57] (e.g., ≈0.5 μs for Infiniband HDR). We dimension both 40G 
PCIe NIC links and OCM based on latency penalties in our system-
level simulator. Both have enough bandwidth to support the DRAM 
memory used in our evaluation. Notice that the main differences 
from a commercially available optical 40G to OCM are: (1) the 
number of fiber links required to sustain the memory bandwidth 
of the memory pool, (2) the energy-per-bit consumption, and (3) 
the characteristics of the photonic devices. We custom-tailored the 
SiP links required to disaggregate memory (see Section 4.3).

We evaluate the system-level performance of OCM with ap-
plications from six benchmark suites representing three workload 
scenarios: (1) multi-program, (2) multithread, and (3) multinode.

(1) The first scenario for multi-programmed workloads depicts 
a mix of benchmark applications executing concurrently. We 
used SPEC06 [38] with Pinpoints (warmup of 100 million in-
structions, and detailed region of 30 million instructions), and 
SPEC17 [23] speed with reference inputs. Table 2 lists the con-
tent of the used SPEC benchmark mixes.

(2) The second scenario represents multithreaded workloads, i.e., 
a single application with multiple threads executing on a mul-
ticore processor. We used PARSEC [18] with native inputs, 
SPLASH2 [17] with simlarge inputs, and GAP graph bench-
marks [13] executing 100 billion instructions with the Web
graph input, and 30 billion instructions with the Urand graph 
input. The Urand input has very poor locality between graph 
vertices compared to the Web input. We also used five MPI 
applications from the NAS Parallel Benchmark (NPB) [11] with 
class C inputs, executing 100 billion instructions for FT, MG and 
CG, and whole running IS and EP. For these MPI applications, 
we split them over 8 processes, 1 process per core.

(3) For multinode workloads, a single application executes on 
multiple nodes of a computer cluster. We considered a com-
puter cluster composed of eight nodes with the same charac-
teristics as shown in Table 1. We used the same MPI applica-
tions from NPB that we used on the multithreaded workload 
scenario, but instead of running all eight processes on the 
same node, we distribute them among eight nodes, one pro-
cess per node. Our goal is to evaluate workload executions 
with OCM considering the network overhead. As ZSIM lacks 
the simulation of the network layer, we used a two-step sim-
ulation approach to account the node-to-node communication 
overhead. On the first step, we execute the MPI application on 
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Table 3
Optical and electrical models for OCM SiP link devices.

Parameter Design Criteria Details Ref.

Optical power 20 dBm Max. aggregated
Center wavelength 1.55 μm
Laser 10% and 30% Laser wall-plug 

efficiency
[24]

Waveguide loss 5 dB/cm fabrication roughness [35]
0.02 dB/bend waveguide bend loss

Coupler loss 1 dB off-chip coupler [27]
Modulator Q = 6500 Ring resonator Q 

factor
[62]

ER = 10 dB MRR extinction rate
65 fF Junction capacitance
−5 V Maximum drive 

voltage
1 mW Thermal-tuning 

power/ring
[6]

Mod. mux and 
receiver demux

MRR power 
penalties

Crosstalk model [9]

Photodetector 1.09 A/W Current per opt. 
power

[32]

Modulator driver 28 nm Semicond. tech. for 
OOK-WDM

[62]

SERDES power model 28 nm Semicond. tech. [62]
Digital receiver 28 nm Semicond. tech. for 

OOK-NRZ
[62]

Element positioning 100 μm Modulator padding

ZSIM, considering only one of the eight created processes. We 
considered the first process (rank 0) and ignored the others 
(ranks 1-7). Which process to choose not to ignore is irrel-
evant because of the evenly distributed workload among the 
processes of the used benchmarks. This execution allows mea-
suring performance, i.e., speedup, without node-to-node com-
munication overhead of a single process while running on a 
single node with OCM. On the second step, we modeled a 
computer cluster with the SimGrid simulator [25] and tuned 
each node’s processing power according to the speedup ob-
tained in the first step. We executed the MPI benchmarks 
on our tuned cluster model using the SimGrid MPI interface 
[29], obtaining a performance measurement that considers the 
network overhead. The cluster model we used resembles the 
topology from a local computer cluster named Kahuna, where 
the eight nodes are connected via a Mellanox SX6025 switch. 
We measured the bandwidth and latency on node to node 
communication in Kahuna using two kernels, osu_latency and 
osu_bw, both from the OSU benchmark suite [46]. In the first 
step of our two-step simulation approach, we executed 9 bil-
lion instructions for IS, 24 billion instructions for FT, 8 billion 
instructions for CG, 7 billion instructions for MG and 21 billion 
instructions for EP. On the second step, all the applications ex-
ecuted without any limitation on the number of instructions.

Table 4 summarizes the measured memory footprint values for 
all the benchmarks used in our evaluation, measured using the 
Massif tool from Valgrind [56]. The measured memory footprint 
of MPI applications from NPB is for the application code only, and 
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Table 4
Measured memory footprints.

SPEC06 [38] MIX1: 2.2 GB, MIX2: 3.1 GB, MIX3: 2.4 GB
SPEC17 [23] MIX1: 19.9 GB, MIX2: 36.4 GB, MIX3: 34.7 GB.
PARSEC [18] canneal: 716.7 MB, streamcluster: 112.5 MB, ferret: 91.9 MB, raytrace: 1.3 GB, fluidanimate: 672 

MB
SPLASH [17] radix: 1.1 GB, fft: 768.8 MB, cholesky: 44.2 MB, ocean_ncp: 26.9 GB, ocean_cp: 891.8 MB.
GAP [13] Urand graph: 18 GB, Web graph: 15.5 GB
NPB [11] Class C Integer Sort (IS): 2.3 GB, Fast Fourier Transform (FFT): 7.2 GB, Conjugate Gradient (CG): 1.2 GB, 

Multi Grid (MG): 3.5 GB, Embarrassingly Parallel (EP): 34.4 MB

Fig. 6. Slowdowns of OCM and 40G NIC-based disaggregated systems, compared to a non-disaggregated baseline with MemConf1, for three randomly-selected mixes of 
SPEC06 benchmarks (lower is better).
it does not include the memory footprint from the MPI process 
manager.

We also used a synthetic benchmark, that resembles the copy
kernel from the STREAM benchmark [51], to obtain the OCM mem-
ory roofs, based on the memory roof concept of the Roofline 
model [73].

SiP link energy-per-bit. To evaluate the interconnection be-
tween processor and memory as a point-to-point SiP link, we use 
PhoenixSim [66] with parameters extracted from state-of-the-art 
optical devices [9,62,8]. PhoenixSim considers the physical features 
of the optical devices and their digital semiconductor drivers to 
evaluate many SiP link energy-per-bit cases in terms of: (1) the 
required number of optical wavelengths (λ), and (2) the bit rate 
per λ. Table 3 lists OCM optical devices and their main character-
istics used in our simulation model.

4.2. System-level evaluation

Multiprogrammed evaluation. Fig. 6 shows the slowdown of OCM 
and 40G NIC-based disaggregated memory systems with Mem-
Conf1, compared to a non-disaggregated MemConf1 baseline, for 
three mixes of SPEC06 benchmarks (Table 2). Notice that a system 
with disaggregated main memory is expected to perform worse 
than the non-disaggregated baseline, because of the extra latency 
introduced by the interconnects (see Eq. (1)).

We make two observations. First, the 40G NIC-based system is 
significantly slower than our OCM system, even though the Eth-
ernet configuration we evaluate is very optimistic (350 ns average 
latency, equivalent to 1050 cycles in Table 1). OCM is up to 5.5×
faster than 40G NIC for the minimum SERDES latency, and 2.16×
faster for the maximum SERDES latency. Second, the results show 
the feasibility of low-latency disaggregation with OCM as future 
SERDES optimizations become available. OCM has an average slow-
down (across all rack-distances) of only 1.07× compared to the 
baseline with a SERDES latency of 10 cycles, and 1.78× average 
slowdown with a SERDES latency of 340 cycles.

Fig. 7 shows the slowdown of OCM and a 40G NIC-based disag-
gregated system; both compared to a non-disaggregated baseline. 
We used MemConf2 and evaluated the MIX2 of SPEC06, which 
obtained the highest slowdown in our previous experiment with 
MemConf1 (as shown in Fig. 6). The NIC-based disaggregation 
shows an improvement of 2.54× when using the DRAM cache. 
Although it presents the most significant improvement compared 
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Fig. 7. Slowdown of OCM (150 cycles SERDES time) and 40G NIC-based disaggre-
gated systems (4 meters distance), compared to a non-disaggregated baseline with 
MemConf2, for the randomly-selected MIX2 of SPEC06 (lower is better).

to OCM, it still provides a higher slowdown than OCM (with and 
without DRAM cache). We observe the advantage of OCM over NIC-
based disaggregation, even when using DRAM cache.

Fig. 8 shows the speedup of a disaggregated OCM system (green 
bars) compared to a non-disaggregated baseline, both configured 
with MemConf1. Fig. 8 also shows the speedup of OCM with Mem-
Conf2 (red bars), and the speedup of a non-disaggregated system 
with MemConf2 (blue bars), both compared to a MemConf2 base-
line without a DRAM cache and without disaggregation. OCM has 
a conservative SERDES latency of 150 cycles, and a distance of 4 m.

Fig. 8 (left) shows the results for SPEC17 mixes (see Table 2). 
We make two observations. First, the average slowdown of OCM 
without DRAM cache (green bars) is 17%, which is in the same or-
der as the SPEC06 results (Fig. 6). Second, with a DRAM cache, the 
performance of the OCM disaggregated system (red bars), and the 
non-disaggregated system (blue bars) is very close, as the memory 
intensity of these benchmarks is not very high. As expected, the 
performance of the disaggregated system is always lower than the 
non-disaggregated system.
Multithreaded evaluation. Fig. 8 (right) shows the results for mul-
tithreaded graph applications. We make two observations. First, 
the maximum slowdown of OCM without a DRAM cache (green 
bars) is up to 45% (pagerank (PR)), which is in the same order 
as SPEC17 results, despite the Web input having very high local-
ity. The extra latency of the OCM disaggregated system has a clear 
negative effect on performance. Second, graph workloads dramat-
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Fig. 8. OCM speedup results with 4 m distance and a SERDES latency of 150 cycles (higher is better), compared to a disaggregated baseline, with or without a DRAM cache. 
Left: Speedup for SPEC17. Right: Speedup for GAP [13] graph benchmarks.

Fig. 9. OCM slowdown compared to the baseline for PARSEC and SPLASH2 benchmarks (lower is better).

Fig. 10. OCM slowdown results with a DRAM cache for PARSEC and SPLASH2 benchmarks on a system with 150 SERDES latency and 2 m rack distance (lower is better).
ically benefit from using a DRAM cache (red and blue bars), e.g., 
PR with Urand input shows a speedup of 2.5× compared to the 
baseline, which is 50% lower speedup than the non-disaggregated 
scenario. We believe that the performance degradation of OCM 
with DRAM cache is still reasonable. However, adding a DRAM 
cache also brings new challenges that need further investigation 
in a disaggregated setting, such as page replacement mechanisms 
and caching granularity [77,44,53,76,54,75,64,39].

Fig. 9 shows the slowdown of OCM compared to the base-
line, using MemConf1 with PARSEC and SPLASH2 benchmarks. We 
show results for the memory-bound benchmarks only. We also 
test other compute-bound benchmarks (not shown in the figure) 
that show less than 5% slowdown. We make three observations. 
First, with the lower bound SERDES latency (10 cycles) and low-
est rack distance (2 m), applications such as streamcluster, canneal
and cholesky, experience an average 3% speedup. This small im-
provement occurs as a result of Tmem reduction (t BL related) due 
to splitting of a cache line into two DIMMs. Second, the slow-
downs increase slightly as distance increases. Third, with large 
rack-distance and maximum SERDES latency, the slowdown is sig-
nificant. The highest slowdown measured is 2.97× for streamclus-
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ter at 6 m and 340 SERDES cycles; the average slowdown is 1.3×
for SPLASH2 and 1.4× for PARSEC.

Fig. 9 shows the slowdown of OCM compared to the base-
line, using MemConf1 with PARSEC and SPLASH2 benchmarks. We 
show results for the memory-bound benchmarks only. We also 
test other compute-bound benchmarks (not shown in the figure) 
that show less than 5% slowdown. We make three observations. 
First, with the lower bound SERDES latency (10 cycles) and low-
est rack distance (2 m), applications such as streamcluster, canneal
and cholesky, experience an average 3% speedup. This small im-
provement occurs as a result of Tmem reduction (t BL related) due 
to splitting of a cache line into two DIMMs. Second, the slow-
downs increase slightly as distance increases. Third, with large 
rack-distance and maximum SERDES latency, the slowdown is sig-
nificant. The highest slowdown measured is 2.97× for streamclus-
ter at 6 m and 340 SERDES cycles; the average slowdown is 1.3×
for SPLASH2 and 1.4× for PARSEC.

Fig. 10 shows the slowdown of OCM with DRAM cache in a 
conservative scenario, i.e., medium rack distance (4 m) and SERDES 
latency (150 cycles), using MemConf2 with memory-bound bench-
marks of PARSEC and SPLASH2. We additionally explore MemConf2 
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Fig. 11. Speedup of the usage of DRAM cache (with and without OCM) and OCM 
compared to the baseline for NPB benchmarks (higher is better), using eight pro-
cesses all on a single node.

with a 1 GB DRAM cache. We make two observations. First, using 
a DRAM cache reduces the latency overhead caused by OCM dis-
aggregation. The average slowdown is 0.89× for OCM with a 1 
GB DRAM cache and 0.83× for OCM with a 4 GB DRAM cache. 
However, OCM with a 1 GB and 4 GB DRAM cache performs 
faster compared to the 1.33× slowdown of an OCM system with-
out DRAM cache. Second, OCM can also benefit from a lowersized 
DRAM cache depending on the workload memory footprint and 
access behavior. The ocean_ncp and streamcluster benchmarks have 
the highest slowdown with OCM. Both benchmarks exhibit a simi-
lar performance improvement using a 1 GB DRAM cache compared 
to a 4 GB DRAM cache. The ocean_ncp benchmark performs only 
3% slower in an OCM system with a 1 GB DRAM cache than an 
OCM system with a 4 GB DRAM cache. While executing ocean_ncp
benefits from a 1 GB DRAM cache because of its large memory 
footprint of ≈ 27 GB, benchmarks with low memory footprint such 
as cholesky (≈ 44 MB) does not benefit from a DRAM cache due to 
the TLB overhead. Using a smaller DRAM cache can help reduce 
area and electrical energy consumption on an OCM system’s pro-
cessing side.

Fig. 11 shows the OCM speedup using MemConf2 with the NPB 
benchmarks. These results present a maximum slowdown of 27% 
with the CG benchmark, while with the other benchmarks, the 
performance loss stays within 14%. Using a DRAM cache exhibits 
a performance improvement on all benchmarks except on EP. This 
occurred due to the extremely low memory footprint from this 
benchmark, as depicted in Table 4.

Multinode evaluation. Fig. 12 shows the results of a multin-
ode scenario, obtained through a two-step simulation method de-
scribed in Section 4.1, running NPB benchmarks on eight different 
nodes, one process per node. This multinode execution case ex-
hibits a reduced variation in performance compared to the mul-
tithreaded workloads. The difference between the average perfor-
mances of the three configurations stays within 7%. This is due to 
two factors that diminish the impact of the memory system. The 
first factor is that the memory footprint of each benchmark was 
also split among the eight nodes. Considering the 34.4 MB mem-
ory footprint from EP, the eighth part is around 4.3 MB, which 
entirely fits the 8 MB L3 Cache. The second factor is that net-
work performance has a significant impact on these applications. 
We considered a node to node latency of 8 microseconds (around 
24000 cycles). As a comparison, our worst SERDES overhead con-
sideration for OCM was 113 nanoseconds (340 cycles). Depending 
on how the applications can overlap computation and network 
communication, the performance bottleneck may shift from the 
memory system to the network performance.
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Fig. 12. Speedup of the usage of DRAM cache (with and without OCM) and OCM 
compared to the baseline for NPB benchmarks (higher is better), using eight pro-
cesses distributed among eight nodes (1 process per node).

Fig. 13. Memory roof, using MemConf2, of DRAM cache, electrical memory and OCM 
using a single threaded application.

Fig. 14. Memory roof, using MemConf2, of DRAM cache, electrical memory and OCM 
using a multithreaded application (8 threads).

Memory roofs. Fig. 13 and 14 present the memory roofs ob-
tained with MemConf2 configuration. Fig. 13 represents the mem-
ory roofs obtained from a single core (1 thread), while Fig. 14
represents the memory roofs obtained from a multithreaded ex-
ecution (8 threads, one per core). OCM with DRAM cache shows 
an increase in bandwidth performance according to the bandwidth 
demand. They increase their bandwidth on the multithreaded case 
(3.79× for DRAM cache and 1.88× for OCM), while the electrical 
memory exhibits no variation on its performance. With the higher 
bandwidth demand from the multithreaded application, OCM com-
pares to the electrical memory in bandwidth performance, and the 
DRAM cache exhibits an advantage over the electrical memory. 
This behavior shows that OCM can achieve similar performance to 
the electrical memory bandwidth on the best case (cache-friendly 
memory accesses). Concurrently, a DRAM cache may become only 
an additional level on the memory hierarchy, without any gain of 
performance, on lower bandwidth demands.

We conclude that OCM is very promising because of its rea-
sonably low latency overhead (especially with the use of a DRAM 
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Fig. 15. SiP link energy-per-bit using a laser with 10% efficiency. Left: at 615 Gbps bandwidth, Right: at 800 Gbps bandwidth.

Fig. 16. SiP link energy-per-bit using a laser with 30% efficiency. Left: at 615 Gbps bandwidth, Right: at 800 Gbps bandwidth.
Fig. 17. Minimum SiP link energy consumption and number of wavelengths ten-
dency as a function of the aggregated bandwidth. Results that are currently feasible 
are highlighted. Aggregated bandwidth is measured in Gbps.

cache), and the flexibility of placing memory modules at large dis-
tances with small slowdowns.

4.3. SiP link evaluation

We evaluate the energy and area consumption of the SiP link 
to allow the system designer to make tradeoffs about the use of 
SiP devices in the computing system. It is enough to consider a 
single unidirectional modeled SIP link using PhoenixSim [66] with 
the input parameters shown in Table 3 to estimate the energy effi-
ciency. We estimate the minimum energy-per-bit consumption and 
the required number of MRRs for our model, given an aggregated 
optical bandwidth equivalent to the bandwidth required by DDR4-
2400 DRAM memory.
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A single DDR-2400 module requires 153.7 Gbps bandwidth [40]. 
4 memory channels, with 2 DIMMs per channel in lockstep, re-
quire ∼615 Gbps/link. OCM’s maximum feasible bandwidth (while 
remaining CMOS compatible) is 802 Gbps using the parameters in 
Table 3. More advanced modulation formats, such as PAM4 [69], 
can be used to achieve higher aggregated bandwidth. Figs. 15 and 
16 show the energy-per-bit results (y-axis), and the aggregated 
bandwidth. The aggregated link bandwidth is the multiplication of 
the number of λ (bottom x-axis values), and the aggregated bitrate 
(top x-axis values), i.e., a higher number of λs implies a lower bi-
trate per λ. We consider three feasible and efficient MRR sizes in 
our model: 156.4 (green), 183.5 (orange), and 218.4 μm2 (blue).

From Table 3, we have considered two cases of lasers, 10%-
efficient epitaxially-grown integrated laser, which is widely used in 
the SiP industry [41], and a state-of-the-art laboratory laser with 
a nominal efficiency of 30% [24] to demonstrate that improvement 
of optical features of a single device affects our SiP link energy es-
timation significantly. Our previous work [34] used off-chip lasers, 
while in this work, we report results using heterogeneous integra-
tion of lasers on silicon [41] and reducing the number of couplers 
per link.

As shown in Fig. 15, in OCM with 615 Gbps links using lasers 
with 10% efficiency, the minimum energy consumption overhead 
compared to the electrical memory system is 1.02 pJ/bit for 35 op-
tical wavelengths (λ) per link, each λ operating at 17.57 Gbps. The 
SiP link with the 30% laser efficiency achieved and energy con-
sumption of 0.64 pJ/bit with 39 λ’s, each operating at 15.8 Gbps, 
as depicted in Fig. 16.

The energy evaluation of the maximum feasible bit rate of a SiP 
link is also presented, with an aggregate bandwidth of 800 Gbps. 
The minimum energy consumption is 1.43 pJ/bit for 36 λ’s per link, 
each λ operating at 22.22 Gbps using a laser with 10% efficiency. 
The SiP link that has lasers with an efficiency of 30% showed en-
ergy consumption of 0.81 pJ/bit for 45 λ’s, each operating at 17.77 
Gbps.
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We make three observations from Figs. 15 and 16. First, as in 
electrical systems, it is expected that a higher bandwidth per link 
increases the link energy-per-bit consumption. However, the op-
tical energy-per-bit is lower compared to electrical systems. For 
reference, the energy-per-bit of a DDR4-2667 DRAM module is 
39 pJ [61]; thus, the energy-per-bit caused by an additional SiP 
link in the memory subsystem is less than 5%. Second, there is 
a non-smooth behavior on the energy-per-bit curves due to the 
energy consumption model of the optical receiver, which depends 
on the data rate. In our model, we set the photodetector current 
to a minimum value. As the data rate increases, the received sig-
nal becomes less distinguishable from noise. Our model forces the 
photocurrent to step into a new minimum value to avoid this, 
causing the repeated decrease and increase of the energy-per-bit 
values [10]. For both SiP links, the 183.5 μm2 rings consume the 
lowest energy. The estimated area overhead is 51.4E-3 mm2 with 
2 × 615 Gbps links, and 57.3E-3 mm2 with 2 × 802 Gbps links. In 
our case study of 4 DDR4 memory channels, OCM uses fewer phys-
ical interconnects (optical fibers) than 40G PCIe NIC links (copper 
cables). In other words, to achieve the required aggregated link 
bandwidth, we require 2 optical fibers with OCM or 30 copper ca-
bles with 40G PCIe NICs.

From Fig. 17, we make three observations: (i) with the current 
setup shown in Table 3, the energy per bit grows exponentially 
for aggregated bandwidths above 2500 Gbps and above the aver-
age DDR off-chip data movement energy at 3000 Gbps; (ii) the 
most energy-efficient number of wavelengths grows approximately 
linearly with the aggregated bandwidth; (iii) demonstrated fabri-
cation feasibility is highlighted up to 800 Gbps, and the region to 
the right is estimated with PhoenixSim, yet currently not feasible. 
Accordingly, we can say that OCM must include new and more ef-
ficient optical device models to grow beyond the 3000 Gbps mark. 
Furthermore, this growth must include optimizing MRRs -or simi-
lar devices- to either multiply the number of possible wavelengths 
or raise the bitrate per wavelength. The physics of this growth will 
be addressed in the Scaling of optical devices section.

We conclude that a bidirectional SiP link, formed by two unidi-
rectional links using current SiP devices, can fit the bandwidth re-
quirements of commodity DDR4 DRAM modules. OCM incurs a low 
energy overhead of only 10.2% compared to a non-disaggregated 
DDR4 DRAM memory (the energy consumption of current DDR4 
DRAM technology is ∼ 10 pJ/bit [69]).
Scaling of optical devices. Silicon has an indirect energy bandgap 
in near infrared frequencies. Thus, active devices such as lasers 
or photodetectors cannot be fabricated using only a single mate-
rial. Optical active devices on silicon are moving towards mono-
lithic integration of other energy efficient materials. Namely, het-
erogeneous integration of III-V-group materials epitaxially grown 
on silicon [71], and the integration of two-dimensional [28] and 
one-dimensional [47,31] materials to improve modulation, ampli-
fication, switching and photodetection. These techniques enable 
more efficient lasers, improve the sensitivity of photodetectors and 
reduce modulators driving power. These improvements can affect 
directly the SiP link estimated energy-per-bit, as shown in the 10% 
versus 30% integrated laser example discussed previously on this 
section.

Scaling of lasers on a silicon platform has advanced from epi-
taxially grown III-V quantum wells, in the scale of tens of nanome-
ters, towards epitaxially grown quantum dots. Although the physics 
of transversal confinement of light does not change over the years, 
the cavity length of the device has been shrunk down and its ef-
ficiency has improved [31]. In this work we considered as feasible 
an epitaxially grown on silicon 10% and 30% quantum-well lasers.

Photodetectors require active materials with an direct energy 
bandgap in the infrared. Germanium has been widely used for this 
purpose. However, defending the tendency of new materials for 
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smaller footprint, quantum dot photodetors with III-V materials, 
and the use of two-dimensional materials [48] are also relevant in 
the literature. In this work, we considered a Germanium optimized 
photodetector with a high sensitivity [32] which is feasible and 
CMOS compatible on a high scale.

Lastly silicon modulators are important features of the SiP link, 
and the ones that require the biggest footprint. Traditionally an 
electrooptic effect is induced on silicon by doping the MRR op-
tical waveguide slightly [7,6]. This is the modulation method we 
use in this work. However, as seen in Fig. 17, although there is 
a predictable linear evolution of the required number of λ’s, the 
energy-per-bit grows exponentially beyond the terahertz aggre-
gated bandwidth, making it nonviable to use all configurations as 
they are presented in the future. However, it is enough to include 
new devices in the PhoenixSim platform to estimate a new path 
for the growth of SiP links in OCM. The reader should also note 
that works with hybrid Silicon photonics and 2D semiconductor 
monolayers were demonstrated [28].

5. Related work

To our knowledge, this is the first work to propose an opti-
cal point-to-point disaggregated main memory system for modern 
DDR memories that (1) evaluates a SiP link with state-of-the-
art optical devices, (2) demonstrates that OCM incurs only 10.7% 
energy overhead compared to a non-disaggregated DDR4 DRAM 
memory, and (3) quantifies the performance implications of the 
proposed optical links at the system level on commonly-used ap-
plication workloads.

Brunina et al. [20,22] introduce the concept of optically con-
nected memory in a mesh topology connected with optical 
switches. Both works propose point-to-point direct access to the 
DRAM modules using Mach Zender modulators. These works mo-
tivate our study in optically connected memory. Brunina et al. [21]
also experimentally demonstrate that microring modulators can 
be used for optically connecting DDR2 memory. Our work builds 
on [21] to design the microring modulators used in our SiP links. 
There are several recent works [9,69,10] that propose analytical 
models of the microring used in our SiP links. Anderson et al. [5]
extend the work of Brunina et al. [20,22,21] to experimentally 
demonstrate the optical switches using FPGAs for accessing mem-
ory.

These prior works [5,21,22,20] are all experimental demonstra-
tions to show photonic capabilities. In contrast, our work addresses 
three important questions prior work does not: (1) How many op-
tical devices (i.e., MRRs) do we need for current DDR technology? 
(Section 4.3), (2) What is the energy and area impact on the sys-
tem? (Section 4.3), and (3) How does the processor interact with a 
disaggregated memory subsystem (system-level)? (Section 4.2).

Some other works, such as [72,79], point out, without evalua-
tion, that existing disaggregation protocols (i.e., PCIe and Ethernet) 
could lead to high-performance loss. Our work uses system-level 
simulation to measure the performance overhead of such protocols. 
We propose to alleviate the optical serialization overhead by using 
the DDR protocol (Section 3.1). As photonic integration improves, 
we believe that the optical point-to-point links will become the 
main candidate for interconnecting disaggregated memory. With 
our PhoenixSim [66] model, we explore the design of SiP links 
based on DDR requirements. Our proposal can be used to improve 
existing PCIe+photonics works, such as [74].

Yan et al. [74] propose a PCIe Switch and Interface Card (SIC) 
to replace Network Interface Cards (NIC) for disaggregation. SIC is 
composed of commercial optical devices and is capable of inter-
connecting server blades in disaggregated data centers. The evalu-
ated SIC shows a total roundtrip latency up to 426 ns. In contrast, 
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the scope of our work is point-to-point DDR DRAM disaggregation 
without PCIe or other additional protocols.

Other related prior works (1) explore silicon photonics inte-
gration with a many-core chip in an optical network-on-chip de-
sign [12], (2) propose the design of a DRAM chip with photonic 
inter-bank communication [14], (3) present an optoelectronic chip 
for communication in disaggregated systems with 4-λ and an en-
ergy consumption of 3.4 pJ/bit [4], (4) evaluate a memory disaggre-
gation architecture with optical switches focusing on re-allocation 
mechanisms [78], (5) analyze the cost viability of optical memory 
disaggregation [1], and (6) evaluate memory disaggregation using 
software mechanisms with high latency penalties in the order of 
μs [36]. Unlike [78,4,14,1,36], our work evaluates (1) system per-
formance with real applications, (2) the design of the SiP link for 
DDR DRAM requirements, and (3) SiP link energy for a disaggre-
gated memory system.

6. Conclusions

We propose and evaluate Optically Connected Memory (OCM), 
a new optical architecture for disaggregated main memory sys-
tems, compatible with current DDR DRAM technology. OCM uses 
a Silicon Photonics (SiP) platform that enables memory disaggre-
gation with low energy-per-bit overhead. Our evaluation shows 
that, for the bandwidth required by current DDR standards, OCM 
has significantly better energy efficiency than conventional electri-
cal NIC-based communication systems, and it incurs a low energy 
overhead of only 10.7% compared to DDR DRAM memory. Using 
system-level simulation to evaluate our OCM model on real ap-
plications, we find that OCM performs 5.5× faster than a 40G 
NIC-based disaggregated memory. We conclude that OCM is a 
promising step towards future data centers with disaggregated 
main memory.
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