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Abstract
As computing resource demands continue to escalate in the face of big data, cloud-connectivity
and the internet of things, it has become imperative to develop new low-power, scalable
architectures. Neuromorphic photonics, or photonic neural networks, have become a feasible
solution for the physical implementation of efficient algorithms directly on-chip. This application
is primarily due to the linear nature of light and the scalability of silicon photonics, specifically
leveraging the wide-scale complementary metal-oxide-semiconductor manufacturing
infrastructure used to fabricate microelectronics chips. Current neuromorphic photonic
implementations stem from two paradigms: wavelength coherent and incoherent. Here, we
introduce a novel architecture that supports coherent and incoherent operation to increase the
capability and capacity of photonic neural networks with a dramatic reduction in footprint
compared to previous demonstrations. As a proof-of-principle, we experimentally demonstrate
simple addition and subtraction operations on a foundry-fabricated silicon photonic chip.
Additionally, we experimentally validate an on-chip network to predict the logical 2 bit gates AND,
OR, and XOR to accuracies of 96.8%, 99%, and 98.5%, respectively. This architecture is compatible
with highly wavelength parallel sources, enabling massively scalable photonic neural networks.

1. Introduction

In recent years, integrated photonics has emerged as a viable and highly appealing candidate for neural
network (NN) hardware implementation. Photonic neural networks (PNN) hold particular promise com-
pared to traditional electronic implementations due to the highly favorable physical properties of photons
compared to electrons for performing linear operations; namely, (i) the bosonic nature of light permits
high degrees of parallelism in spatial mode and wavelength, (ii) such linear transformations are naturally
implemented using standard photonic elements (i.e., beamsplitters and phase shifters) at the speed of light,
and (iii) these operations can consume orders of magnitude less energy than their electronic counterparts
[1–5]. In particular, silicon photonics provides an ideal platform for PNNs due to its compatibility with the
standard complementary metal-oxide-semiconductor infrastructure used to fabricate microelectronic chips
and the high index contrast between silicon and silicon dioxide which permits unparalleled device density
[3]. Numerous approaches to optical NNs have been demonstrated in various platforms, including as spiking
[6, 7], phase-change materials [8–10], metal-sulfide microfibers [11, 12], photoelectric multiplication [10, 13],
and semiconductor optical amplifiers [14, 15]. However, two primary categories have emerged for PNNs in
the silicon photonics platform: wavelength coherent and incoherent [3].

Wavelength coherent designs rely on careful placement and tuning of Mach–Zehnder interferometers
(MZI), such that optical interference provides the multiplication and summation operations. Carefully
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designed MZI mesh circuits can implement any real-valued matrix on-chip by reconfiguring phase shifters
according to singular value decomposition [1, 16]. The coherent optical linear neuron (COLN) architecture
implements vector–vector multiplication and summation by leveraging MZIs as inputs and weights for multi-
plication and coherent interference as the summation operator [17, 18]. Wavelength incoherent designs rely on
multi-wavelength operation, often employing a broadband photodetector to perform summation, but through
this method the phase of the signal is lost to optical-electrical (OE) conversion. For example, in the ‘Broadcast
& Weight’ protocol, multiple wavelength channels are launched as inputs along the same waveguide, which
allows for parallel weighting with micro-ring resonator weight banks [19]. A balanced photodetector pair
sums the vector–vector multiplication; however, multiple micro-ring weight banks can operate in parallel for
vector-matrix operation, as demonstrated in [20].

In this work, we present a novel architecture that leverages both coherent and incoherent aspects to cre-
ate a massively scalable PNN specific linear operator. This architecture requires fewer components, provides
orders-of-magnitude footprint reduction, and consumes substantially less power than comparable designs.
As an initial proof-of-principle, we experimentally demonstrate simple addition and subtraction on-chip.
Additionally, we implement and demonstrate a NN task on-chip, designed to perform logic gate operations
(AND, OR, and XOR). Due to the compact footprint, low energy consumption, and scalability of the demon-
strated linear neuron, these results pave the way toward large-scale PNNs with hundreds to thousands of
neurons on a single silicon chip.

2. Proposed architecture

We begin our design derivation with inspiration from the COLN [17]. The operating principle of the COLN
employs four key stages: fan-out, input, weighting, and fan-in, as shown in figure 1(a). At the fan-out, a
continuous-wave (CW) optical carrier signal is split onto N copies. Here, the input and weight stage is repre-
sented by amplitude modulators, which are implemented in hardware as Mach–Zehnder modulators (MZM)
and impose the inputs and weights onto the CW carrier signal. This signal is recombined from N paths down to
1 path, performing summation of the N input/weight products at the fan-in through constructive interference.
Figure 1(b) demonstrates the equivalent NN diagram for this circuit, which performs the linear summation of
the inputs multiplied by the synaptic weights, preparing the carrier signal for the activation stage. This optical
circuit and the NN both reduce to the general form:

out =
N∑

n

wnxn, (1)

where, for the optical circuit, out is the electric field output, N as the number of layers in the width (or fan-out),
w is the weight vector, and x is the input vector. In this formulation, w and x are represented by the electro-
optic transfer function of the MZM in each layer similar to that seen in figure 1(c). A key feature of the COLN
circuit is that the output is in a state which, with minimal additional passive circuitry, is fully compatible
both with an activation based on OE, electrical processing, and electrical-optical (EO) conversion [21], direct
optical-electrical-optical activation [22] or all-optical, non-linear activation [23, 24].

In a fiber-optic based system, phase-shifters and splitters are readily available off-the-shelf [17]. How-
ever, when attempting to scale these down for an integrated photonic system, the size of MZM trans-
lates into a practical barrier. Current PN diode, free-carrier MZM devices each occupy a physical space of
>1 mm2 in on-chip area, severely limiting the scalability of this architecture. The first on-chip demonstration
of the COLN in a silicon photonic chip utilizes a 25 mm2 chip to implement a 4 input/weight linear neuron,
implementing the weights with thermal phase shifters, which are dramatically smaller at the cost of update
speed [25, 26].

Our circuit architecture, which we subsequently refer to as wavelength diverse integrated photonic linear
neuron (WDIPLN), begins as a COLN with naı̈ve replacement of MZMs with micro-resonant devices (MRD),
either micro-ring resonators or a micro-disks, as shown in figure 2(a). With MRDs, we immediately bene-
fit from the decrease in footprint. Single-channel MRDs are commonly <100 μm2 in size [27]. In addition,
careful design of the MRD allows for a desirable adaptation of the previous electro-optic transfer function, dis-
played in figure 2(c). The MRD acts as an amplitude filter both in the input and weight stage of the network,
for each bus in the layer width. MRDs are sensitive, but if the coupling condition is designed to be slightly
under-coupled, it is possible to mitigate some of the phase sensitivity (for example, a depletion biased MRD
would remain under-coupled during operation). This enables the coherent summation at the fan-in stage to
remain relatively stable for each channel.

Naı̈ve WDIPLN introduces a feature beyond the COLN, namely wavelength diversity. For sufficiently small
radii MRD (or, conversely, sufficiently large free-spectral-range (FSR)), we can place additional MRDs at new
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Figure 1. (a) The COLN architecture. The carrier signal is fanned out, where it meets an MZM that imparts the input and then
meets another MZM that impart the magnitude of the weight, with the phase shifter controlling the sign of the weight. Each bus
is then recombined at the fan-in stage, representing the vector–vector multiplication of the COLN. (b) An equivalent NN
diagram for this circuit. The unshaded region represents the multiplication and summation performed by the COLN, ignoring
the activation function which is external to this architecture. (c) A typical transfer function for a MZM. The extinction ratio
(ER) and phase can vary with design.

Figure 2. (a) The naı̈ve WDIPLN architecture. The carrier signal is fanned out, where it meets an MRD that imparts the input
and then meets another MRD that imparts the magnitude of the weight, with the phase shifter controlling the sign of the weight.
Each bus is then recombined at the fan-in stage, representing the vector–vector multiplication of the WDIPLN. (b) An equivalent
NN diagram for this circuit. The unshaded region represents the multiplication and summation performed by the WDIPLN,
ignoring the activation function which is external to this architecture. The tabs in the upper left-hand side represent the
WDIPLN’s ability to represent M many-to-one networks shown here. (c) A typical transfer function for a MRD. The ER and
phase can vary with design, however, in the ‘slightly undercoupled’ regime we will see a relatively flat phase response.

resonant wavelengths (or along specific channels, similar to wavelength-division-multiplexing (WDM) in opti-
cal communications). For example, in silicon photonics a sufficiently large channel spacing has been demon-
strated with a 2.5 μm radius microdisk modulator, with >55 μm, full width at half maximum of ∼0.2 nm,
and high quality factor (>8000), which indicates high channel isolation [27].

Recently, a similar WDM scheme was proposed using MZMs, but the WDIPLN implementation with ring
resonators have the advantage that the wavelength multiplexing/de-multiplexing is done intrinsically using
the single device in a compact footprint [18]. We show a schematic for the naı̈ve WDIPLN in figure 2(a).
This enables wavelength diverse operation of the coherent circuit at each wavelength channel, such that we
have an incoherent circuit which acts like a coherent operator at each channel (λ), with a slight adaptation of
equation (1) to

outλ =

N∑

n

wλ,nxλ,n. (2)
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Figure 3. (a) The fully formed WDIPLN architecture. The carrier signal is fanned out, where it meets a large MRD that imparts
the input to each channel simultaneously. Each channels input then meets a small MRD which imposes the magnitude of the
weight, with the phase shifter controlling the sign of the weight. Each bus is then recombined at the fan-in stage, representing the
vector-matrix multiplication of the WDIPLN. (b) An equivalent NN diagram for this circuit. The unshaded region represents the
multiplication and summation performed by the WDIPLN, ignoring the activation function which is external to this architecture.
This architecture fully enables the linear stage of MLP layer.

We can claim equation (2) for WDIPLN design with sufficiently isolated channels, where the interaction of
each resonance occurs only in and around that wavelength. As discussed above, this is achieved by using suffi-
ciently small MRDs with large FSRs. Using isolated wavelength channels enables the resonant based circuit
to act as any m individual COLN circuit for m ∈ M, where M here represents the number of wavelength
channels in operation and the number of COLN circuits represented by a single WDIPLN circuit. There-
fore, this design not only leverages smaller footprint devices, but enables further footprint reduction of a
given system of linear neurons from the limit of one optical circuit per perceptron to one optical circuit per
fully connected multi-layer perceptron (MLP) by using the input/weight pairs at each wavelength as shown in
figure 2(b).

In the naı̈ve case, we have simply swapped each MZM with an MRD, such that the circuit requires 2NM
MRDs, for layer width N and wavelength channels (or layer depth) M. This case is the same as using M COLN
circuits, which is equivalent only in abstracted device count complexity. Thus, an actual network with COLNs
would require M copies of the circuit resulting in a larger implementation. However, we recognize that the
input stage MRDs are redundant. Therefore, to realize full WDIPLN we replace all M input MRDs for a given
layer with a carefully designed, larger radius MRD with an FSR that matches the channel spacing, as out-
lined in figure 3(a). This adjustment lowers the total device count to N(M + 1), which represents a dramatic
improvement in device count scalability in addition to the physical size. As seen in figure 3(b), the WDIPLN
circuit in this form represents the linear weighting and summation stage of a fully connected MLP. A caveat
of the fully-realized WDIPLN architecture is the inability to realize phase shifting per weight. In this way,
we must limit the weight attribution to [−1, 0] or [0, 1]. The phase shifters in this architecture are here as a
global change to all weights simultaneously, serving both as path balancing and switching between subtrac-
tive or additive behavior. Table 1 summarizes the key differences between the COLN and WDIPLN, including
scaling rules, physical size, electrical I/O, and power consumption estimates from available foundry process
design kits (PDKs) [28–30]. We note that the physical size is calculated purely as fundamental device area,
although both the COLN and WDIPLN require additional optical and electrical routing to connect to the
outside world. This routing footprint was omitted from the total since it is highly implementation-specific
and depends heavily on packaging constraints (i.e., edge coupled versus grating coupled, flip-chip bonded
or wire-bonded, etc). However, is is clear that the extremely small device footprint of the WDIPLN archi-
tectures leave ample room for additional circuitry, such that optical couplers and electrical bond pads will
dominate the final device area. For example, 288 electrical pads (60 μm × 60 μm) on a 16 × 18 grid at
150 μm spacing take up 6.48 mm2 in on-chip area. If we add optical couplers (400 μm × 20 μm) on the
edge of the chip at a large pitch for ease of packaging, the total on-chip area is <7 mm2 for the WDIPLN of
N = 8, M = 8. In addition, we note the power consumption values are also simply estimated from available
information in [29], which utilize thermal isolation methods to achieve a Pπ ∼ 2.8 mW. Importantly, these
values serve to illustrate the improved power budget of the WDIPLN architecture—regardless of technology
implementation.
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Table 1. Table comparing the primary differences between the COLN and WDIPLN architectures. We consider the nominal COLN, a
COLN where weights are done with thermal MZIs, the naı̈ve WDIPLN and nominal WDIPLN. For physical size calculations, we only
consider the footprint of individual elements and recognize additional routing, both optical and electrical, will be necessary for each
design. The physical size and power consumption values were estimated from available foundry PDKs in [28–30].

Architecture (variation) COLN (nominal) COLN (W/thermal MZI) WDIPLN (naı̈ve) WDIPLN (nominal)

Input element MZM MZM Small MRD Large MRD
Approx. element size (mm2) 0.8 0.8 10−4 10−2

Weight element MZM Thermal MZI Small MRD Small MRD
Approx. element size (mm2) 0.8 10−1 10−4 10−4

Scaling rule 2NM 2NM 2NM N(M + 1)

Physical size (mm2) Component size only (no routing considered)
N = 8, M = 1 12.8 7.2 1.6 × 10−3 8.08 × 10−2

N = 8, M = 8 102.4 57.6 1.28 × 10−2 8.64 × 10−2

Electrical I/O Consider 4 electrical I/O per element (2 EO, 2 thermal)
N = 8, M = 1 64 64 64 64
N = 8, M = 8 512 512 512 288

Power consumption (mW) Same configuration (2 EO, 2 thermal)

EO power—(Pon/off )
N = 8, M = 1 2.72 1.36 1.6 0.48
N = 8, M = 8 21.76 10.88 12.8 3.84

Thermal power—(Pπ)
N = 8, M = 1 89.6 89.6 89.6 25.2
N = 8, M = 8 716.8 716.8 716.8 201.6

3. Experimental demonstration of simple addition

As an initial demonstration, we show the ability of WDIPLN to add and subtract in a simplified form. This
represents a fundamental building block of the architecture. While tuning the MRDs ultimately imposes the
input/weight onto the circuit, each of the N buses in the circuit are additionally reconfigurable via a phase
shifter. The phase shifter rotates the phase of a given bus so that we are able to express the sign coefficient of
the weights as either −1 or 1. Bias plays a role in many NN architectures, effectively shifting the set point of
the linear fit. Similarly, in this architecture, we can introduce a bias to change our set point. From an optical
perspective, this allows us to validate the operation of the circuit via direct measurement through a photodetec-
tor at the output [17]. The summation operator occurs as optical interference, which will ‘add’ (constructively
interfere) when the phase is the same, and ‘subtract’ (destructively interfere) when the phase is opposite. For an
initial demonstration, we consider the optical experiment in figure 4(a). We designed an WDIPLN circuit with
an added bias. There are five active circuit elements: the bias ring, R0, bias phase shifter, PS0, top arm ring R1,
top arm phase shifter PS1 and bottom arm ring R2. Each element is electrically connected via a wirebond to an
electrical fanout, which is in turn wirebonded to a printed circuit board (PCB) and connected to a source mea-
sure unit (SMU). The circuit is optically coupled from two single mode fibers (SMF28) embedded in a titled
fiber array to two grating couplers on either side of the circuit. A laser and detector pair are connected to the
other ends of the respective SMF28 fibers. The MRD we employ is a carrier injection-based PIN micro-ring res-
onator. We employ a PIN for proof of principle due to the large wavelength change, however, future systems will
utilize application specific, optimized MRDs operating in carrier depletion mode. The photonic integrated cir-
cuit (PIC) was fabricated in American Institute for Manufacturing (AIM) Photonics’ 300 mm silicon photonics
process [28].

We demonstrate a variety of circuit configurations as summarized in figure 4(b). We achieve these config-
urations by tuning the phase shifters to 0 or π (columns) and setting the rings at various resonant wavelengths
(rows), for which we indicate the state of each ring by the label of R0, R1, or R2. The bias path is slightly
shorter than the internal WDILPN, which means we can utilize the phase shifter and the natural wavelength-
dependent interference to extract the set-point behavior. Sub-figures (i), (v) and (ix) show three states of
addition with phase shifters tuned to 0 where the rings are all aligned to a single resonance (R0 = R1 = R2,
(i)), R1 is tuned off (R1 �= R0 = R2, (v)), and all the rings are at different resonances (R0 �= R1 �= R2, (ix)).
These states manifest as one, two, or three resonance peaks, respectively. Sub-figures (ii), (vi) and (x) demon-
strate the corresponding states where the bias phase is at π rather than 0. Due to manufacturing variations,
we observe behavior that deviates from the designed point. In (ii), we expect no signal to pass through; how-
ever, due to path and y-branch imbalance, the circuit floor is ∼−30 dB—additionally, small differences in the
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Figure 4. (a) Experimental setup. We optically couple the laser and detector to the PIC using SMF28 fiber. The PIC consists of a
simplified WDIPLN circuit with a bias line, for a total of 3 MRDs (R0, R1, R2) and two phase shifters (sign(R0), sign(R1). All of
the splitters/combiners are designed for equal splitting ratio. The electrical traces connect the device terminals to the bond pads,
which are wirebonded from the PIC to an electrical fanout and then connected to a PCB. The PCB is routed to an SMU through a
flat conductor cable (FCC). The SMU enables electro-optic control of each device. (b) Demonstration of addition and
subtraction. The columns here represent the tuning of the phase shifters in (a), and the rows represent the tuning of the MRDs.
The four columns show the following behavior: +R0 + R1 + R2, −R0 + R1 + R2, +R0 − R1 + R2, −R0 − R1 + R2. The three
rows demonstrate states where R0 ∼ R1 ∼ R2, R0 �= R1 ∼ R2, R0 �= R1 �= R2. The small wavelength range is kept to provide a
‘big-picture’ of the circuit behavior, however, we evaluate each operation at λ = λ0.

ring are seen in the transmission. Therefore, the maximum value in (ii) is ∼−33 dB at λ0, where the reso-
nant wavelength sits, which indicates a slight imbalance but overall high suppression of any difference in the
rings. Sub-figure (vi) shows two peaks above the minimum, as R0 �= R1 = R2, and (x) shows three distinguish-
able peaks as R0 �= R1 �= R2. The peaks are overlapping such that distinguishing individual peaks is difficult.
Sub-figures (iii) and (iv) demonstrate a single resonance, similar to (i); however, note the maximum power is
roughly−6 dB since no light passes through in the lower path and each y-branch contributes additional loss of
3 dB. Sub-figures (vii) and (viii) show detuned R0, and R1 = R2, where these rings fully cancel out each others’
magnitudes (subtraction). Sub-figures (xi) and (xii) demonstrate R0 �= R1 �= R2 for the subtraction operator,
which is seen by the distinct peak difference above and below the bias line. Finally, R1, R2 each flip signs between
(xi) and (xii) due to the phase control of the bias line.

4. Experimental demonstration of logic gates

We designed a second circuit in order to demonstrate a learning task. This design reflects the WDIPLN archi-
tecture for N = 2, M = 1, as seen in figure 5(a). This circuit places both input and weight rings along the
inner buses, along with a bias branch that also contains a ring. We wirebond out to an electrical carrier,
which we then connect to programmable SMU channels in order to electrically control each element. We
optically couple the laser and detector through fiber to grating couplers on the input and output waveguides,
respectively.

We selected a simple network architecture that is able to reconfigure the weights in order to represent AND,
OR and XOR gates, shown in figure 5(b). We trained these networks on a CPU using PyTorch [31]. For the
activation function we employ the rectified linear-unit (ReLU) for all stages. We can create a simple map from
the trained model to our physical chip by reconfiguring the chip in between the three linear stages, leading to
the three non-input nodes h1, h2 and out. For the ring resonators, we define a value of ‘0’ as Voff = 1.4 V and
‘1’ as Von = 1.2 V. This ensures we are operating in the slightly undercoupled regime for both ‘0’ and ‘1’. We
note that for this demonstration, the Voff and Von values are globally set for all rings. In addition, the bias ring
is set to Voff and the bias phase shifter is set to π/2, specifically for visibility of the full range of [−1, 1] through
direct detection as opposed to inference [17].

The process of reconfiguration and implementation of the two hidden nodes and the output is shown in
figures 5(c)–(e). For the two hidden nodes, h1 and h2, we configure the weights of the optical circuit, namely
|W1| and |W2|, according to the pairs of [w11,w21] and [w12,w22], respectively. In addition, if the sign of the
weight is negative, we adjust the corresponding phase shifter, namely sign(W1) and sign(W2), from 0 to π.
Once we configure the chip for h1, we feed the four input pairs [0, 0], [0, 1], [1, 0], [1, 1] into X1, X2. For each
input, we measure the output from the detector, apply the ReLU activation function used in training with a
‘3 dB cutoff’, and record the result. After the two hidden nodes are measured, we reconfigure the circuit for
the final stage, according to the final weight stage from training t1, t2. Finally, we feed the four recorded pairs
of h1, h2 into the circuit as inputs, measure the output, apply the activation function and record the result.
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Figure 5. Photonic neural network experimental demonstration. (a) Experimental set-up, similar to figure 4. We optically couple
the laser and detector to the PIC. The PIC consists of a WDIPLN circuit with N = 2, M = 1 and a bias line, for a total of 5 MRDs
and 3 phase shifters. All of the splitters/combiners are designed for equal splitting ratio. The electrical wiring goes out the bond
pads, which are wirebonded from the PIC to an electrical fanout and then connected to a PCB. The PCB is routed to a SMU
through a FCC. The SMU enables electro-optic control of each device. (b) The selected architecture for the simple NN we
implement for this task. Inputs (x1, x2) are connected by a weight matrix, w, to a hidden layer with nodes h1, h2. From here, a
simple weight vector, t, connects the hidden layer to the output. (c)–(e) The configure-recycle process for the circuit in (a). We
send in the input pairs [0, 0], [0, 1], [1, 0], [1, 1] as x1, x2 for the first two stages, and subsequently send in h1, h2 in the final stage.
We configure the weights of the WDIPLN to match that in (b) step-by-step from pairs [w11,w21], [w12,w22], and [t1, t2] for each
stage of the network, respectively. Each configure-to-measurement cycle takes approximately 1 s, which is dominated by the
read/write speeds of the SMUs. (f)–(h) Results of the experimental demonstration. The AND, OR and XOR gate correctly predict
the outputs with accuracy 96.8%, 99%, and 98.5%, respectively.

According to the training-to-implementation scheme described above and in figures 5(c)–(e), we demon-
strate the circuit’s performance for three different 2 bit logic gates, namely AND, OR and XOR. In training,
the accuracy of this simple network reaches ∼100%. The resulting outputs of the three gates are shown in
figures 5(f)–(h). The black dots are the square root (i.e. magnitude) of the output values measured by the
detector at the laser probe wavelength, which in this experiment was globally set to λ0 = 1, 526 nm. The error
bars represent the standard output deviation for a 100 pm window around, λ0 ± 50 pm. The blue triangles
show the outputs of the circuit after activation, and the red circles show the target for the gates. The AND, OR
and XOR gates achieve predictive accuracy of 96.8%, 99%, and 98.5%, respectively.

5. Conclusion

Silicon photonics holds promise for implementing large-scale PNNs directly on chip with substantially
improved performance compared to electronic implementations. In this work, we propose and demonstrate
a novel PNN architecture, WDIPLN, which exhibits highly favorable characteristics compared to previous
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literature. The WDIPLN derives from the COLN architecture detailed in [17], enabling similar vector–vector
multiplication and summation using an optical carrier signal with the additional benefits of wavelength par-
allelism, drastically reduced device footprint, and significantly lower energy consumption. The majority of
these beneficial properties come from exchanging large, power-hungry MZMs with compact MRDs. While we
can trivially exchange the fundamental elements (MRDs for MZMs) in a one-to-one manner to enable multi-
channel operation, we show that by replacing the input MRDs with a single, multi-channel MRD with an FSR
equal to the weighting channel spacing we can reduce the total device count significantly. As a first proof-
of-principle, we experimentally demonstrated simple addition and subtraction between rings in a WDIPLN
circuit. We then show a WDIPLN configured with N = 2 and M = 1, which we configure and recycle to
perform 2 bit logic gates (AND, OR and XOR). We observe the implementation accuracy for each gate to
be 96.8%, 99%, and 98.5%, respectively. Furthermore, the natural wavelength parallelism of the proposed
WDIPLN architecture can be exploited using chip-based Kerr frequency comb sources [32] for massive scaling
in the frequency domain, similar to recent demonstrations in the silicon photonics platform for high band-
width data communications [33]. This demonstration opens new opportunities in massively parallel silicon
photonic PNNs and paves the way to large-scale systems in the thousand-neuron regime on a single chip with
minimal energy consumption.
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Appendix A. Operating conditions and variation of MRDs

The mechanism of tuning for MRDs here is assumed to be electro-optic (where thermo-optic is an accepted
simplification) and well defined by free-carrier plasma dispersion [34]. The transfer function from the electri-
cal to optical domain is defined as

Eall-pass-ring(λ;V) = ei(π+θ(λ,V)) a(λ, V) − r e−iθ(λ,V)

1 − ra(λ, V)eiθ(λ,V)
, (A.1)

where a the voltage (V) dependent absorption (or loss) in the cavity lumped with intrinsic cavity loss, θ is the
wavelength- and voltage-dependent phase shift, r is the self-coupling coefficient (with a corresponding cross
coupling coefficient, κ, such that κ2 + r2 = 1). Equation (A.1) depicts the coupled effect of tuning, which both
changes the loss and the relative cavity size (i.e. phase shift).

In this work, we employ carrier injection-based ring resonators through the well-known free carrier plasma
dispersion effect in silicon. These rings demonstrate a large spectral tuning range, as seen in figure A1(a).
However, this shift comes at the cost of change of coupling conditions due to the strongly voltage-dependent
round-trip loss. Changing the coupling conditions from over coupled to critically coupled to under coupled
has a large impact on the phase shift associated the ring. It is precisely this phase that we aim to leverage in
this architecture. Therefore, we operate the rings in the slightly-to-moderately under coupled regime in this
experiment, which corresponds to voltages V > 1.1 V, as seen in figure A1(b).

Additionally, this demonstration did not employ thermal tuners to shift the rings coarsely. This leaves
the demonstration susceptible to fabrication variations. For large-scale demonstrations, these thermal phase
shifters can be implemented with isolated heaters with high efficiency [35, 36] in concert with reverse-biased
MRDs for low-power electro-optic configuration [27, 37].
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Figure A1. (a) The spectral behavior of the ring modulator used in our demonstration. As the voltage increases, the resonant
wavelength blue-shifts to a lower wavelength. In addition, we see that the ring traverses the initial condition (over-coupled), to
critical coupled, finally to under-coupled. This ring was selected due to the large tuning range for initial demonstration.
(b) Optical and electrical characterization of the ring. A single wavelength, λ− λ0 = 0 from (a), is plotted to show the change in
optical transmission as a function of applied bias. From an electrical perspective, we see that the operating regime for this diode is
indeed in forward-bias, with a maximum power for full tunability of approximately 12 mW.

Figure A2. Full implementation sequence for the hidden layers of the OR gate. (a)–(d) The circuit response when configured to
the trained weights of hidden node 1 for the incoming inputs [0, 0], [0, 1], [1, 0], and [1, 1]. (e) Circuit output for hidden node 1
at the probe wavelength, with a range of ±100 pm. (a)–(d) Show the circuit response when configured to the trained weights of
hidden node 2 for the incoming inputs [0, 0], [0, 1], [1, 0], and [1, 1]. (e) Circuit output for hidden node 2 at the probe
wavelength, with a range of ±100 pm.

Appendix B. Hidden layer demonstration results

The hidden layers are not explicitly necessary in order to run the network since the final stage weights are
known. However, they are important in demonstrating the full generality of the WDIPLN architecture, includ-
ing the ability to reconfigure. In figure A2, we show an in-depth look at the procedure of validating the hidden
nodes, h1 and h2. First, we configure the circuit to measure h1, as shown in figure 5(c). Figures A2(a)–(d) show
the optical circuit response in the hidden 1 configuration for the four logic inputs, with (e) showing the outputs
at the probe wavelength. Figures A2(f)–(i) shows the optical circuit response in the hidden 2 configuration for
the four logic inputs, with (j) showing the outputs at the probe wavelength.
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